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ABSTRACT

AKI is a common clinical condition associated with the risk of developing CKD and

ESKD. Sepsis is the leading cause of AKI in the intensive care unit (ICU) and accounts

for nearly half of all AKI events. Patients with AKI who require dialysis have an un-

acceptably high mortality rate of 60%–80%. During sepsis, endothelial activation,

increased microvascular permeability, changes in regional blood flow distribution

with resulting areas of hypoperfusion, and hypoxemia can lead to AKI. No effective

drugs to prevent or treat human sepsis-induced AKI are currently available. Recent

research has identified dysfunction in energy metabolism as a critical contributor to

the pathogenesis of AKI. Mitochondria, the center of energy metabolism, are in-

creasingly recognized to be involved in the pathophysiology of sepsis-induced AKI

and mitochondria could serve as a potential therapeutic target. In this review, we

summarize the potential role of mitochondria in sepsis-induced AKI and identify

future therapeutic approaches that target mitochondrial function in an effort to

treat sepsis-induced AKI.
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Sepsis is life-threatening organ dys-

function caused by dysregulated host

response to infection.1 As the leading

cause of AKI in the intensive care unit,

sepsis accounts for 45%–70% of all AKI

cases.2 A hemodynamic hallmark of

sepsis is generalized vasodilation and

decreased systemic vascular resistance.3

Previous studies have suggested that

hypoperfusion and intrarenal vasocon-

striction, caused by activation of the

sympathetic nervous system and the

renin-angiotensin-aldosterone axis,

and release of vasopressin may contribute

to AKI in sepsis.4–7However, recent stud-

ies have questioned old paradigms and

have demonstrated that sepsis-induced

AKI develops with normal or even in-

creased renal blood flow,8–10 suggesting

that blood flow redistribution, micro-

vascular changes, and other causes may

be critical in leading to injury.

During sepsis, upregulation of endo-

thelial nitric oxide synthesis11 can affect

arterial vasodilatation and decrease sys-

temic vascular resistance.12 The vasodi-

latory effect of endothelial nitric oxide

synthase within the kidney might be ex-

pected to lessen renal vasoconstriction in-

duced by NE, angiotensin II, vasopressin,

and endothelin during sepsis.3,13 More

than likely, these vasoactive substances

lead to redistribution of flow away from

the renal medulla to the renal cortex,

leading to medullary ischemia in sepsis-

induced AKI.14–16 Furthermore, sepsis-

related impairment of the endothelium

may also attenuate or abolish the normal

effect of endothelial nitric oxide synthase

in the kidney to counteract vasoconstric-

tion.11 Another critical pathway that has

been identified in sepsis-induced AKI is

alterations in primary tubular metabo-

lism which could secondarily affect the

regional circulation through decreased

levels of ATP and mitochondrial dys-

function.17,18 Tran et al.19 demonstrated

that mitochondrial dysfunction, cellular

swelling, and a pronounced accumulation

of acylglycerols developed in tubules,

which led to decreased PGE2 and pro-

moted medullary vasoconstriction in

ischemia AKI. Thus, studies on mitochon-

dria might lead to greater insights into the

mechanism of AKI. Furthermore, restora-

tion of healthy mitochondrial function

and mass is likely critical to the recovery

of kidney function.20

The recent progress in understanding

the role of mitochondria in sepsis-induced

AKI has led to an array of potential appli-

cations for mitochondria as biomarkers

of kidney injury as well as targets for

novel therapeutic strategies. In this re-

view, we describe mitochondrial metabolic
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dysregulations in sepsis-induced AKI

and discuss how this knowledge may

guide the development of potential

new therapies for sepsis-induced AKI.

METABOLIC REGULATIONS OF

MITOCHONDRIA DURING SEPSIS-

INDUCED AKI

A critical function of mitochondria is to

provide energy (ATP) that is used by the

kidney to remove waste products from

the blood as well as to regulate fluid and

electrolyte balance. Mitochondrial ho-

meostasis is closely regulated by mito-

chondrial biogenesis. Mitochondrial

biogenesis is the process by which cells

increase mitochondrial mass and it is

accompanied by increases in metabolic

enzymes for glycolysis, oxidative phos-

phorylation (OXPHOS), andgreatermito-

chondrial capacity for energy production.

Under conditions such as oxidative stress

and during sepsis,mitochondria can alter

metabolic processes to adapt to these

stressful conditions through a number

of signaling pathways that maintain

homeostasis.

