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Abstract
Mitochondria are key organelles that perform essential cellular functions and play pivotal roles in
cell death and survival signaling. Hence, they represent an attractive target for drugs to treat
metabolic, degenerative and hyperproliferative diseases. Targeting mitochondria with organelle-
specific agents or prodrugs has proven to be an effective therapeutic strategy. More specifically,
controling the cellular ROS balance via selective delivery of an antioxidant “payload” into
mitochondria is an elegant emerging therapeutic concept. Herein, we review the recent medicinal
chemistry and clinical data of these exploratory strategies which should point the way for future
generations of therapeutics.
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1. Why targeting mitochondria?
The mitochondrion is a discreet organelle present in most eukaryotic cells. Its unusual
structure is comprised of four distinct compartments that carry out specialized functions: the
outer mitochondrial membrane (OMM), the intermembrane space (IMS), the inner
mitochondrial membrane (IMM), and the mitochondrial matrix. The IMM is highly folded
into cristae, which house the protein complexes of the electron transport chain (ETC) and
F1F0-ATPase, controlling the fundamental rates of cellular metabolism. This essential role
of the mitochondrion is responsible for its reference as the “power plant of the cell”.
However, the function of mitochondria is not limited to supplying cellular energy (McBride
et al. 2006). Adenosine triphosphate (ATP) production through the oxidative
phosphorylation (OXPHOS) process requires a continuous flow of electrons. As such,
mitochondria are the major source of reactive oxygen species (ROS, i.e. superoxide and
H2O2), generated as byproducts of the ETC (Murphy 2009; Starkov 2008). ROS reflect the
level of cellular oxidative stress, causing severe damage to macromolecules when
overproduced. Consequently, according to the Harman’s oxidative stress theory, they have
been linked to aging, age-related pathologies, and death (Balaban et al. 2005). However,
when produced in a controlled amount, ROS may also play important signaling roles in
various redox-dependent processes, including apoptosis (Bayir et al. 2006; Kagan et al.
2009b), cell proliferation (Fruehauf and Meyskens Jr. 2007) and hypoxia (Hamanaka and
Chandel In Press). Furthermore, mitochondria are active players in cellular calcium
homeostasis (Graier et al. 2007). Mitochondrial Ca2+ accumulation regulates functions as
diverse as aerobic metabolism and induction of cell death (Celsi et al. 2009). Finally,
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mutations in mitochondrial DNA (mtDNA) are responsible for many mitochondrial
metabolic disorders, and are thought to contribute to aging by promoting apoptosis (Kujoth
et al. 2005; Reeve et al. 2008a). Thus, because of their pivotal role in controling cell life and
death (Green and Kroemer 2004; Mattson and Kroemer 2003; Wasilewski and Scorrano
2009), mitochondria represent an attractive target for mitochondrial gene therapy (Koene
and Smeitink 2009) as well as drugs treating either degenerative or hyperproliferative
diseases (Fig. 1).

2. Therapeutic opportunities and challenges
2.1. Mitochondrial diseases1

Mitochondrial dysfunction triggers the cell death signaling cascade and results in organ
failure and disease. Therapeutic intervention at the mitochondrial level can be envisioned for
general cell-degenerative as well as hyperproliferative diseases, i.e. cancers (Gogvadze et al.
2009; Trachootham et al. 2009). Hyperproliferative cells are susceptible to pro-oxidant-
induced apoptosis via an increase of their oxidative stress level. The redox status of many
tumors is significantly altered compared with that of normal tissue, and pro-oxidant drugs
can exploit this difference for treatment.

Conversely, aging and degenerative diseases are associated with an elevated oxidant state
that may cause mitochondrial damage. In this case, antioxidants targeting mitochondria are
expected to exert a mitigating effect. Several pathologies are found in this category, all
sharing the common features of disturbances of mitochondrial Ca2+, ATP, or ROS
metabolism. They include cardiovascular diseases (Lesnefsky et al. 2001), f. ex.
atherosclerosis (Di Lisa et al. 2009), ischemia/reperfusion injury, heart failure, stroke
(Dirnagl et al. 1999), and traumatic brain injury; aging (Balaban et al. 2005) and
neurodegenerative diseases (Celsi et al. 2009; Reddy 2008; Reeve et al. 2008b), f. ex.
Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD),
amyotrophic lateral sclerosis (ALS), and Friedreich’s ataxia (FRDA); chronic autoimmune
inflammatory diseases, f. ex. rheumatoid arthritis (RA) (Gelderman et al. 2007); metabolic
diseases, f. ex. diabetes (Friederich et al. 2009) and obesity (Rogge 2009); as well as
ionizing radiation injury (Pearce et al. 2001).

2.2. Mode of action of drugs
Small molecule drugs or biologics can act on mitochondria through various pathways
(Todesco et al. 2006). Some of these mechanisms will be discussed in greater detail in the
following sections, and a detailed discussion would vastly exceed the scope of this review,
but noteworthy current approaches include ETC inhibition, OXPHOS uncoupling,
mitochondrial Ca2+ modulation, and control of oxidative stress via decrease or increase of
mitochondrial ROS accumulation. The inhibition of the ETC can occur via direct inhibition
of a protein subunit of one (or more) of the enzyme complexes or via acceptance of
electrons flowing across the ETC instead of the natural acceptors ubiquinone or cytochrome
c (cyt c) (Todesco et al. 2006). In the OXPHOS uncoupling event, protons are shifted from
the mitochondrial matrix to the IMS and do not pass across the F1F0-ATPase back to the
matrix, but instead migrate directly across the IMM. This bypass results in heat production,
but lack of ATP formation. Typical examples for agents that promote OXPHOS uncoupling
are weak acids and weak bases, which can be protonated in the IMS and carry protons across
the IMM (Todesco et al. 2006). Interestingly, compounds affecting the activity of inner-
membrane uncoupling proteins (UCPs) can prevent cell death (Mattson and Kroemer 2003).

