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Abstract

Unchecked growth and proliferation is a hallmark of cancer, and numerous oncogenic mutations reprogram cellular
metabolism to fuel these processes. As a central metabolic organelle, mitochondria execute critical biochemical
functions for the synthesis of fundamental cellular components, including fatty acids, amino acids, and nucleotides.
Despite the extensive interest in the glycolytic phenotype of many cancer cells, tumors contain fully functional
mitochondria that support proliferation and survival. Furthermore, tumor cells commonly increase flux through one
or more mitochondrial pathways, and pharmacological inhibition of mitochondrial metabolism is emerging as a
potential therapeutic strategy in some cancers. Here, we review the biosynthetic roles of mitochondrial metabolism
in tumors and highlight specific cancers where these processes are activated.
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Review
Recent characterizations of metabolic enzymes as tumor
suppressors and oncogene-driven metabolic reprogram-
ming have reinvigorated interest in cancer metabolism.
Although therapies targeting metabolic processes have
long been a staple in cancer treatment (e.g. inhibition of
folate metabolism via methotrexate), the focused thera-
peutic potential surrounding these findings have gener-
ated a renewed appreciation for Otto Warburg’s work
almost a century ago. Warburg observed that tumor
cells ferment much of the glucose taken up during
growth to lactate, thus using glycolysis as a major means
of adenosine triphosphate (ATP) regeneration [1]. How-
ever, the observation of decreased respiration in cancer
cells and idea that “the respiration of all cancer cells is
damaged” belies the critical role of mitochondria in bio-
synthesis and cell survival [1]. On the contrary, func-
tional mitochondria are present in all proliferative cells
within our body (including all tumors), as they are
responsible for converting the diverse nutrients available
to cells into the fundamental building blocks required
for cell growth. These organelles execute numerous
functions in cancer cells to promote tumor growth and
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survival in response to stress. Here, we outline the crit-
ical biosynthetic functions served by mitochondria
within tumors (Figure 1). Although many of these func-
tions are similarly important in normal, proliferating
cells, we have attempted to highlight potential points
where mitochondrial metabolism may be therapeutically
targeted to slow cancer growth. This review is organized
by specific metabolic pathways or processes (i.e., glucose
metabolism and lipogenesis, amino acid metabolism, and
nucleotide biosynthesis). Tumors or cancer cell types
where enzymes in each pathway have been specifically
observed to by dysregulated are described within the text
and summarized in Table 1.
Glucose anaplerosis
Glucose is the most widely available nutrient in our
body; not surprisingly, most tumor cells consume this
carbohydrate (or analogs) at high rates. This phenotype
allows for detection and imaging of some cancers and
metastatic lesions using the glucose analog 2-deoxy-2-
[18 F]fluoro-D-glucose (FDG), which accumulates in tu-
mors (and some other tissues) and can be noninvasively
observed when using positron emission tomography
integrated with computed tomography (FDG-PET/CT)
[2]. While FDG-PET/CET tracks cells with high glucose
uptake and phosphorylation only, the use of isotope
tracers, mass spectrometry (MS), and nuclear magnetic
tral. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,
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Figure 1 Biosynthetic nodes within mitochondria. Metabolic pathways within mitochondria that contribute to biosynthesis in cancer and
other proliferating cells. TCA metabolism and FOCM enable cells to convert carbohydrates and amino acids to lipids, non-essential amino acids,
nucleotides (including purines used for cofactor synthesis), glutathione, heme, and other cellular components. Critical biosynthetic routes are
indicated by yellow arrows. Enzymatic reactions that are dependent on redox-sensitive cofactors are depicted in red.
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resonance (NMR) have enabled researchers to more
closely examine the fate of glucose within cancer cells
[3-5]. Indeed, flux through glycolysis and lactate secre-
tion remains a hallmark of many tumor cells, presum-
ably to facilitate biosynthesis of ribose, purines (via
serine and glycine), and lipid headgroups (via glycerol-3-
phosphate and serine). However, increasing evidence
now indicates that cancer cells transport a significant
portion of glucose-derived pyruvate into mitochondria
where it serves as an anaplerotic substrate to replenish
tricarboxylic acid (TCA) cycle intermediates used for
biosynthesis. For example, conditions of limited glutam-
ine availability or glutaminase (GS) suppression drive
cancer cells to increasingly rely on glucose carbon flux
through pyruvate carboxylase (PC) to maintain oxaloace-
tate (OAC) production and downstream TCA cycle
activity [6]. Furthermore, NMR analysis of mice bearing
three distinct human orthotopic tumors and infused
with [3,4-13C2]glucose indicated these glioblastoma lines
used glucose as a mitochondrial anaplerotic substrate
[7]. Although glutamine is one of the most abundant
amino acids present in plasma, typical in vitro culture
media used for cell line expansion contain relatively high
concentrations (2–4 mM) of glutamine. Thus, as tumor
cells are increasingly analyzed prior to “adaptation/
selection” in vitro, we are beginning to better appreciate
the importance of glucose-derived pyruvate as an ana-
plerotic substrate in tumors.