Energy Metabolism of Mitochondria
in Sepsis-Induced AKI

The provision of energy to the cell is

through the electron transport chain

in a process called OXPHOS. Glucose

metabolism through glycolysis and

b-oxidation of fatty acids (FAs) are the

main energy substrates for the kidney.

Energy production occurs through a se-

ries of electron transfers along the inner

mitochondrial membrane leading to the

eventual production of ATP. Under

normal conditions, proximal tubular

cells prefer FAs as the energy source

and aerobic respiration is the primary

mechanism of ATP production.21

However, during sepsis and hypoxic con-

ditions, instead of feeding pyruvate into

the tricarboxylic acid cycle to generate

ATP through OXPHOS, proximal tubule

cells convert pyruvate to lactate, a less

efficient mechanism to produce ATP.22,23

The metabolic shift during sepsis is

driven by mammalian target of rapamy-

cin complex 1 (mTORC1)–induced sta-

bilization of hypoxia inducible factor–1a

(HIF-1a) through the Akt/mTORC1/

HIF-1a pathway (Figure 1).22–24 Recent

studies also suggest that, during LPS-

induced AKI, hexokinase activation

and increased glucose-6-phosphate

dehydrogenase activity are linked to

increased pentose phosphate pathway

activity. Despite the fact that glycolysis

provides less efficient energy generation,

it can provide sufficient energy for cell

survival as well as for maintenance of

essential structural components25 and it

leads to a decrease in OXPHOS and the

production of mitochondrial reactive ox-

ygen species (ROS), at least during the

early course of sepsis.

Figure 1. Energetic metabolic reprogramming in tubular epithelial cells during sepsis-induced AKI. Activated HIF-1a promotes the
transformation of pyruvate into lactate, and inhibits the transformation of pyruvate into acetyl-CoA, thus blocking entry into the Krebs
cycle. HIF-1a also induces the expression of PKM2, and slows down the conversion of phosphoenol pyruvate to pyruvate. HK is activated
by Akt or O2

2 and increases glucose-6-phosphate dehydrogenase activity which is linked to increased PPP activity. As ATP levels de-
crease, AMPK is activated. AMPK leads to induction of mitochondrial biogenesis by PGC-1a, inhibits mTORC, and activatesmitophagy by
phosphorylating the serine/threonine protein kinase ULK1. Acetyl-CoA, acetyl-coenzyme A; PKM2, M2 isoform of pyruvate kinase; HK,
hexokinase; PPP, pentose phosphate pathway; mTORC, mammalian target of rapamycin complex.
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However, as ATP levels decrease, aden-

osine monophosphate–activated protein

kinase (AMPK), amaster sensor of energy

catabolic status, is induced. Activation

of AMPK can lead to the production of

critical antioxidant enzymes and the in-

duction of mitochondrial biogenesis by

peroxisome proliferator–activated recep-

tor (PPAR) g coactivator–1a (PGC-1a).

Moreover, activation of AMPK leads to

an increase in glycolytic pathway flux,

FA oxidation, and glucose transport. All

of these events contribute to cell growth

and an increase in cellularmetabolism.26,27

In addition, AMPK also inhibits mTORC

and activates autophagy by phosphoryla-

tion of the serine/threonine protein kinase

Unc-51–like kinase 1 (ULK1).28 This

AMPK-dependent response regulates

metabolism, reprioritizes energy expen-

diture toward the functions necessary

for survival, limits oxidative damage

from dysfunctional mitochondria, and

eventually stabilizes energy balance by

mitochondrial biogenesis.

Thus, during sepsis-induced AKI, en-

ergy metabolism might first switch to

glycolysis in order to decrease oxygen

consumption and enhance the capacity

of the cell to defend against oxidative

damage through decreasing OXPHOS

andmitochondrial ROS production. Later

activation of AMPK may allow for cell

survival and mitochondrial biogenesis.

Mitochondrial Biogenesis in

Sepsis-Induced AKI

Mitochondrial biogenesis can increase

ATP production in response to increas-

ing energy demand by the generation of

new and functional mitochondria. PGC-

1a is a positivemitochondrial biogenesis

regulator.29 During sepsis, transient lo-

cal ischemia and increased cytokine

levels, especially TNF-a, can reduce

PGC-1a expression in tubular cells and

suppress kidney recovery.30 Both mam-

malian target of mTORC and AMPK sig-

naling pathways regulate mitochondrial

biogenesis and help maintain healthy

mitochondria during AKI (Figure 2).