1Website of the Mitochondria Research Society: http://www.mitoresearch.org/

Frantz and Wipf Page 2

Environ Mol Mutagen. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.mitoresearch.org/


An important event triggering the apoptotic cascade is the mitochondrial membrane
permeabilization (MMP), which initiates the collapse of the mitochondrial potential, the loss
of cyt c and the release of protease and nuclease activators. The prevention of this process
can be achieved with inhibitors of the mitochondrial permeability transition pore (mPTP)
complex (Zorov et al. 2009), openers of the mitochondrial ATP-regulated (mitoKATP) or
Ca2+-activated (mitoKCa) potassium channels (Szewczyk et al. 2009), or inhibitors of the
mitochondrial Na+-Ca2+ exchange (Mattson and Kroemer 2003). Modulation of
mitochondrial Ca2+ can also be envisioned by interference with mitochondria-specific Ca2+

transporters.

Additional strategies for drug-induced perturbation of mitochondrial biochemistry include
the inhibition of the cyt c-catalyzed peroxidation of the mitochondria-specific phospholipid
cardiolipin (CL) (Borisenko et al. 2008; Kagan et al. 2009a; Kagan et al. 2009b), and the
targeting of other specific mitochondrial proteins via inhibition of kinases, F1F0-ATPase,
enzymes of the Krebs cycle, or members of the anti-apoptotic Bcl-2 family (Armstrong
2007; Gogvadze et al. 2009). It has been known for a while that prevention of the oxidative
cellular damage via a decrease of mitochondrial ROS accumulation can be achieved by the
delivery of antioxidants acting as radical and/or electron scavengers. Several drugs are able
to inhibit the β-oxidation of unsaturated fatty acids, causing cellular accumulation of fat
(Todesco et al. 2006). Alternatively, anti-apoptotic agents could be designed via inhibition
of the cyt c-catalyzed peroxidation of CL (Borisenko et al. 2008; Kagan et al. 2009a; Kagan
et al. 2009b).

Finally, the mitochondrial biochemistry is also severely derailed by mtDNA binding/
oxidation or inhibition of mtDNA synthesis, or modulation of mitochondrial fission/fusion.
Chemical agents that bind to mtDNA often result in inhibition of DNA synthesis (Todesco
et al. 2006). If sufficient selectivity in the binding process can be achieved, this mechanism
of action may represent an interesting strategy to block the expression of mutated mtDNA
responsible for genetic mitochondrial disorders. Recently, compounds that modulate
mitochondrial fission/fusion have been proposed as a valuable alternative in treatment of
neurodegenerative diseases (Lu 2009).

2.3. Strategies to target mitochondria
While the OMM is relatively permeable due to the abundance of the voltage-dependent
anion channel (VDAC) protein, the IMM is highly impermeable and acts as a rigid barrier to
the passive diffusion of all types of molecules. It is also rich in the unusual phospholipid CL,
and maintains a strong negative internal potential of −180 mV required for the ETC
function. A widely used strategy for targeting mitochondria takes advantage of this
remarkable biophysical membrane property, since cationic molecules are attracted to and
accumulate preferentially within the negatively charged mitochondrial matrix (Murphy and
Smith 2007). Another strategy is based on the affinity of an agent to mitochondrial
membrane components, particularly to the phospholipid CL which is exclusively found in
the IMM (Hoye et al. 2008). In addition to the former more specific properties, sufficient
lipophilicity is also required to achieve a significant enrichment in mitochondrial
compartments.

An emerging approach to the selective delivery of bioactive cargo molecule into
mitochondria uses a carrier of short peptide sequences with specific physicochemical
properties (Yousif et al. 2009). For instance, Horton et al. recently reported such
mitochondria-penetrating peptides with alternating cationic and hydrophobic residues
(Horton et al. 2008). Other variants have been based on an oligomeric carbohydrate scaffold,
always attaching key guanidinium moieties due to their delocalized cationic form (Yousif et
al. 2009). Finally, the tethering of active molecules to mitochondrial targeting sequences
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(MTSs) has also been successively utilized (Yousif et al. 2009). MTSs are peptides used by
cells for the delivery of nuclear-encoded mitochondrial proteins, containing structural motifs
recognized by the mitochondrial import machinery.

Another class of mitochondrial delivery vectors, suitable for the import of large or
impermeable molecules, is the vesicle-based transporter system (Yousif et al. 2009). The
targeted agent is encapsulated in a cationic liposome, which undergoes cellular
internalization and subsequent fusion with the OMM (Ko et al. 2009).

In summary, by the use of a broad range of diverse delivery systems, the targeting of
mitochondria for therapeutic benefits can be utilized to enrich both antioxidants as well as
pro-oxidants in mitochondrial compartments. Antioxidants are of primary interest for their
antiaging properties, with some of the main applications centered around cardioprotection
and neurodegenerative diseases, while pro-oxidant and cytotoxic agents are under
investigation for cancer therapy. This review will describe recent advances in the
development of mitochondria-targeted agents, with an emphasis on the selective delivery of
an antioxidant “payload” into mitochondria (Fig. 2; use this Figure as a reference for
compound structures described throughout the review). For a summary of selected major
mitochondrial targeting agents and their current clinical status, if known, see Table 1.

3. Lead structures and medicinal chemistry progress
3.1. Non peptide-based mitochondria-targeted agents

Delocalized lipophilic cations—Taking advantage of the substantial negative
electrochemical potential maintained across the IMM, the class of delocalized lipophilic
cations is particularly effective at crossing the hydrophobic membranes and, hence,
preferentially accumulates >1,000 fold within the mitochondrial matrix.