Glucose oxidation and lipogenesis
Beyond flux through PC or analogous reactions, the
more predominant fate of mitochondrial pyruvate is oxi-
dation by the pyruvate dehydrogenase (PDH) complex
to form acetyl-coenzyme A (AcCoA). AcCoA is subse-
quently converted to citrate via condensation with OAC
by citrate synthase. In turn, citrate is either converted to
isocitrate in the TCA cycle or transported out of mito-
chondria and metabolized by ATP citrate lyase to yield
cytosolic AcCoA, which is the substrate for de novo lipo-
genesis and acetylation. Mitochondrial activity within
this pyruvate-citrate shuttle is therefore critical for the
biosynthesis of fatty acids and cholesterol as well as pro-
tein acetylation. With some notable exceptions (e.g.
hypoxia, discussed below), most cancer cells derive the
majority of their lipogenic AcCoA from glucose-derived
pyruvate through PDH [8-10]. Numerous oncogenic
pathways stimulate glucose-derived carbon atom flux
through the citrate shuttle to promote lipogenesis and
TCA metabolism. Specific mutations in Kirsten rat sar-
coma viral oncogene homolog (KRAS) stimulate flux of



Table 1 Overview of mitochondrial biosynthetic enzymes important in cancer

Cancer type (according to primary site)

Blood, bone,
or lymph

Brain Breast Colon Kidney Liver Lung Stomach Ovarian Pancreas Prostate Skin

TCA cycle, anaplerosis, and AcCoA metabolism

Pyruvate carboxylase • • • • • • • •

Pyruvate dehydrogenase complex • • • • • • • •

Isocitrate dehydrogenase (activity
or mutation)

• • • • • • • • •

Succinate dehydrogenase (mutation) •

Fumarate hydratase (mutation) •

Glutaminase and/or glutamate
dehydrogenase

• • • • • • • • •

Glutamine synthetase • • •

Amino acid metabolism

Pyrroline-5-carboxylate reductase • • • • • • • • • •

Proline oxidase • • • • • • • • • • • •

Aspartate transaminase • • •

Alanine transaminase • • • • • •

Nucleotide biosynthesis

Dihydroorotate dehydrogenase • • • • • • • •

Methylenetetrahydrofolate
dehydrogenase

• • • • • • • • • • •

Cancers in which three or more mitochondrial enzymes have been studied and found to be differentially regulated (or mutated, as indicated) in cancers vs.
control groups are included. Dysregulation of each enzyme was demonstrated in clinical tumors samples, animal models, or cell lines at the levels of genes,
mRNA, protein, metabolites, and/or flux.
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glucose through PDH to generate fatty acids [11,12]. Al-
ternatively, active Akt promotes glucose-mediated fatty
acid synthesis downstream of PDH [8,13]. This Akt-
dependent lipogenesis occurs by activation of mammalian
target of rapamycin complex 1 (mTORC1) and sterol
regulatory element-binding protein 1 (SREBP1), which are
key regulators of cellular growth and lipid homeostasis,
respectively [14]. Interestingly, SREBPs have also been
shown to coordinate lipid and protein biosynthesis as well
as protect cancer cells from saturated fatty acid-induced
lipotoxicity [15,16]. On the other hand, inactivation of
mTORC1 reduces mitochondrial fluxes that supply the
citrate and AcCoA which fuel these pathways [17,18]. Fi-
nally, overexpression of the HER2 oncogene or epidermal
growth factor (EGF) stimulation both activate MEK/ERK
signaling to suppress the inhibitory PDH kinase 4 (PDK4)
and maintain glucose oxidation in mammary epithelial
cells [19].
These above concepts and results contrast the estab-