Activated mTORC1 triggers pathways

that lead to mitochondrial biogenesis by

activating the transcriptional repressor

yin and yang 1 (YY1).31AMPKcan induce

mitochondrial biogenesis by stimulating

the transcription of the gene encoding

PGC-1a (PPARGCIA) and by phosphor-

ylating PGC-1a at Thr177 and Ser539 to

increase its activity.27

Other pathways that stimulate mito-

chondrial biogenesis include sirtuins

(SIRT), cAMP,andcyclic guanosinemono-

phosphate (cGMP). The activity of SIRT1

is activated by NAD, leading to further

activation of downstream targets such

as PGC-1a.32 PGC-1a is a pivotal de-

terminant of renal recovery from in-

jury by regulating NAD biosynthesis

in ischemia-reperfusion and in AKI sec-

ondary to nephrotoxic drugs.33TheNAD

precursor niacinamide (NAM) can en-

hance NAD production and augment

production of the fat breakdown product

b-hydroxybutyrate (b-OHB), which

Figure 2. Mitochondrial biogenesis in sepsis-induced AKI. There are multiple pathways involved in mitochondrial biogenesis. Activated
PGC-1a cooperates with NRFs and promotes the expression of multiple nuclear-encoded genes; PGC-1a activation promotes its
translocation from the cytoplasm to the nucleus; activated mTOR1 triggers pathways by activating the transcriptional repressor YY1;
AMPK can induce mitochondrial biogenesis; SIRT1 is activated by NAD1, and then activates PGC-1a. Stimulation of adenylyl cyclase
increases cAMP, which activates PKA that in turn phosphorylates CREB. CREB can stimulate mitochondrial biogenesis; caloric restriction
increases levels of cGMP and inhibits phosphodiesterases which can stimulate PGC-1a activation and mitochondrial biogenesis
in vivo. mTOR, mechanistic target of rapamycin; YY1, Yin and yang 1; SIRT, Sirtuins; NAD, nicotinamide adenine dinucleotide; PKA,
protein kinase A; cGMP: cyclic guanosine monophosphate.
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leads to increased vasodilatory prosta-

noids such as PGE2, a secreted autacoid

that maintains renal perfusion.34 After

ischemia, mice deficient in PGC-1a (a

downstream substrate of both SIRT and

AMPK) develop local deficiency of the

NAD1 precursor niacinamide or NAM,

accumulate fat, and fail to re-establish

normal renal function.19 Stimulation of

adenylyl cyclase increases cAMP levels,

which activates protein kinase A (PKA)

that in turn phosphorylates cAMP-

responsive element–binding protein

(CREB).35,36 CREB is also a transcrip-

tional activator of PGC-1a and can thus

also stimulate mitochondrial biogenesis

through this pathway.35 Finally, caloric

restriction (food only provided on alter-

nate days for 3 or 12 months) increases

levels of cGMP and inhibits phosphodi-

esterases which can stimulate PGC-1a

activation and mitochondrial biogenesis

in vivo and folic acid–induced AKI.37,38

In summary, these findings indicate that

PGC-1a may be a critical factor in the re-

covery of sepsis-induced AKI through mi-

tochondrial biogenesis, andmitochondrial

regeneration may be a future therapeutic

target for sepsis-induced AKI.

Superoxide Anion Metabolism in
Sepsis-Induced AKI

Renal mitochondrial injury occurs early

in the course of sepsis and is associated

with cellular damage as a result of ROS

generation. Much of the data in this area

of study are derived from ischemia-

reperfusion models of AKI and the ap-

plicability to sepsis models has not been

as well studied; the causes of mitochon-

drial ROS production upon reperfusion

after ischemia are still unclear. It has been

assumed that ROS production during re-

perfusion is a nonspecific consequence

of oxygen interacting with dysfunctional

mitochondria upon reperfusion. Re-

cently, this view has changed, suggesting

that specific metabolic pathways may be

operative in which superoxide is gener-

ated through reverse electron transport

at complex I of the electron transport

chain. Moreover, selective accumulation

of the citric acid cycle intermediate suc-

cinate is a universal metabolic signature

of ischemic tissues and is responsible for

mitochondrial ROS production during

reperfusion.39 Importantly, pharmacolog-

ically inhibiting succinate accumulation,

or slowing succinate metabolism at reper-

fusion, has been shown to be protective in

ischemia-reperfusion models.40

ROS are toxic to the endothelium and

defensemechanisms are critical tomain-

tain organ perfusion and function.41

Mitochondria have intrinsic antioxidant

mechanisms to protect against damage

induced by ROS through a large array

of mechanisms (e.g., SOD, glutathione,

thioredoxin).42 In response to oxidative

stress, NF erythroid 2–related factor 2

activates the transcription of genes en-

coding antioxidant enzymes such as glu-

tathione peroxidase, SOD2, and catalase.