The most important class of molecules based on this approach has been developed by the
tethering of antioxidants to a triphenylphosphonium (TPP) salt head piece (Murphy and
Smith 2007). The vitamin E conjugate MitoVit E is effective at preventing lipid
peroxidation, with the α-tocopherol component acting as a chain-terminating antioxidant
(Smith et al. 1999). Similarly, MitoQ is an ubiquinone derivative attached to the TPP cation
by a 10-carbon aliphatic chain (Kelso et al. 2001). Both compounds were found to be more
potent than their untargeted analogs (Trolox and Idebenone, respectively) in preventing
oxidative stress-induced apoptosis in cultured fibroblasts from FRDA patients (Jauslin et al.
2003). Further in vivo studies reported that MitoQ selectively protected mitochondria against
cardiac ischemia/reperfusion injury in rats (Adlam et al. 2005). This compound is now under
clinical development (cf. section 4). The TPP-based strategy was also applied to other
antioxidants. MitoSOD is a mitochondria-targeted version of the superoxide dismutase
(SOD) mimetic M40403, which degrades superoxide (Murphy and Smith 2007).
MitoPeroxidase is a mitochondria-targeted version of Ebselen, whose peroxidase-mimetic
activity is triggered by its selenium atom (Filipovska et al. 2005). MitoPBN is a
mitochondria-targeted version of the spin trap α-phenyl-N-tert-butylnitrone (PBN), and has
been shown to react with mitochondrial carbon-centered radicals (Murphy et al. 2003).
Several TPP-nitroxide conjugates have also been designed (the mechanism of action of
nitroxides will be discussed in the “Gramicidin S-based conjugates” section). Mito-CP
(Mito-carboxy proxyl) was shown to inhibit peroxide-induced oxidative stress and apoptosis
in cultured cells (Dhanasekaran et al. 2005). Similar TPP-TEMPO conjugates were reported,
which differ only by the linker connecting both entities. While the ester-linked
MitoTEMPOL was found not to be more active than its untargeted version (Dessolin et al.
2002), the imine-linked TPEY-TEMPO concentrated in mitochondria, exhibiting anti-
apoptotic and radioprotective properties (Jiang et al. 2009, submitted). This suggests that the
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role of the linker connecting TEMPO and TPP is essential for their penetration into cells
(Kagan et al. 2009c). In a different approach, precursors of nitric oxide (NO) donors were
also used to target mitochondria by attachment to the TPP moiety. Indeed, NO readily
inhibits peroxidases by forming iron-nitrosyl complexes or by quenching reactive
peroxidase intermediates. Hence, the prodrug (2-hydroxyaminovinyl)-triphenylphosphonium
(HVTP) was shown to protect cells against apoptosis via inhibition of the peroxidase activity
of the cyt c/CL complex (see also the section “Modified phospholipids” for further details
on the cyt c/CL complex) (Belikova et al. 2009; Stoyanovsky et al. 2008). Finally,
manipulation of the unsaturation levels of CL species by mitochondria-targeted fatty acids
has been proposed to modulate the sensitivity of cells to undergo apoptosis. The rationale
was based on the observation that CL saturated and mono-unsaturated fatty acid chains are
not oxidized by the cyt c/CL peroxidase. Thus, a TPP-conjugate with the mono-unsaturated
oleic acid (TPP-OA) exhibited anti-apoptotic activity, indicating that the cell’s sensitivity to
apoptosis may be modulated via the mitochondrial delivery of oxidizable or non oxidizable
fatty acids that may be integrated into CL species (Kagan et al. 2009c).

Apart from the TPP-conjugates, other classes of lipophilic cationic mitochondria-selective
molecules have been described as attractive candidates for therapeutic purposes.
Historically, the first examples were the fluorescent lipophilic cation rhodamine 123 and
other anticancer cyanine dyes (Murphy 1997). Notably, rhodamine 123 has been used as a
chaperone to selectively deliver the anticancer drug cisplatin into the mitochondria of tumor
cells. More recently, the triaminopyridine flupirtine, a non opioid analgesic, was shown to
be an effective antioxidant in mitochondria, with potential applications as an anti-apoptotic
agent (Schlüter et al. 2000). It was proposed to act as a free radical scavenger.

However, in spite of their effective in vitro prevention of mitochondrial damage, lipophilic
cations suffer from a major drawback. Charge accumulation into the matrix results in
mitochondrial membrane depolarization, which may account for the toxicity of these
compounds at concentrations >10 μM (Murphy 1997).

Sulfonylureas and related compounds—The cardioprotective action of potassium
channel openers (KCOs) appeared to be mediated by the interaction of these compounds
with the mitoKATP channels (Szewczyk et al. 2009). MitoKATP can be blocked by
antidiabetic sulfonylureas such as glibenclamide, or activated by KCOs such as diazoxide.
Thus, therapeutic applications might be envisioned in the treatment of myocardial infarction
and stroke (Szewczyk and Marbán 1999). Some diarylsulfonylureas, a distinct class of
antitumor agents (f. ex. sulofenur), were shown to be also effective in uncoupling OXPHOS.
However, the mechanism of antitumor activity could not be linked to this property
(Szewczyk and Wojtczak 2002).

Benzodiazepines and other PBR ligands—In addition to the well known central
benzodiazepine receptor GABAA, a second class of binding sites termed peripheral
benzodiazepine receptor (PBR) is localized primarily in mitochondrial membranes
(Veenman and Gavish 2006). This receptor is thought to be a component or a regulator of
mPTP, a multiprotein complex involved in the regulation of programmed cell death (Zorov
et al. 2009). Therefore, PBR agonists such as Ro5-4864 (4′-chlorodiazepam) and PBR
antagonists such as the isoquinoline carboxamide PK-11195 may have potential utility as
anti-apoptotic agents or pro-apoptotic antitumor agents, respectively (Galiegue et al. 2003).