lished role of PDH kinase 1 (PDK1) in supporting tumor
growth downstream of hypoxia-inducible factor (HIF)
signaling by suppressing PDH activity [20-22]. Indeed,
inhibition of PDK1 activity using dichloroacetate (DCA)
forces glucose oxidation under hypoxic conditions [9]
and inhibits the growth of xenograft tumors [23]. Lim-
ited mitochondrial glucose metabolism due to hypoxic
or pseudohypoxic stabilization of HIFs is a hallmark of
some renal carcinomas [9,24,25], and normalization of
HIF levels (thus increasing glucose oxidation) in such
cells abrogates tumor formation in xenografts [26]. Sup-
pression of PDK1 to activate PDH flux also contributes
to BRAF(V600E)-induced oncogene senescence [27],
further suggesting that limiting glucose oxidation is im-
portant for tumor growth. Furthermore, some tumors
downregulate expression of the mitochondrial pyruvate
carrier (MPC), and acute inhibition of the MPC in
cancer cells significantly decreases glucose oxidation but
has no effect on growth or respiration [28-30]. Tumor
cells are clearly able to compensate for this lack of
glucose-mediated biosynthesis under these conditions
through extramitochondrial pathways, scavenging acet-
ate [31,32], unsaturated lipids [8,33], or proteins [34]
when required. Therefore, the relative importance of
glucose-driven biosynthesis through mitochondrial path-
ways may be tumor specific. Alternatively, there may be
a particular level of glucose flux into mitochondria that
supports biosynthesis while limiting oxidative TCA me-
tabolism and potentially deleterious byproducts (e.g. re-
active oxygen species; ROS). Further mechanistic studies
are required to characterize the mechanisms through
which cancer cells balance mitochondrial energetic
(catabolic) and biosynthetic (anabolic) metabolism.
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Amino acid metabolism
In addition to carbohydrates, amino acids are critical
substrates fueling mitochondrial metabolism and the bio-
synthesis of proteins, lipids, and other molecules. Of par-
ticular interest in cancer are key mitochondrial enzymes
in the metabolism of glutamine, glutamate, proline, aspar-
tate, and alanine (Figure 2). Glutamine is one of the most
critical nutrients required for cell proliferation, as the
amido nitrogen of this amino acid is the obligate substrate
for hexosamine and nucleotide biosynthesis in the cytosol.
Furthermore, the carbon backbone of glutamine is an
important anaplerotic substrate fueling TCA cycle metab-
olism (Figure 1). Upon conversion to glutamate via gluta-
minase (GLS) activity, N-acetyl-glucosamine production,
or nucleotide biosynthesis, glutamine carbons enter the
TCA cycle as alpha-ketoglutarate (aKG) downstream of
glutamate dehydrogenase (GDH) or transaminase activity
[35,36]. The GLS (rather than GLS2) isoform is commonly
expressed in tumors and is regulated downstream of the
MYC oncogene [37]. Pharmacological inhibition of GLS is
being investigated as a potential means of therapy for a
number of different tumor types [38-40]. Indeed, GLS
Figure 2 Coordination of carbon and nitrogen metabolism across am
transamination reactions and can also serve as precursors for glutamine, pr
reactions are highlighted in blue, and TCA cycle intermediates are highl
or oxaloacetate).
facilitates oxidative glutaminolytic flux in tumor cells
derived from gliomas, lymphomas, breast cancers, prostate
cancers, pancreatic cancers, and melanomas [38,40-44].
Recent flux studies in tumor cells bearing isocitrate de-
hydrogenase 1 (IDH1) mutations indicate that these cells
may be particularly dependent upon glutamine to fuel
oxidative mitochondrial metabolism and thus may be
responsive to inhibition of GLS or respiration [39,45].
GLS-derived glutamate is also important for glutathione
synthesis, which is abundant at mM levels in cells and
plays an important role in redox homeostasis and tumor
cell survival in response to oxidative stress [46].