In this manner, a mechanism to prevent

ROS-induced injury is upregulated.43

Glutathione is a tripeptide (g-glutamyl-

cysteinal-glycine) nucleophile capable of

preventing damage to important cellular

components caused by ROS. Mitochon-

dria contain their own pool of glutathione

(mGSH),which not only helps to decrease

excessive ROS levels but also prevents the

release of cytochrome c from the inner

mitochondrial membrane.44mGSH di-

rectly interacts with superoxide anions

and becomes oxidized to glutathione

disulfide (GSSG).44,45 GSSG cannot

exit the mitochondria and is converted

back to mGSH by glutathione reduc-

tase, for reuse or elimination from the

mitochondria.45 The conversion of GSSG

tomGSHrequiresNADP(NADPH) that is

produced by the pentose phosphate path-

way. SOD2 is a mitochondrial enzyme that

binds to the superoxide byproducts of

oxidative phosphorylation and converts

them to hydrogen peroxide and oxygen.46

Mitochondrial uncoupling protein 2

(UCP2) also plays a role in attenuating

excessive ROSproduction. As levels of ROS

increase, UCP2 is activated and acts to dis-

sipate the proton motive force as heat and

as a result reduces ROS production.47,48

Together, these antioxidant systems can

maintain optimal ATP production, and

sustain mitochondrial function.

Fusion and Fission

Fusion is the combining of two mito-

chondria, and fission is the splitting of

mitochondria into two. Mitochondria

are highly dynamic organelles that ex-

change genetic and other information

by coordinated fusion and fission. Under

physiologic conditions, the processes of

fusion and fission are necessary to main-

tainmitochondrial homeostasis and play

an important role in thequality control of

mitochondria.49

Mitochondria fuse together viamito-

fusin 1 and 2 (Mfn1 and 2) on the outer

membrane and require activation of

dynamin-like 120 kD (OPA1) on the

inner membrane. Fusion can maintain

ATP production and redistribute mito-

chondrial proteins. Mitochondria divide

via dynamin-related protein 1 (Drp1) on

the outer membrane. Fission can isolate

damaged mitochondria from the mito-

chondrial network. Dysfunctional mito-

chondria, which are toxic for tubular

cells, are removed by mitophagy. If the

daughter mitochondria produced by

fission are unbalanced and depolarized,

they are targeted for mitophagy.50

In response to insults such as ischemia-

reperfusion injury or sepsis, the balance

between mitochondrial fusion and fission

shifts to mitochondrial fission. The mito-

chondria become fragmented in sepsis.51,52

Changes in mitochondrial morphology,

characterized by initial fragmentation of

the organelles followed by ultrastructural

alterations resulting in mitochondrial

swelling and cristae deformation, are ob-

served in renal tubular cells during septic

AKI.51 The disruption of mitochondrial

dynamics at both outer and inner mem-

branes plays a crucial role in mitochon-

drial dysfunction and tubular cell injury

and death in ischemia-reperfusion and

cisplatin-induced AKI.53 It is likely that

the same is true in sepsis.52

ROS Scavenging by Mitochondria in

Sepsis-Induced AKI

Ultrastructural changes are observed in

mitochondria during sepsis-induced

AKI. Mitophagy (autophagy of mito-

chondria) protects stressed cells from

death due to mitochondrial fragmenta-

tion and can ameliorate AKI.54 Impor-

tantly, despite ATP depletion and ROS

generation, the necrotic and apoptotic

responses of mitochondria are limited
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in sepsis-induced AKI. Supporting this

is that mitophagy is rapidly induced

during various models of AKI and plays

important roles in renal protection.54

Parikh et al.20 demonstrated that mi-

tophagy removed damaged mitochon-

dria in tubular epithelial cells during

sepsis-induced AKI. Two main mecha-

nisms of mitophagy have been described.

In the first mechanism, mitophagy is

mediated by the PTEN-induced puta-

tive kinase protein 1 (Pink1)–PARKIN

mechanism. The second mechanism of

mitophagy involves two Bcl-2 family

proteins: BCL2/adenovirus E1B 19-kD

protein–interacting protein 3 (BNIP3)

and Nip3-like protein X (NIX, also

known as BNIP3L).

