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Mitochondria on the move: Horizontal mitochondrial
transfer in disease and health
Lan-Feng Dong1, Jakub Rohlena2, Renata Zobalova2, Zuzana Nahacka2, Anne-Marie Rodriguez3, Michael V. Berridge4, and Jiri Neuzil1,2,5,6

Mammalian genes were long thought to be constrained within somatic cells in most cell types. This concept was challenged
recently when cellular organelles including mitochondria were shown to move between mammalian cells in culture via
cytoplasmic bridges. Recent research in animals indicates transfer of mitochondria in cancer and during lung injury in vivo,
with considerable functional consequences. Since these pioneering discoveries, many studies have confirmed horizontal
mitochondrial transfer (HMT) in vivo, and its functional characteristics and consequences have been described. Additional
support for this phenomenon has come from phylogenetic studies. Apparently, mitochondrial trafficking between cells
occurs more frequently than previously thought and contributes to diverse processes including bioenergetic crosstalk and
homeostasis, disease treatment and recovery, and development of resistance to cancer therapy. Here we highlight current
knowledge of HMT between cells, focusing primarily on in vivo systems, and contend that this process is not only (patho)
physiologically relevant, but also can be exploited for the design of novel therapeutic approaches.

Introduction
Mitochondria are essential organelles with multiple functions.
As proteobacterial endosymbionts (Gray et al., 1999; Martin
et al., 2019), mitochondria retained a part of the original bac-
terial genome. Mammalian mitochondrial DNA (mtDNA) of
∼15.6 kb codes for 13 mRNAs, whose products are subunits
of mitochondrial respiratory complex I (CI), CIII, CIV, and
CV, of which CI, CIII, and CIV form the respirasome crucial
for CI-dependent respiration (Acin-Perez et al., 2008;
Moreno-Lastres et al., 2012; Lapuente-Brun et al., 2013; Gu
et al., 2016b). Mitochondrial DNA also encodes 22 tRNAs,
2 rRNAs, and the displacement loop (DLOOP; Falkenberg
et al., 2017; Kukat and Larsson, 2013; Kukat et al., 2015;
Gustafsson et al., 2016). For proper function, mitochondria
need >1,500 proteins, the vast majority of which are encoded
by nuclear DNA (nDNA; Liu and Butow, 2006; Neupert and
Hermann, 2007; Ryan and Hoogenraad, 2007).

A prominent feature of mtDNA is its heteroplasmy (more
than one mitochondrial genotype) mediated by tissue-specific
non-random segregation (Burgstaller et al., 2014). Hetero-
plasmic variance modulates the number of pathological cells in
a tissue (Aryaman et al., 2019b). Most eukaryotic cells carry
multiple mtDNA copies, and the sequence of each mtDNA
molecule can vary. This results in intracellular mitochondrial
heterogeneity, which can lead to intercellular mitochondrial
heterogeneity (Aryaman et al., 2019a). An intriguing paper

proposed that exchange of mitochondria between cells helps
maintain balanced heteroplasmy (Jayaprakash et al., 2015). This
can be reconciled with the notion that for a particular phenotype,
relevant heteroplasmy needs an elevated number of mtDNA
copies with this genotype (Picard et al., 2014; Stewart and
Chinnery, 2021).

Mitochondria have been increasingly linked to metabolic
reprogramming and differentiation (Buck et al., 2016; Sykes
et al., 2016; Seo et al., 2018). Mitochondrial function is associ-
ated with maintaining and dictating stem cell fate, and this plays
a role in metabolic programming during quiescence, activation,
self-renewal, proliferation, and differentiation (Bhattacharya
and Scimè, 2020). It was found that mitochondrial Akt signal-
ing modulates somatic cell reprogramming (Chen et al., 2019),
and there is increasing understanding that mtDNA damage and
loss of mitochondrial genome integrity play a critical role in the
development of both severe early-onset maladies and chronic
age-related diseases (Petros et al., 2005; Moreno-Loshuertos
et al., 2006; Schon et al., 2012; Guha et al., 2014; Sharma and
Sampath, 2019).