Glutaminolysis and reductive carboxylation
Glutamine carbon can also fuel AcCoA generation for
lipid biosynthesis when metabolized by malic enzymes
(MEs) through glutaminolysis or alternatively via reduc-
tive carboxylation. The former pathway, by which
glutamine-derived malate is converted to pyruvate and
subsequently lactate or AcCoA, is active in some tumor
cells that express high levels of cytosolic ME1 or the
other mitochondrial isozymes ME2 and ME3 [44,47].
ino acids. Glutamate and aKG are key substrates in numerous
oline, and the TCA cycle. Mitochondrial enzymes catalyzing these
ighted in orange (pyruvate enters the TCA cycle as acetyl-CoA



Ahn and Metallo Cancer & Metabolism  (2015) 3:1 Page 5 of 10
Leukemic cells under hypoxia have been observed to
employ this pathway for biosynthesis and ATP regener-
ation [38]. Glutaminolysis is also specifically activated in
proliferating cells upon inhibition of MPC function,
which may contribute to the sensitivity of cancer cells to
inhibitors of glutamine metabolism [29,30].
In contrast to the oxidative glutaminolytic pathway, re-

ductive carboxylation involves the “reverse” or reductive
activity of NADP+-dependent IDHs to generate isocitrate
and citrate from aKG, a pathway which becomes import-
ant in cells proliferating in hypoxic microenvironments
or those with dysfunctional mitochondria [9,25,42,48].
HIFs stabilized by low oxygen levels or loss of the von
Hippel Lindau tumor suppressor reduce PDH activity
[20,21], leading cells to use alternate substrates for AcCoA
generation such as glutamine or aKG [24]. In this manner,
mass action and/or altered mitochondrial redox states in-
duce proliferating cells to reductively metabolize aKG via
NADP+-dependent IDHs and subsequently generate isoci-
trate and ultimately AcCoA [49]. Evidence also suggests
that aKG-dehydrogenase (OGDH) and nicotinamide
nucleotide transhydrogenase (NNT) expression are both
required for activation of this pathway [48,50]. Indeed,
hypoxic cells maintain and even upregulate oxidative glu-
tamine metabolism in mitochondria despite the observed
increase in reductive carboxylation activity [38,45,51].
Thus, some mitochondrial functions are required to allow
conversion of glutamine to AcCoA through this pathway.
On the other hand, cells with heterozygous mutations in
IDH1 are specifically compromised in their ability to use
reductive carboxylation for fatty acid synthesis [45], sug-
gesting that the cytosolic isozyme catalyzes reductive carb-
oxylation. While the specific contributions and functions
of mitochondrial IDH2 and cytosolic IDH1 in this path-
way must be definitively characterized (both in vitro and
in vivo), increased exchange of aKG and isocitrate/citrate
occurs in the context of perturbed redox states when
fatty acid biosynthesis is maintained, a common occur-
rence in the tumor microenvironment. Ultimately, this
pathway may effectively allow cancer cells to maintain bio-
synthesis, transfer reducing equivalents between compart-
ments, or both to support growth and survival in hypoxic
microenvironments.

Glutamine synthesis
Many amino acids are not extremely abundant in plasma
or the tumor microenvironment and therefore must be
synthesized de novo. Mitochondrial metabolism plays a
definitive role in the production of many non-essential
amino acids and their further utilization in biosynthetic
pathways. Although glutamine is relatively abundant in
plasma, de novo glutamine synthesis in the liver and
surrounding tissues is likely critical for tumor cell growth.
Glutamine biosynthesis requires a supply of aKG from
mitochondrial metabolism to generate glutamate (a critical
precursor for most non-essential amino acids) and
subsequently glutamine via glutamine synthetase (GS).
De novo glutamine biosynthesis in tumors has been de-
tected in vivo using infusions of [13C]glucose into mice
bearing human glioblastoma orthotopic tumors [7]. Fur-
thermore, some breast epithelial cells can mediate glu-
tamine independence via expression of GS [52]. Finally,
glutamine as well as other amino acids may be scav-
enged via protein catabolism when it is not available in
sufficient quantities [34].