Energy-sensitive kinases mTORC1

and AMPK are known to regulate mi-

tophagy.55–59 mTORC1 phosphorylates

ULK1/2 and autophagy-related gene

(Atg) 13 which inhibit ULK1/2 kinase

activity,57,60 which negatively regulates

autophagy. AMPK can inhibit mTORC1

and activatemitophagy by phosphorylat-

ing the serine/threonine protein kinase

ULK1.56 Some studies have reported

that inhibition of the mTORC pathway

can impair tubular proliferation and de-

lay recovery of kidney function during

ischemia-reperfusion injury models.61–64

Additional studies are required to inves-

tigate the role of mTORC1-mediated in-

duction of autophagy in sepsis-induced

AKI. Other molecules such as antiapop-

totic members of the Bcl-2 family, BNIP3,

HIF, and p53 also induce autophagy in

AKI (Figure 3).54

The increase in permeability of the

outer mitochondrial membrane can re-

lease these proapoptotic factors into the

cytoplasm. Jiang et al.65 demonstrated

that mitophagy occurred before tissue

damage or tubular apoptosis. In these ca-

ses, excessive mitophagy can “spill over”

and digest normal components in the cell

causing lethal injury, whereas, on the other

hand, insufficient mitophagy can also

release proapoptotic substances. The

signaling pathways between autophagy

and apoptosis in AKI need to be further

studied.

Mitochondrial homeostasis is critical

because rapid recovery of ATP levels is

essential for cell survival. In this regard,

the various processes of mitochondrial

scavenging (mitophagy and apoptosis)

and biogenesis are key steps to ensure

cellular function and survival.

THERAPEUTIC TARGETING OF

MITOCHONDRIA IN SEPSIS-

INDUCED AKI

Understandingmitochondrialmetabolic

regulation during sepsis-induced AKI

may lead to new therapeutic targets.

This section summarizes recent findings

regarding the manipulation of mito-

chondrial metabolism, homeostasis,

and recovery (Table 1).

Targeting Mitochondrial Energy

Pathways

Akt/mTORC/HIF-1a Pathway
The Akt/mTORC/HIF-1a pathway can

regulate glucose metabolism and mito-

chondrial function. Activation of Akt/

mTORC/HIF-1a can switch tubular

epithelial cell metabolism to aerobic gly-

colysis in response to hypoxia and sepsis.

Activation of this pathway decreases

Figure 3. ROS scavenging by mitochondria in sepsis-induced AKI. AMPK can inhibit mTORC1 and activate mitophagy by phosphorylating
the serine/threonineprotein kinaseULK.mTORC1phosphorylatesULK1/2 andAtg13which negatively regulates autophagy.Othermolecules
such as antiapoptotic members of the Bcl-2 family, BNIP3, HIF, and p53 also induce autophagy in AKI. The increase in the permeability of
the outer mitochondrial membrane can release proapoptotic factors into the cytoplasm. These factors activate the caspase-dependent or
-nondependent cascade reaction mechanism. mTORC, mechanistic target of rapamycin complex; Atg, Autophagy-related gene.
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oxygen consumption and enhances the

capacity of the cell to cope with oxidative

damage. In addition, aerobic glycolysis

supports the ability of the innate im-

mune system to develop memory and

modify the response to future insults.23,66

Treatment of rodents with antracy-

clines inhibits mTOR and thus activates

autophagy, which limits AKI and im-

proves survival in amodelof cecal ligation

and puncture (CLP)–induced sepsis.67

In monocytes, prestimulation of the

Akt/mTORC1/HIF-1a pathway with

b-glucan (by exposure to sublethal con-

centrations of Candida albicans) results

in increased secretion of TNF and IL-6,

and such prestimulation results in im-

proved survival.23 The protection achieved

by pretreatment with b-glucan was lost

when Akt, mTOR, or HIF-1awas inhibi-

ted. This suggests that the Akt/mTORC1/

HIF-1a pathway, which is involved in

metabolic reprogramming and regula-

tion during infection, is a promising

target to ameliorate sepsis-induced AKI.

AMPK/Sirt1–6 Pathway
AMPK targets a number of proteins,

the phosphorylation of which leads to

the productionof antioxidant enzymes; the

induction of mitochondrial biogenesis;

and an increase in glycolytic flux, FA

oxidation, and glucose transport; all of

these events contribute to cell growth

and an increase in cellular metabolism.