Although the role of mitochondria in cell biology and path-
ophysiology has been studied and is relatively well established,
novel properties of mitochondria and their regulation keep
emerging. For example, it has been shown that not all eukar-
yotes contain mitochondria, with metabolic function be-
ing at least in part maintained by complementary systems
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(Karnkowska et al., 2016). Mitochondria have been long con-
sidered autonomous, undergoing cytoplasmic inheritance
(Birky, 2001). It is now apparent that there is a close relationship
between mtDNA and the nucleus, including synchronized
translation of nDNA- and mtDNA-encoded genes (Couvillion
et al., 2016; Latorre-Pellicer et al., 2019). Regulation of mtDNA
and mitochondrial proteins by epigenetic changes and post-
translational modifications facilitate crosstalk between the
nucleus and mitochondria that leads to maintenance of cel-
lular homeostasis (Sharma et al., 2019). Consistent with this,
mitochondria move to daughter cells during mitosis along
microtubular structures (Kanfer et al., 2015).

A prominent place among recent intriguing findings is the
identification of horizontal mitochondrial transfer (HMT) with
their DNA payload between mammalian cells in vivo in a tumor
setting (Tan et al., 2015; Berridge et al., 2015; Dong et al., 2017)
and during lung injury (Islam et al., 2012; Ahmad et al., 2014),
resulting in respiratory recovery. In the lung studies, mtDNA
transfer was assumed but not directly demonstrated, while the
cancer studies provide direct evidence for transfer of mtDNA
based on distinct polymorphisms (Tan et al., 2015). The cancer
studies used syngeneic tumors in transgenic mice with a
mitochondria-associated fluorescence protein (su9DsRed2; Dong
et al., 2017), while in mouse models of lung injury, the animals
were injected with mesenchymal stem cells (MSCs) containing
mitotracker-labeled mitochondria (Islam et al., 2012; Ahmad
et al., 2014).

Prior to these studies, horizontal transfer of genes in eu-
karyotes had been considered rare (Keeling and Palmer, 2008),
known only in lower eukaryotes (Gladyshev et al., 2008) and
plants (Bergthorsson et al., 2003), promoting their biochemical
diversification (Boschetti et al., 2012). In mammalian systems,
there was evidence for intercellular trafficking of mitochondria
in vitro (Rustom et al., 2004), but whether this occurred in vivo
and had functional significance remained unclear (Rogers and
Bhattacharya, 2013). The four cancer/lung studies discussed
above made a strong case for HMT in vivo and for its relevance
in pathological settings, and this was supported by phyloge-
netic evidence for intercellular transfer of mtDNA in canine
transmissible venereal tumors (CTVT; Strakova et al., 2016;
Strakova et al., 2020).

This Review highlights recent evidence of HMT between cells
in vitro and, in particular, in vivo. The different possiblemodes of
HMT, cellular and molecular mechanisms underlying each type
of HMT, and metabolic consequences of HMT-related events in
physiological and pathological settings linked to pervasive plasticity
and therapeutic potential will be discussed.

Discovery of HMT
Intercellular communication is essential for maintaining ho-
meostasis in multicellular organisms. The modes of cell-to-cell
communication are diverse, including entry of various signaling
“entities” across the cell membrane (Conner and Schmid, 2003),
intercellular junctions (Dejana, 2004), or extracellular vesicles
(exosomes, ectosomes, and microvesicles; Stoorvogel et al.,
2002; Boelens et al., 2014; Cocucci and Meldolesi, 2015; Becker
et al., 2016; Maas et al., 2017; Kumar et al., 2021). The role of such

intercellular signaling has been shown in physiological and
pathological context, and its therapeutic potential has been
highlighted (EL Andaloussi et al., 2013). Interestingly, extracel-
lular vesicles can carry across genetic material, i.e., microRNAs,
that modulate the function of the recipient cells (Mittelbrunn
and Sánchez-Madrid, 2012; Tomasetti et al., 2017).