Proline metabolism
Mitochondrial proline metabolism and synthesis are critic-
ally important for tumor cells, at least in part due to the
unique, modifiable chemical properties it provides to
proteins. Proline is synthesized from glutamine or urea-
cycle-derived ornithine via the intermediate pyrroline-5-
carboxylate (P5C). P5C is then converted to proline via
the NAD(P)H-dependent enzyme pyrroline-5-carboxylate
reductase (PYCR), which exists in three isoforms: PYCR1,
PYCR2, and PYCRL (Figure 2). Mitochondrial PYCR1 and
PYCR2 are upregulated in multiple types of cancer, includ-
ing prostate, lymphoma, and others [41,53,54]. Overex-
pression of c-Myc in P493 human Burkitt lymphoma and
PC3 human prostate cancer induced an upregulation of
PYCR1 expression as well as the P5C biosynthetic enzyme
delta-1-pyrroline-5-carboxylate synthase (P5CS), resulting
in higher levels of intracellular proline [41]. In line with
this observation, expression of both PYCR1 and PYCR2
was increased in a panel of melanoma cell lines but was
undetectable in normal melanocytes [53]. Furthermore, a
recent large-scale comparative analysis of published
mRNA microarray datasets found that PYCR1 was one of
the most commonly overexpressed metabolic enzyme
genes in comparison to normal tissue among the 19 repre-
sented cancer types [54]. Although the functional advan-
tages provided to cancer cells by modulating proline
metabolism are not completely clear, the importance of
proline in extracellular matrix proteins (e.g. collagen)
could play a role in tumorigenesis. Alternatively, intercon-
versions of proline and P5C in the cytosol and mitochon-
dria have been proposed as a means of transferring
reducing equivalents between these compartments [55],
though more detailed functional analyses are required to
elucidate how proline metabolism contributes to cancer
progression.
Downregulation of proline catabolism is complemen-

tary to its biosynthesis and commonly observed in a
number of tumor types. The first step of this process is
catalyzed in the mitochondria by proline oxidase (POX),
and the expression of this enzyme is markedly reduced
in many cancers compared to normal tissue from the
same patient [56]. POX expression is induced by the



Figure 3 Biosynthetic sources for purine and pyrimidine synthesis. Sources and fates of nitrogen, carbon, and oxygen atoms are colored as
indicated. Italicized metabolites can be sourced from the mitochondria or cytosol. The double bond formed by the action of DHODH/ubiquinone
is also indicated.
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tumor suppressor p53, and ectopic expression of POX in
DLD-1 colon cancer cells induces cell cycle arrest and
reduces tumor burden in xenograft models [56]. Further-
more, POX expression is inhibited by MYC via miR-23b*
in lymphoma, renal, and prostate cancers [41,57]. The
widespread repression of POX in cancer indicates that
this enzyme may act as a tumor suppressor; however,
the specific mechanisms through which POX deficiency
promotes tumorigenesis are not yet clear.

Aspartate and asparagine metabolism
Aspartate can be generated from the TCA intermediate
oxaloacetate by glutamate-mediated transaminase activ-
ity (Figure 2); thus, the biosynthesis of aspartate and
downstream metabolites is intimately tied to mitochon-
drial activity. Aspartate transaminases (GOT1, cytosolic;
GOT2, mitochondrial), which bidirectionally convert
aspartate and aKG to OAC and glutamate, are important
for the growth of human pancreatic adenocarcinoma
(PDAC) [43]. Oncogenic KRAS, the most common mu-
tation in PDAC, redirects glutamine metabolism toward
aspartate production in a number of settings [11,43,58].
This metabolic reprogramming is thought to facilitate
regeneration of NADPH for reductive biosynthesis and
redox homeostasis as well as NAD+ for maintaining
glycolysis [43]. Ablation of oncogenic KRAS in a mouse
model of pancreatic cancer markedly reduced tumor size
and also revealed a subpopulation of surviving tumor
cells which did not express KRAS. These surviving
cells relied heavily on oxidative phosphorylation and
were sensitive to oligomycin treatment, providing
evidence that inhibition of mitochondrial function may
effectively target cells that survive after suppression of
oncogenic KRAS signaling [59]. Additionally, aspartate
and glutamine are the precursors for asparagine, which
is synthesized in the cytosol by asparagine synthetase
(ASNS). ASNS expression is required for the survival
of cultured glioma and neuroblastoma cell lines, and
supplementation of exogenous asparagine can prevent
apoptosis induced by glutamine withdrawal, in part, by
modulating ER stress [60]. Expression of ASNS is also
correlated with drug resistance in childhood acute
lymphoblastic leukemia (cALL) and some forms of acute
myeloblastic leukemia (AML), which are typically defi-
cient in their ability to synthesize asparagine de novo
[61,62]. Finally, aspartate is a key initiator of pyrimidine
synthesis and donates nitrogen for purine synthesis via
adenylosuccinate synthetase (Figure 3), further highlight-
ing the role of mitochondrial aspartate metabolism in
tumor cell biosynthesis.