AMPK/SIRT1–6 pathway signaling has

been implicated as a target for correcting

metabolic andmitochondrial function in

AKI. AMPK is a master sensor of energy

status that stimulates catabolic processes.

A high AMP/ATP ratio activates AMPK

to stimulate cell growth and metabolism.

5-aminoimidazole-4-carboxamide-

1-b-D-ribofuranoside (AICAR) acts as

an activator of AMPK and can increase

the levels of PGC-1a and other mito-

chondrial proteins while reducing ROS

production in a diabetic mouse model.68

Stimulation of AMPKwith AICAR before

CLP-induced sepsis was associated with

significant protection from AKI and

with decreased inflammatory molecules

such as IL-6, IL-10, and TNF-a,69 sug-

gesting that AMPK may play a protective

role in the early response to sepsis. There

is a crosstalk between AMPK and SIRT3

signaling.60,70 SIRT1 and SIRT3 are pro-

tein deacetylases that have roles in many

mitochondrial processes, such as the

electron transport chain, the tricarbox-

ylic acid cycle, FA oxidation, and mito-

chondrial biogenesis.71 SIRT1 and SIRT3

are activated by NAD1.72

Administration of AICAR to cisplatin-

treated mice attenuated the decreases in

SIRT3 expression, phosphorylated AMPK

level, and tubular damage.73 Compared

with saline-treated control mice, cisplatin-

treatedmice have decreased expression and

lower protein levels of SIRT3, increased

tubular damage, and decreased levels of

phosphorylated AMPK.73 These studies

provide a therapeutic rationale for target-

ing AMPK to improve outcomes in AKI.

The relationship between AMPK activity

and SIRT in mitochondrial protection

needs to be further studied.

Targeting Mitochondrial Biogenesis

Carbon monoxide upregulates mito-

chondrial biogenesis via activation of

redox-regulated NF-E2–related factor

transcription factor, nuclear respiratory

factor (NRF1, NRF2), and PGC-1a.

Carbon monoxide is released endoge-

nously by activation of hemeoxygenase-1.

Induction of hemeoxygenase-1 in sepsis

models has shown protective effects

through NRF-2 and mitochondrial bio-

genesis.74 PGC-1a, which is expressed

highly in the kidney, is capable of driving

all steps of mitochondrial biogenesis. It is

an attractive pharmacologic target for

kidney protection.33

After renal ischemia, PGC-1a2/2mice

developed local deficiency of NAM,

marked fat accumulation, and failure to

re-establish normal function.19 Kidney-

specific PGC-1a gene–knockout mice

exhibited persistent AKI after LPS-induced

sepsis.75 Remarkably, exogenous NAM

improved local NAD levels, fat accumu-

lation, and kidney function in postis-

chemic PGC-1a2/2mice. Recent studies

have demonstrated that supplementa-

tion with a NAD precursor such as nic-

otinamide mononucleotide or NAM

can contribute to kidney protection in

Table 1. Pharmacologic approaches targeting mitochondria for kidney injury

Drugs Pathway/Target Process Effect Species Reference

Antracyclines Akt/mTORC/HIF-1a pathway Energy pathway Ameliorate injury Animals 67

b-glucan Akt/mTORC/HIF-1a pathway Energy pathway Ameliorate injury Animals 23

AICAR AMPK/Sirt1–6 pathway Energy pathway Decrease tubular damage Animals 68,69

Formoterol PGC1a Biogenesis Restore renal function Animals 78

LY344864 PGC1a Biogenesis Improve renal function Animals 79

MA-5 Mitofilin/Mic60 Biogenesis Decrease plasma BUN Humans 97,98

Levosimendan Mitochondrial ATP-sensitive K1 channels Biogenesis Restore renal function Humans 100

Bendavia (SS-31) Antioxidation Reduced serum creatinine and BUN Humans 80–82

Mito Q Chain-breaking antioxidant ubiquinol Antioxidation Improve renal function Humans 83

Mdivi-1 Drp1 Fusion and fission Ameliorate injury Animals 53,87

Antymycin A p53 Mitophagy Protect renal tubular cells Animals 90

Ambra1 Parkin Mitophagy Ameliorate injury Animals 92

Cyclophilin-D MPT Protect against renal injury Animals 99

CsA Drp1 MPT Ameliorate podocyte damage Humans 88,89

CsA, cyclosporine A; Drp1, dynamin-related protein 1; Mdivi-1, mitochondrial division inhibitor–1; MA-5, mitochonic acid 5; Mito Q, mitoquinone; MPT, mito-
chondrial permeability.
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cisplatin- or ischemia-induced AKI.76,77

These findings imply that PGC-1a is

necessary for recovery of kidney function

in AKI.