Benzothiazepines—Mitochondria are involved in cellular Ca2+ homeostasis. An increase
in intra-mitochondrial Ca2+ concentration has been shown to activate Ca2+-sensitive
dehydrogenases in the Krebs cycle, thereby increasing ATP synthesis (Koene and Smeitink
2009). In a study with fibroblasts of children bearing a mutation responsible for the complex
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I (NADH:ubiquinone oxidoreductase) deficient Leigh syndrome, inhibition of the
mitochondrial Na+-Ca2+ exchange by the benzothiazepine CGP-37157 resulted in an
increase in mitochondrial Ca2+ concentration and subsequent ATP production (Visch et al.
2004). These findings suggest that complex I deficiency was associated with altered
cytosolic Ca2+ homeostasis. Therefore, mitochondrial Ca2+ modulation may represent a new
therapeutic approach towards complex I deficiency syndromes, such as encephalopathies
and neurodegenerative diseases.

Furthermore, it has been proposed that inhibition of the mitochondrial Na+-Ca2+ exchanger
could enhance glucose-stimulated insulin secretion in pancreatic β-cells (Pei et al. 2003). To
this end, novel benzothiazepine derivatives have been reported as potential therapeutics for
type II diabetes.

Modified phospholipids—During the apoptotic stage, the mitochondria-specific
phospholipid CL interacts with cyt c to form a peroxidase complex that catalyzes CL
oxidation by utilizing ROS. This process represents an essential mechanism for the
induction of the cell death program before the point-of-no-return, caspase 3 activation.
Kagan and coworkers have explored a new approach for inhibiting the cyt c peroxidase
activity by utilizing modified CL bearing an oxidizable and fluorescent 7-nitro-2,1,3-
benzoxadiazole moiety (NBD-CL) (Borisenko et al. 2008). They demonstrated that this
conjugate formed high-affinity complexes with cyt c and blocked cyt c-catalyzed oxidation
of peroxidase substrates. Thus, NBD-CL may represent a potential regulator of apoptosis.

Other drugs with mitochondrial toxicity—The anticancer activity of anthracyclines is
mainly attributed to their DNA intercalation. However, the cytotoxic side effects of the
widely used adriamycin and daunomycin have been associated with mitochondrial
dysfunction (Jung and Reszka 2001). Interaction of these drugs with mitochondria appears
to follow complex mechanisms, including major membrane disruption caused by the high
affinity of anthracyclines to CL, and the redox activity of the quinone moiety which results
in oxidative damage of proteins.

Nucleoside analogs used as antiviral drugs, such as AZT (zidovudine), can cause
mitochondrial damage through two mechanisms (Szewczyk and Wojtczak 2002). The short-
term mechanism directly affects the activity of mitochondrial enzymes, via the competitive
inhibition of the ADP/ATP antiport and of the nucleoside diphosphate kinase. The long-term
mechanism alters the mtDNA, via oxidative damage to mtDNA and inhibition of the
polymerase responsible for mtDNA replication.

NSAIDs can inhibit the β-oxidation of fatty acids and cause the uncoupling of OXPHOS,
due partly to induction of mPTP (Szewczyk and Wojtczak 2002). Local anesthetics
uncouple OXPHOS and inhibit mitochondrial F1F0-ATPase and ETC enzymes (Szewczyk
and Wojtczak 2002).

Hence, many late-stage adverse drug toxicity problems have prompted companies to screen
for mitochondrial toxicity early in the drug discovery process, in order to reduce late-stage
attrition (Dykens and Will 2007).

Other chemical classes—A variety of structurally diverse small molecules have been
described to act on mitochondrial targets. For instance, a novel group of anticancer agents
called “mitocans” has been reviewed by Neuzil et al. (Neuzil et al. 2007). These compounds
usually cause the mitochondrial destabilization of tumor cells through the activation of
mitochondrial mediators of apoptosis, including the Bcl-2 protein family, F1F0-ATPase,
ETC proteins, and mPTP and its components. A recent review by Toogood also listed
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several small molecule drugs, most of them acting as pro-oxidants (Toogood 2008). These
agents are chemically extremely diverse, ranging from natural polyheterocycles and
macrolides to steroid, benzodiazepine, isoquinoline, polyphenol or guanidinone derivatives.
We refer to these excellent references for further reading (Neuzil et al. 2007; Toogood
2008).

3.2. Peptide- and amino acid-based mitochondria-targeted agents
D-(KLAKLAK)2 pro-apoptotic peptides and analogs—Mitochondria-disrupting
peptides are capable of invading the mitochondria of mammalian cells and trigger apoptosis.
They are typically derived from the sequences of membrane-disrupting antimicrobial
peptides. Since they can be fused easily to tissue- or tumor-specific peptides or antibodies,
they may be attractive as new targeted anticancer agents. However, they usually suffer from
low potencies, thereby limiting their clinical utility (Ellerby et al. 1999). Recently, Horton
and Kelley were able to improve the mitochondrial localization and membrane-disrupting
activity of the widely used cationic amphipathic α-helical killer peptide D-(KLAKLAK)2
(Horton and Kelley 2009). By increasing its hydrophobicity via the exchange of the leucine
residue for a cyclohexylalanine or a 6-carbon alkyl chain residue, a dramatic increase in
potency could be achieved, with LC50 values of ca. 2 μM for the corresponding analogs.

Mn-porphyrin-oligopeptide conjugates—A new class of mitochondria-targeted SOD-
mimics was reported recently, consisting of a manganese metalloporphyrin conjugated to a
signal oligopeptide (Met-Leu-Ser-Leu-Arg-Gln-Ser-Ile-Arg-Phe-Lys-Gly-Cys-S-spacer-
porphyrin) (Asayama et al. 2006), whose sequence was based on the leader sequence of the
yeast cyt c oxidase subunit IV (Murphy 1997). The SOD activity of the resulting conjugate
was confirmed by monitoring the rate of decomposition of the highly toxic peroxynitrite, a
product of the reaction of superoxide with NO.