Alanine and BCAA metabolism
Alanine production via alanine transaminases (GPT1, cyto-
solic; GPT2, mitochondrial), which transfer an amino group
between glutamate and pyruvate to yield alanine and aKG,
not only provide proteinogenic alanine but also aKG for
TCA cycle activity (Figure 2). Maintenance of glutamine
anaplerosis and catabolism in cancer cells via increased
GPT2 activity is essential for oncogenic KRAS-induced
anchorage independent growth, as demonstrated by knock-
down of GPT2 expression in HCT116 colon cancer cells
[35]. GPTactivity may also facilitate disposal of excess nitro-
gen (such as that derived from glutamine) via alanine secre-
tion [63]. Indeed, secretion of alanine is higher in melanoma
cell lines compared to normal melanocytes and is quite
significant in human colon carcinoma tumors [35,64].
Finally, the branched chain amino acids (BCAAs) valine,

leucine, and isoleucine are also highly metabolized by
transaminases in both the cytosol (via BCAT1) and mito-
chondria (via BCAT2) (Figure 2) [65]. While cytosolic
BCAT1 metabolism has been implicated in gliomas with
wild-type IDH1 [66], how BCAA catabolism contributes
to cancer progression remains unclear. Ultimately, by co-
ordinating cellular bioenergetics and biosynthesis through
the TCA cycle, amino acid metabolism plays a critical role
in tumor growth and survival.
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Nucleotide biosynthesis
In addition to amino acid and lipid biosynthesis, nucleo-
tide production is highly dependent upon mitochondrial
metabolism and associated intermediates. While the ribose
moiety of nucleotides is exclusively generated in the cyto-
sol, many components that contribute to both pyrimidine
and purine bases are derived directly or indirectly from
mitochondria (Figure 3). Pyrimidine ring synthesis re-
quires glutamine and aspartate, which can be supplied by
mitochondrial pathways as noted above. Pyrimidine syn-
thesis also requires the activity of dihydroorotate dehydro-
genase (DHODH), a mitochondrial enzyme that converts
dihydroorotate to orotate coupled with the reduction of
ubiquinone to ubiquinol. Importantly, oxidation of ubiqui-
nol in the electron transport chain (ETC) is necessary to
maintain an adequate supply of ubiquinone for DHODH
activity. In fact, uridine must be supplemented to culture
media to allow proliferation of ρ0 cells (i.e., cells lacking
functional mitochondrial DNA) and other cell lines with
genetic modifications that compromise respiration [45,67].
Thus, DHODH links cellular respiration and pyrimidine
synthesis. Elevated DHODH expression and increased
activity have been observed in multiple types of cancers
(Table 1) [68-71]. Inhibition of DHODH in human melan-
oma decreases growth both in vitro and in murine xeno-
grafts [70]. Doxorubicin, a common chemotherapeutic,
induces a decrease in DHODH expression and acts syner-
gistically with tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL) to selectively kill tumor cells
[68]. DHODH is also suppressed by miR-502, which is
expressed at significantly lower levels in human colon
tumors relative to normal tissue [71]. Finally, suppression
of DHODH also impairs the function of complex III in the
ETC, causing accumulation of p53 and induction of apop-
tosis, which further relates mitochondrial respiration to
cancer growth and survival [72].
Purine nucleotide synthesis requires nitrogen from as-

partate and glutamate as well as glycine and formate for
backbone synthesis (Figure 3). While enzymes involved
in glycine and formate synthesis are present in both
the cytosol and mitochondria, increasing evidence sug-
gests that the formate (and potentially glycine) fueling
this pathway is primarily derived from mitochondrial
metabolism. Formate is incorporated into purines via
10-formyl-tetrahydrofolate (10-CHO-THF) and thymi-
dine via 5,10-methylene-THF. These substrates can be
generated in both the cytosol and mitochondria via
serine hydroxymethyltransferase (SHMT), methylenetetra-
hydrofolate dehydrogenase (MTHFD), and downstream
reactions in folate-mediated one carbon metabolism
(FOCM) [73]. We recently developed a system for quanti-
fying the contribution of different substrates to the mito-
chondrial and cytosolic NADPH pools using [2H] tracing
and inducible expression of mutants IDH1 and IDH2 [74].
Application of [2H]-labeled serine, glycine, and glucose
tracers to non-small cell lung cancer cells indicated that
serine flux through SHMT2 and MTHFD2(L) operates
primarily in the oxidative direction to produce mitochon-
drial NAD(P)H in these cancer cells [74]. Additional
evidence by others supports the concept that mitochon-
drial FOCM is an important contributor of reducing
equivalents and one carbon intermediates for nucleotide
biosynthesis [75,76]. While the cytosolic pathway may
independently contribute to nucleotide biosynthesis
[77], our results correlate with the recent demonstration
that MTHFD2 expression is commonly elevated in
many cancers and associated with poor survival in
breast cancer patients [54].