In addition, two different G protein–

coupled receptors, theb2 adrenergic recep-

tor (b2AR) and the 5-hydroxytryptamine

receptor 1F (5-HT1F), can restore mito-

chondrial function and stimulate kidney

recovery by inducing mitochondrial bio-

genesis after IR-induced injury. Formoterol,

a b2AR agonist, stimulates mitochondrial

biogenesis by upregulating PGC-1a

through the cAMP/PKA/CREB axis in

kidney proximal tubular cells and can

accelerate the recovery of mitochondrial

and kidney function in mouse models of

ischemia-reperfusion AKI.78 LY344864,

a potent 5-HT1F agonist, induces mito-

chondrial biogenesis in naive mice and

accelerates the recovery of mitochondrial

and kidney function in the same AKI

murine model.79

Antioxidant Therapy

Antioxidants that specifically target mi-

tochondriahave shownpromisingeffects

inamelioratingAKI.TheSzeto-Schiller (SS)

peptide selectively interacts with cardio-

lipin to stabilize the mitochondrial inner

membrane and directly deliver antioxi-

dants to themitochondria.80 The peptide

SS-31 (Bendavia) ameliorates mitochon-

drial dysfunction by reducing mitochon-

drial cristae disorganization in proximal

tubules during ischemia and has been

shown to protect mitochondrial struc-

ture and function in an in vivo study of

an ischemia-reperfusion–induced AKI

model in rats. Furthermore, SS-31 also

ameliorated reperfusion-induced oxida-

tive stress and accelerated the recovery of

mitochondrial structure and ATP levels,

which in turn preserved proximal tubu-

lar cell structure, decreased tubular cell

apoptosis, and partially preserved kid-

ney function.80 When administered

immediately after CLP in mice, SS-31

normalized kidney ATP content, de-

creased apoptosis, reduced histologic in-

jury score, and reduced serum creatinine

and BUN levels.81 A human clinical trial

is investigating the efficacy of SS-31 in

ameliorating ischemia-reperfusion

(NCT02436447).82 In addition, a phase 1

study is investigating the safety and

pharmacokinetics of SS-31 (MTP-131)

in human subjects with impaired kidney

function.

Ithasbeendemonstrated that inducible

nitric oxide synthase inhibitors or antiox-

idants (L-glutathione, ebselen, or MitoQ)

can specifically target mitochondria and

reduce oxidative damage, preserve cyto-

chrome c oxidase activity, prevent mito-

chondrial membrane potential dissipation,

and improve kidney function in vitro

and in LPS-83,84 and CLP85-induced

sepsis models. Other compounds such

as acetyl- L-carnitine, a mitochondrial

antioxidant activity modulator, can

ameliorate tubular injury and improve

kidney function in cisplatin-induced

AKI in mice.73,86

Targeting Mitochondrial

Fusion and Fission

Mitochondrial division inhibitor–1

(Mdivi-1), a pharmacologic inhibitor of

Drp1, blocks mitochondrial fragmenta-

tion and subsequent AKI progression

in cisplatin-induced AKI53 as well as

rhabdomyolysis-induced AKI87 in mice.

Cho et al.88 demonstrated that cyclospor-

ine A suppresses Drp1 dephosphorylation

and prevents mitochondrial fragmenta-

tion, Bax accumulation, cytochrome c

release, and apoptosis after hypoxia-

induced ATP depletion in kidney prox-

imal tubular cells in vitro. The in vivo

pretreatment with Drp1 inhibitor sig-

nificantly attenuated mitochondrial

dysfunction and abnormal fusion-to-

fission balance in a CLP-induced sepsis

model.52 A phase 2 clinical trial to assess

the reno-protective effect of cyclospor-

ine A in cardiac surgery is now ongoing

(NCT02397213).89

Targeting Mitophagy Activator

Therapy

As described above, mitophagy can re-

move damaged mitochondria. Mitoph-

agy is induced in AKI and pharmacologic

enhancement of this process could min-

imize cell injury and accelerate recovery.