SS tetrapeptides—The Szeto-Schiller (SS) peptides feature a common structural motif of
alternating aromatic (Phe, Tyr, Dmt (2′,6′-dimethyltyrosine)) and basic (Arg, Lys) residues
(Szeto 2006; Szeto 2008). Despite their triple positive net charge at physiological pH values,
their aromatic-cationic amino acid sequence allows them to freely penetrate cells in a
potential-independent, non saturable manner (Zhao et al. 2003). Rapid uptake of the
radiolabeled tetrapeptide [3H]SS-02 ([3H]Dmt-D-Arg-Phe-Lys-NH2) occurred with maximal
levels reached by 2 min and an achievement of a 100-fold concentration in mitochondria
(Zhao et al. 2004). Further experiments suggested that these peptides were predominantly
targeted to the IMM, allowing only 20% to reach the mitochondrial matrix via potential-
driven mechanisms, despite their cationic nature. Thus, contrary to small lipophilic cations
which cause toxicity at >10 μM, their uptake is not self-limiting and they do not cause
mitochondrial depolarization even at 1 mM concentrations.

The free radical scavenging abilities of these peptides are likely to originate from their Tyr
or Dmt residues, with Dmt being the more effective reducing agent than Tyr (Winterbourn et
al. 2004). The specific location of the Tyr or Dmt residue in the peptide sequence was
inconsequential, since SS-02 and SS-31 (D-Arg-Dmt-Lys-Phe-NH2) were found to be
equally effective in scavenging ROS and inhibiting linoleic acid oxidation. In agreement
with this hypothesis, replacement of Dmt with Phe resulted in a loss of the scavenging
activity of the corresponding analog SS-20 (Phe-D-Arg-Phe-Lys-NH2) (Zhao et al. 2004).

In vitro cellular experiments showed that SS-02 and SS-31 can reduce intracellular ROS
production and apoptosis, and prevent mitochondrial depolarization, mitochondrial
permeability transition (MPT), and Ca2+-induced swelling (Zhao et al. 2004). Much more
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potent than SS-02, the estimated 5,000-fold enrichment of SS-31 in mitochondria could
explain its strong efficacy even at <1 nM concentrations (Zhao et al. 2005).

Furthermore, both SS-02 and SS-31 were shown to protect against the loss of contractile
force induced by 30 min of global ischemia in the isolated perfused guinea pig heart (Zhao
et al. 2004). The ability of SS-02 to prevent myocardial stunning has been confirmed in vivo
in rats (Song et al. 2005), and pre-ischemic i.p. administration of SS-31 (and even SS-20) to
rats significantly reduced infarct size (Cho et al. 2007a). These results support the
hypothesis that ROS play a major role in reperfusion-induced myocardial stunning.
Surprisingly, however, the non-scavenging peptide SS-20 exhibited a better activity than
SS-31. This suggests that SS-20 can reduce ROS generation more effectively by improving
mitochondrial bioenergetics and myocardial ATP content during ischemia. Moreover, in a
mouse model of ischemic cerebral injury, SS-31 was shown to exert its antioxidant and
neuroprotective activity through the inhibition of the scavenger receptor CD36 (Cho et al.
2007b). Although further studies are required to investigate the precise mode of action of the
peptide on CD36 pathways, these data suggest that targeting CD36 with specific
antioxidants might represent a new therapeutic strategy to treat ischemic brain stroke
patients.

Significantly, an in vivo study in a mouse model of ALS reported that daily i.p. injections of
SS-31 led to a significant improvement in survival and motor performance (Petri et al.
2006). In a mouse model of PD, both SS-31 and SS-20 demonstrated remarkable
neuroprotective effects (Yang et al. 2009). These findings confirm the critical role for
oxidative stress in the pathogenesis of neurodegenerative diseases and support the potential
use of antioxidants as therapeutic agents.

An islet transplantation study in mice demonstrated that SS-31 could improve the viability
of isolated pancreatic islet cells and graft function in recipients with type 1 diabetes
(Thomas et al. 2007). The authors concluded that the peptide might be useful for optimizing
islet transplantation and increasing the pool of eligible organ donors.

More recently, it was reported that SS-31 protected against renal damage in an unilateral
ureteral obstruction (UUO) model, although the mechanism by which protection was
afforded remains to be determined (Mizuguchi et al. 2008).

In summary, SS peptides have exhibited marked antioxidant properties in a range of in vivo
studies, including myocardial infarction, ischemic brain injury, ALS, PD, islet
transplantation, and UUO models. Hence, such mitochondria-targeted antioxidants clearly
represent a promising approach to treating related pathologies.

Choline esters of glutathione and N-acetyl-L-cysteine—The tripeptide glutathione
(L-γ-glutamyl-L-cysteinylglycine or GSH) plays an important role in protecting cells against
oxidants and electrophiles (Pompella et al. 2003). Upon donating an electron to unstable
molecules such as ROS, two GSH react together to form glutathione disulfide (GSSG).
Increasing mitochondrial glutathione and other thiol-based antioxidants can be an effective
strategy to prevent mitochondrial oxidative stress. Using a similar approach as with the TPP
conjugated antioxidants, Sheu et al. prepared choline esters of glutathione (MitoGSH) and
of its analog N-acetyl-L-cysteine (MitoNAC) for targeting to mitochondria (Sheu et al.
2006). Preliminary studies have shown that GSH and NAC can indeed protect against
oxidative damage in cultured cells, but in vivo data have not yet been published.