Conclusions
Mitochondria operate as both engine and factory in
eukaryotes, coordinating cellular energy production and
the availability of fundamental building blocks that are
required for cell proliferation. Cancer cells must there-
fore balance their relative bioenergetic and biosynthetic
needs to grow, proliferate, and survive within the phys-
ical constraints of energy and mass conservation. In
contrast to quiescent cells, which predominantly use oxi-
dative mitochondrial metabolism to produce ATP and
uptake glucose at much lower rates than proliferating
cells, tumor cells exhibit increased glycolytic rates to
provide an elevated flux of substrate for biosynthetic
pathways, including those executed within mitochondria.
Given these higher rates of nutrient utilization, meta-
bolic flux through mitochondrial pathways and the asso-
ciated ROS production can often be higher in cancer
cells. Not surprisingly, activation of cellular antioxidant
response pathways is commonly observed in cancer or
subpopulations of cells within tumors [46,78]. Cellular
compartmentalization affords a degree of protection
from such damaging side products of metabolism, and
methods which are able to deconvolute the relative con-
tributions of each cellular compartment (e.g. mitochon-
dria, cytosol, peroxisome, etc.) to cancer metabolism will
be crucial to more completely understand the metabol-
ism of cancer cells in the future [74,79]. Ultimately,
while mitochondrial dysregulation is widely considered
to be a hallmark of cancer, numerous mitochondrial
functions remain critical for tumor growth and are
emerging as clinical targets.
Following this point, it comes as no surprise that mito-

chondrial metabolism is highly active in virtually all
tumors (i.e., cancer cells, stroma, or both), and investiga-
tors have begun targeting these pathways to explore
potential efficacy. Indeed, some evidence suggests that
biguanides such as metformin or phenformin may limit
tumor incidence and burden in humans and animals
[80,81]. These effects are presumably due, at least in
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part, to complex I inhibition of the ETC, which signifi-
cantly perturbs mitochondrial function [82,83]. However,
more insights are needed into the mechanisms of these
compounds in patients to determine the therapeutic po-
tential of targeting this and other components of mito-
chondria. In developing new therapies that target cancer
metabolism, researchers will face challenges similar to
those that are relevant for many established chemother-
apies since deleterious effects on normal proliferating
cells that also depend on mitochondrial metabolism
(and aerobic glycolysis) are likely to arise.
As we acquire a more detailed picture of how specific

genetic modifications in a patient’s tumor correlate with
its metabolic profile, opportunities for designing tar-
geted or combinatorial therapies will become increas-
ingly apparent. Cancer therapies that address tumor-
specific mitochondrial dysregulation and dysfunction
may be particularly effective. For example, some cancer
cells harbor mutations in TCA enzymes (e.g., FH, SDH,
IDH2) or regulatory proteins that control mitophagy
(i.e., LKB1) [84]. Such tumors may be compromised
with respect to some aspects of mitochondrial biosyn-
thesis and dependent on alternate pathways for growth
and/or survival such that synthetically lethal targets
emerge. Ultimately, such strategies will require clinicians
and researchers to coordinate metabolic, biochemical, and
genetic information in the design of therapeutic strategies.
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Mal: malate; MTHFD: methylenetetrahydrofolate dehydrogenase;
NADH: nicotinamide adenine dinucleotide, reduced; NADPH: nicotinamide
adenine dinucleotide phosphate, reduced; NNT: nicotinamide nucleotide
transhydrogenase; NMR: nuclear magnetic resonance; OAC: oxaloacetate;
PET/CT: positron emission tomography integrated with computed
tomography; PDAC: pancreatic adenocarcinoma; Pyr: pyruvate; PDH: pyruvate
dehydrogenase; PC: pyruvate carboxylase; PDK: PDH kinase; P5C: pyrroline-
5-carboxylate; PYCR: pyrroline-5-carboxylate reductase; POX: proline oxidase;
ROS: reactive oxygen species; Ser: serine; SHMT: serine hydroxymethyltransferase;
SREBP1: sterol regulatory element binding protein 1; Suc: succinate;
SDH: succinate dehydrogenase; TCA: tricarboxylic acid; TRAIL: tumor
necrosis factor-related apoptosis-inducing ligand.
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