In this regard, antymycin A or myxo-

thiazol, inhibitors of the mitochondrial

respiration complex, can ameliorate

cisplatin-induced p53 activation and

exert cytoprotective effects in cultured

kidney tubular cells.90 Additionally,

rapamycin protected against gentamicin-

induced AKI in pigs by inducing

mitophagy.91 Another compound of

interest, Ambra 1, induces mitophagy by

interacting with Parkin. Ambra 1may be a

therapeutic agent to induce mitophagy.92

Although the induction of mitophagy

seems to ameliorate AKI, some studies

have reported conflicting results, and

the role of mitophagy in AKI remains a

subject of debate.93 Drugs that induce

mitophagy also induce mitochondrial

depolarization. Mitochondrial mem-

brane depolarization suppresses fusion,

leading to fragmentation of the mito-

chondrial network. Fusion suppression

is mostly led by the Overlapping with

the m-AAA protease homolog (OMA1).

After mitochondrial depolarization,

PINK1 is exposed on the outer mito-

chondrial membrane of depolarized mi-

tochondria in its full-length form94,95

and triggers mitophagy.95,96

Resolving these issues and conducting

clinical trials on these compoundswill be

important to determine the ultimate role

of mitophagy-targeted therapy in AKI.

Other Therapeutic Approaches
Targeting Mitochondria in AKI

As presented above, there are other ways

that mitochondria may be targeted for

therapeutic benefit.

Mitochonic acid 5 (MA-5), a deriva-

tive of the plant hormone indole-3-acetic

acid, is one of the newest class of mito-

chondria-targeted agents. It can reduce

tubular necrosis and decrease plasma

BUN after cisplatin administration.97

MA-5 is proposed to target the mito-

chondrial protein mitofilin/Mic60 at

the cristae junction of the inner mito-

chondrial membrane and facilitates olig-

omerization of ATP synthase and super

complex formation.97,98

Cyclophilin-D, a key regulator of

mitochondrial permeability, protects

against kidney injury in multiple exper-

imental models of AKI.99 Levosimendan

is a Ca21 sensitizer–positive inotropic and

vasodilator drug used to treat heart failure.

It has renoprotective effect after cardiopul-

monary bypass surgery.100 The molecular
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mechanism of levosimendan-evoked pro-

tection might include an interaction with

mitochondrial energyconservation through

mitochondrial ATP-sensitive K1 channels.

A clinical study of levosimendan, investigat-

ing the safety and efficacy in intensive care

patients with AKI, is now ongoing (clinical-

trials.gov identifier NCT01720030).

MITOCHONDRIAL BIOMARKERS

FOR SEPSIS-INDUCED AKI

As mitochondrial dysfunction initiates

and accelerates kidney injury in sepsis,

disruption of mitochondrial integrity

in kidney tubular cells seems to be a

hallmark in diverse forms of AKI.20

Mitochondrial DNA (mtDNA) is a cir-

cular double-stranded DNA inherited

maternally which is housed in the mito-

chondrial matrix, encased within a dou-

ble-membrane system composed of the

outer and inner mitochondrial mem-

branes.101 Increased mitochondrial ROS

generation can decrease mitochondrial

membrane potential, leading to impair-

ment ofmembrane integrity.102,103These

changes could subsequently permit leak-

age of mtDNA into the cytosol. Further-

more, one of the proposed mechanisms

by which mtDNA is translocated to the

extracellular space is vianecroptosis.104,105

Therefore, in the kidney, disruption of mi-

tochondrial integrity may result in release

of mtDNA fragments, known as mito-

chondrial damage-associated molecular

patterns, from the matrix into the urine,

where they serve as surrogate markers of

kidney mitochondrial injury.106

Therefore, recent studies evaluated the

efficiency of urinary mtDNA (UmtDNA)

as a marker of kidney injury in patients

with AKIwith various causes.107–110Cur-

rently, because of diverse patient cohorts,

and small sample sizes with type 2 statis-

tical error, the utility of UmtDNA is un-

clear. Hu et al.110 reported that UmtDNA

identified renal dysfunction and mito-

chondrial damage in sepsis-induced

AKI. However, UmtDNA may serve as a

valuable biomarker for the development

and testing of mitochondria-targeted

therapies in AKI. UmtDNA is a surrogate

marker of mitochondrial integrity. Because

of the role ofmitochondrial function and

tissue bioenergetics in tissue repair

processes, UmtDNA may aid the devel-

opment of new mitochondrial-targeted

therapies for sepsis-induced AKI.

CONCLUSIONS

Mitochondria, given their central role in

energy metabolism, play a key role in the

pathophysiology of sepsis-induced AKI.

Multiple targets for therapy have been

identified in preclinical work but further

research is needed to identify the most

promising targets with the aim of improv-

ing AKI outcomes.
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