Gramicidin S-based conjugates—An alternative concept using mitochondrial targeting
of ROS scavengers was based on the affinity of certain natural antibiotics to microbial cell
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membranes. Due to the close evolutionary relationship between bacterial membranes and the
IMM components, in particular their lipid composition (Prenner et al. 1999), the
antibacterial membrane disruptor gramicidin S (GS) was hypothesized to serve as a template
for mitochondrial targeting. Thus, a hemi-GS pentapeptide sequence was tethered to the
stable free radical 4-amino-2,2,6,6-tetramethylpiperidine-N-oxyl (4-NH2-TEMPO, or 4-AT),
the ROS scavenging “payload” (Fink et al. 2007a; Fink et al. 2007b; Hoye et al. 2008). The
major advantage of sterically hindered free radicals such as 4-AT is their electron acceptor/
donor nature depending on the redox potential of the environment (Samuni et al. 2002;
Soule et al. 2007). By accepting one electron, they are reduced to hydroxylamines, which
can act as direct radical scavengers and are then converted back into nitroxides (Mitchell et
al. 2000). In other words, these compounds undergo redox recycling (Zhang et al. 1999).
Nitroxides also possess SOD and catalase mimetic activities (Goldstein et al. 2003; Krishna
et al. 1996), thus offering additional protective benefits against oxidative cellular damage.
Another advantage of free radicals is the possibility to use electron spin resonance (ESR) to
measure distribution of the spin label and detect oxidative stress in the local cellular
environment (Mitchell et al. 2000). Thus, nitroxides combine several important features in a
single functional moiety.

Based on these considerations, two different hemi-GS segments have been engineered to
give, among other analogs, the conjugates XJB-7-75 (Boc-D-Phe-Pro-Val-Orn(Cbz)-Leu-4-
AT), XJB-5-125 (Boc-Leu-D-Phe-Pro-Val-Orn(Cbz)-4-AT), and its isostere XJB-5-131, in
which the Leu-D-Phe peptide bond has been replaced by a metabolically more stable
isosteric (E)-alkene moiety. These compounds were shown to be effectively partitioning into
the mitochondria of mouse embryonic cells, in their reduced form. They inhibited
actinomycin D-induced superoxide production and CL peroxidation, and provided
protection against apoptosis, at relatively low 10 μM concentrations (Jiang et al. 2007; Wipf
et al. 2005). Furthermore, the gramicidin S-based 4-AT conjugates were devoid of any
toxicity even at a higher concentration of 20 μM (Jiang et al. 2007).

XJB-5-131 appeared to be the most effective in a series of GS-TEMPO conjugate analogs
evaluated for their ability to protect against gut barrier dysfunction induced by hemorrhage
in rats (Macias et al. 2007). More precisely, XJB-5-131 was able to ameliorate CL
peroxidation and apoptosis induced by shock. Further in vivo studies demonstrated that i.v.
infusion of XJB-5-131 could prolong survival in a rat model of lethal hemorrhagic shock
(Macias et al. 2007). These findings suggest that treatment with XJB-5–131 may prolong the
period of time that patients can survive after loosing large quantities of blood, thereby
allowing transport to appropriate care facilities. These results also support the concept that
targeting mitochondrial ROS scavengers is a reasonable therapeutic strategy for the
managment of hemorrhagic shock and other related conditions, such as stroke or myocardial
infarction.

Another in vivo study reported that i.v. administration of XJB-5-131 decreased nitric oxide
(NO) production in mice treated with lipopolysaccharide (Fink et al. 2007a), revealing
possible anti-inflammatory properties. Additional pharmacologic, pharmacokinetics and
toxicologic studies are required to determine the full therapeutic potential of this compound
series.

A further exploration into the utility of GS-TEMPO conjugates revealed their efficacy as
radioprotectants. Ionizing radiation activates a variety of cytoplasmic transduction pathways
and triggers apoptosis. It is assumed that radiolysis of water and subsequent generation of
ROS induces damage of genomic DNA, followed by a mitochondria-dependent apoptotic
response (Mitchell et al. 2000).
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A recent study demonstrated that XJB-5-125 could effectively protect cells against
superoxide generation, CL oxidation, and apoptosis induced by γ-irradiation, if given either
10 min before or 1 h after irradiation (Jiang et al. 2008). A previous experiment, using
peptide conjugate analogs attached to the potent NO synthase (NOS) inhibitor AMT (2-
amino-6-methyl-5,6-dihydro-4H-1,3-thiazine), revealed that the targeting of a NOS
antagonist was even more radioprotective than the targeting of an ROS scavenger (Kanai et
al. 2007).

Detailed structure-activity studies suggested that the effective partitioning of nitroxides was
necessary but not sufficient for their antioxidant activity in mitochondria (Jiang et al. 2007).
Monte Carlo simulations showed that active hemi-GS peptide-nitroxide conjugates with
intact β-turn structure were positioned at the interface between polar and non polar regions
of the lipid membrane. Thus, the optimized localization of the scavenger moiety inside the
polar region of mitochondrial membranes was essential to allow successful competition with
O2 for electrons from ETC, in order to prevent ROS formation.

In the course of improving the physicochemical properties of XJB-5-131, jp4_039 was
identified as a small molecular weight analog with a marketed radioprotective/mitigative
activity (Frantz, Pierce et al., in preparation; Gokhale et al., submitted). While jp4_039 only
contains the alkene peptide isostere fragment of XJB-5-131, its physicochemical properties
apparently allow it to effectively partition passively into mitochondria (Rajagopalan et al.
2009).

4. Recent clinical data
A number of non specific antioxidants have been evaluated as potential therapeutics. For
instance, coenzyme Q10 (CoQ10) is a natural electron acceptor in the ETC. Because of its
strong antioxidant properties, it is used as a dietary supplement and has been undergoing
clinical trials for cardiovascular (Pepe et al. 2007) and neurodegenerative diseases
(Kaufmann et al. 2009) as well as bipolar disorder. Idebenone (Catena®) is a CoQ10 analog
currently under extensive development by Santhera Pharmaceuticals for the treatment of
several neurological diseases. Its positive effect in cardiac hypertrophy and neurological
symptoms associated with FRDA has been demonstrated (Meier and Buyse 2009), and two
phase III trials have been initiated (Schulz et al. 2009). Clinical studies are ongoing for the
treatment of Duchenne Muscular Dystrophy (DMD), Leber’s Hereditary Optic Neuropathy
(LHON) and primary progressive multiple sclerosis.

Furthermore, phase II clinical trials of the mitochondria-targeted antioxidant MitoQ® for PD
and liver damage associated with hepatitis C have been completed (Tauskela 2007), and
initial positive results have been reported by Antipodean Pharmaceuticals.

In addition, many anticancer therapies currently under investigation aim at exploiting the
increased oxidative stress of tumor cells to selectively kill them via pro-oxidant-induced
apoptosis (Engel and Evens 2006; Toogood 2008; Trachootham et al. 2009).

Arsenic trioxide (Trisenox™) is currently marketed by Cell Therapeutics for the treatment of
acute promyelocytic leukemia. As2O3 has undoubtedly multiple biological targets, but the
common mechanism of action seems to be its interaction with sulphydryl groups, especially
those of mPTP members, leading to the production of ROS and subsequent apoptosis
(Carney 2008).

Elesclomol™, an injectable drug whose phase III clinical evaluation for the treatment of
metastatic melanoma has recently been suspended (Synta Pharmaceuticals) (Kirshner et al.
2008), and Motexafin Gadolinium (MGd), a metalloporphyrin that enhances radiation
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therapy for brain cancer (Pharmacyclics) (Richards and Mehta 2007), selectively kill cancer
cells through apoptosis as a result of an increased level of oxidative stress. The phase III
clinical trial for Elesclomol™ was suspended due to safety concerns, including an imbalance
in overall survival, with a greater number of deaths occurring in the combination arm
(Elesclomol™ with paclitaxel) compared to the control arm (paclitaxel alone).

2-Methoxyestradiol (Panzem®) was shown to inhibit SOD, leading to ROS accumulation in
cancer cells (Huang et al. 2000), and phase II clinical trials are ongoing for the treatment of
solid tumors and metastatic cancers (Sutherland et al. 2007).

Imexon is an aziridine-containing iminopyrrolidone that binds to thiols (GSH, cysteine),
causing an accumulation of ROS and mitochondrial swelling, and leading to apoptosis. It is
being evaluated for the treatment of pancreatic and lung cancers (Dragovich et al. 2007).

Other redox-active anticancer candidates are at various stages of clinical development and
have been reviewed previously (Engel and Evens 2006; Toogood 2008; Trachootham et al.
2009). These are mainly general modulators of the cellular redox system, and not
specifically targeted to mitochondria.

5. Conclusion and future perspectives
Drug compartimentalization in different organelles within a cell has not yet been fully
explored. The growing interest in mitochondrial targeting is revealing new avenues to
identify both novel therapeutics as well as potential sources of toxicity for existing
medicines.

Although the TPP-based compound class represents the majority of the nonpeptidic
mitochondrial targeting agents synthesized to date, and in spite of the significant initial
success of this approach, there are still controversies surrounding this approach. A recent
instructive study conducted by Horobin et al. (Horobin et al. 2007) failed to establish simple
correlations between mitochondria targeting capacity and physicochemical properties of
mitochondria-specific agents. Indeed, upon analysis of >100 available
“mitochondriotropics”, only a third were classified as lipophilic cations, contrary to the
general prejudice. Acids and anions were represented in similar numbers as charge-neutral
compounds. Two thirds of the known mitochondriotropics are lipophilic while one third is
hydrophilic. In fact, amphiphilicity is not a general property of mitochondria-targeted
molecules. Their mitochondria targeting capacity could not be attributed to the presence of a
mitochondria-specific tag, but rather this feature was derived from their overall molecular
properties.

Alternatively, the concept of dual function agents that use a vehicle to deliver a bioactive
payload into mitochondria may be particularly promising. Initially developed with radical
and electron scavengers, this approach might be ideally extended to any feasible anti- or pro-
oxidant, or even to mitochondrial protein ligands.

Preclinical and clinical data have demonstrated the considerable potential of mitochondrial
targeting approaches, and potential therapeutic applications span a broad range of
pathological conditions. However, it is worth mentioning the controversies which have
emerged with regard to the oxidative stress theory of aging (Pérez et al. 2009), the utility of
antioxidants for cancer treatment (Gottlieb 2009), and the link between mitochondrial
dysfunction and insulin resistance (Turner and Heilbronn 2008). Clearly, a better
understanding of the mitochondrial biology is still needed to enable the design of the most
beneficial therapeutic approach with respect to the modulation of the redox balance of the
targeted cells. Nonetheless, the increasing prevalence of age-related disorders calls for
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innovative solutions, and mitochondrial drugs clearly have the potential to emerge as a key
platform technology for the next generation of medicines.
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Fig 1.
Schematic representation of a mitochondrion and the mode of action of representative
mitochondria targeting compounds. Cationic compounds (triphenylphosphine (TPP)-based
agents, choline esters, SS peptides) are attracted by the negative potential of the inner
mitochondrial membrane (IMM). Driven by their high affinity for IMM-specific
phospholipids, gramicidin S (GS)-based antioxidants deliver the nitroxide ROS (reactive
oxygen species) scavenger into the matrix. Mitochondrial targeting sequences (MTS) can be
utilized as vehicles to deliver metalloporphyrin superoxide dismutase (SOD)-mimics into
the matrix. Alternatively, the mitochondrial agent can be encapsulated in a vesicle which
undergoes fusion with the outer mitochondrial membrane (OMM). The filled circle
represents the anti- or pro-oxidant payload. D-(KLAKLAK)2 and analogs are cationic
amphipathic α-helical peptides able to disrupt mitochondrial membranes, hence triggering
apoptosis. Other chemical agents target specific mitochondrial proteins. For instance,
sulfonylureas block the mitochondrial ATP-regulated K+ channel (mitoKATP),
benzothiazepines are inhibitors of the mitochondrial Na+-Ca2+ exchanger, and
benzodiazepines are agonists or antagonists of the peripheral benzodiazepine receptor
(PBR). ATP, adenosine triphosphate; ETC, electron transport chain; IMS, intermembrane
space.
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Fig 2.
Chemical structures of featured mitochondria-targeting agents and clinical drug candidates.
For chimera molecules, substructures highlighted in dashed boxes represent the targeted
bioactive components, and substructures highlighted in dashed circles represent the
mitochondria-targeting cationic entities. Ph, phenyl; Me, methyl; Et, ethyl; Boc, tert-
butoxycarbonyl; Cbz, benzyloxycarbonyl; Ac, acetyl.
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TABLE I

Major mitochondria-targeting agents

Class Compound
Mechanism of Action—In Vitro/In Vivo
Activity Current Status

TPP-based conjugates Mito-VitE Antioxidant: radical scavenger; antiapoptotic
agent

—

Mito-Q Antioxidant: radical scavenger; antiapoptotic
agent

Phase II: PD, liver damage associated
with hepatitis C

Mito-SOD Antioxidant: SOD mimetic —

Mito-Peroxidase Antioxidant: peroxidase mimetic —

Mito-PBN Antioxidant: radical scavenger —

Mito-CP Antioxidant: radical scavenger; SOD and
catalase mimetic; antiapoptotic agent

—

Mito-TEMPOL Antioxidant: radical scavenger; SOD and
catalase mimetic

—

TPEY-TEMPO Antioxidant: radical scavenger; SOD and
catalase mimetic; antiapoptotic agent;
radioprotective agent

—

HVTP NO donor; cyt c/CL peroxidase inhibition;
antiapoptotic agent

—

TPP-OA Prevention of CL peroxidation; antiapoptotic
agent

—

Other delocalized
lipophilic cations

Rhodamine 123 Mitochondrial chaperone —

Flupirtine Antioxidant: radical scavenger
(?);antiapoptotic agent

(Nonopioid analgesic)

Sulfonylureas and related
compounds

Glibenclamide Mito KATP blocker (Antidiabetic agent)

Diazoxide Mito KATP opener Antihypertensive agent

Sulofenur OXPHOS uncoupler (Anticancer agent)

Benzodiazepines and
other PBR ligands

Ro5-4864 PBR agonist; potential antiapoptotic agent —

PK-11195 PBR antagonist; potential anticancer agent —

Benzothiazepines CGP-37157 Mitochondrial Na+-Ca2+ exchanger inhibitor —

Modified phospholipids NBD-CL Cyt c/CL peroxidase inhibition; antiapoptotic
agent

—

Anthracyclines Adriamycin
Daunomycin

Mitochondrial membranes disruption;
oxidative damaging agent

Anticancer agents with mitochondrial
toxicity

Nucleoside analogs AZT Mitochondrial enzymes inhibition; mtDNA
damaging agent

Antiviral agent with mitochondrial
toxicity

SS tetrapeptides SS-02 Antioxidants: radical scavengers;
antiapoptotic agents; cardioprotective agents:
myocardial infarction, ischemic brain injury;

—

SS-31 neuroprotective agents: ALS, PD; renal
protective agents

—

Choline esters of GSH
and NAC

Mito-GSH Antioxidants: radical scavengers —

Mito-NAC —

GS-based conjugates XJB-7-75 Antioxidants: radical scavengers; SOD and
catalase mimetics;

—

XJB-5-125 antiapoptotic agents; —
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Class Compound
Mechanism of Action—In Vitro/In Vivo
Activity Current Status

XJB-5-131 cardioprotective agents: hemorrhagic shock; —

jp4_039 potential anti-inflammatory agents;
radioprotective agents

Preclinical trials: radioprotection

Clinical drug candidates CoQ10 Antioxidant: radical scavenger; dietary
supplement (not mitochondria-targeted)

Clinical trials: cardiovascular and
neurodegenerative diseases, bipolar
disorder

Idebenone Antioxidant: radical scavenger (not
mitochondria-targeted)

Phase III: FRDA; clinical trials: DMD,
LHON, primary progressive multiple
sclerosis

As2O3 Sulfhydryl-based proteins inhibition Marketed: acute promyelocytic
leukemia

Elesclomol Pro-oxidant Phase III suspended: metastatic
melanoma

Motexafin gadolinium Pro-oxidant Phase III: brain metastases
(combination with radiation therapy),
hematological malignancies
(combination with chemotherapy)

2-Methoxy-estradiol SOD inhibition Phase II: solid tumors and metastatic
cancers

Imexon Binding to thiols Phase I/II: pancreatic and lung cancers

Empty entries in the last column indicate that there is no recent information. Activities in parentheses are likely unrelated to the mitochondrial
effects of these compounds. The question mark (?) indicates a speculative mechanism of action.

TPP, triphenylphosphonium; PBR, peripheral benzodiazepine receptor; GSH, glutathione; NAC, N-acetyl-L-cysteine; GS, gramicidin S; SOD,
superoxide dismutase; cyt c, cytochrome c; CL, cardiolipin; Mito-KATP, ATP-regulated potassium channel; OXPHOS, oxidative phosphorylation;
mtDNA, mitochondrial DNA; ALS, amyotrophic lateral sclerosis; PD, Parkinson’s disease; FRDA, Friedreich’s ataxia; DMD, Duchenne muscular
dystrophy; LHON, Leber’s hereditary optic neuropathy.
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