A landmark paper defined the so-called “highways for in-
tercellular organelle transport” (Rustom et al., 2004). This was
based on the breakthrough discovery of a nanotubular network
mediating long- and short-distance communication between
cells via transient filamentous membrane protrusions that
connect cytoplasm of neighboring or distant cells. These inter-
connections between cultured cells were shown to allow cell-to-
cell movement of intracellular material. The authors coined the
term “tunneling nanotubes” (TNTs) for this novel means of in-
tercellular communication. They found that TNTs form between
cells of different types. Transfer of cellular material via TNTs
was inhibited by latrunculin B, pointing to the role of actin.
TNTs were then studied in more detail and have been shown to
carry across various cargo. This includes calcium ions (Watkins
and Salter, 2005; Smith et al., 2011), bacteria (Onfelt et al.,
2006), prions (Zhu et al., 2015; Gousset et al., 2009; Gousset
and Zurzolo, 2009), or viruses (Rogers and Bhattacharya,
2013), as well as proteins (Reichert et al., 2016), as found in
co-culture studies in vitro. The first report on viral transmission
via TNTs involved the spread of human immunodeficiency virus
from infected T cells to healthy cells (Sowinski et al., 2008).
TNTs were also found to contribute to intercellular transfer of
herpesvirus between live cells (Panasiuk et al., 2018) and to the
spread of other types of viruses, including SARS-CoV-2 (Tiwari
et al., 2021).

TNTs have been reported to translocate various organelles,
including endosomes (Rustom et al., 2004; Bukoreshtliev et al.,
2009; Wang et al., 2011), ER (Kadiu and Gendelman, 2011a; Kadiu
and Gendelman, 2011b), Golgi/ER (Wang et al., 2011), lysosomes
(Rustom et al., 2004; Onfelt et al., 2006; Abounit et al., 2016),
melanosomes (Gerdes et al., 2007), andmitochondria (Tavi et al.,
2010; Koyanagi et al., 2005; Spees et al., 2006; Acquistapace
et al., 2011). While other means of HMT between cells have
also been identified, TNTs remain a major transport route. The
types of cells that “donate” and “import” mitochondria are nu-
merous. Transfer may be homotypic or heterotypic, i.e., donor
and acceptor cells are of the same type or of different types,
respectively.

Donor cells are often MSCs (Islam et al., 2012; Ahmad et al.,
2014; Spees et al., 2006; Otsu et al., 2009; Plotnikov et al.,
2008; Boukelmoune et al., 2018). Other types of donor cells,
i.e., fibroblasts (Marlein et al., 2017; Ippolito et al., 2019), as-
trocytes (Sun et al., 2019), hematopoietic cells (Golan et al.,
2020), cardiomyocytes (CMs; Nicolas-Avila et al., 2020), or
adipocytes (Brestoff et al., 2021; Crewe et al., 2021), have also
been reported. Acceptor cells are also of various types, in-
cluding epithelial cells (Konari et al., 2019), endothelial cells
(ECs; D’Souza et al., 2021), CMs (Marti Gutierrez et al., 2022),
neuronal cells (Babenko et al., 2018; Li et al., 2019), neural stem
cells (Boukelmoune et al., 2018), T lymphocytes (Hough et al.,
2018), cancer cells (Spees et al., 2006; Marlein et al., 2017;
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Moschoi et al., 2016), and macrophages (Brestoff et al., 2021;
Jackson et al., 2016a; Jackson et al., 2016b). Intercellular HMT
has been reported under both pathological and physiological
situations (Table 1).

In vivo relevance of HMT has been established by several key
publications. HMT from MSCs grafted into lungs of mice chal-
lenged with lipopolysaccharide (LPS) was documented using
mitochondria-competent MSCs, which alleviated the injury
(Islam et al., 2012). Using a similar system, a subsequent paper
reported on a link of the therapeutic effect of grafted MSCs with
the Miro-1 protein (Ahmad et al., 2014), indicating involvement
of the kinesinmobility system (MacAskill and Kittler, 2010). Tan
and colleagues demonstrated that horizontal transfer of mito-
chondria into respiration-deficient cancer cells restored their
tumorigenic potential and allowed tumor formation (Tan et al.,
2015). To date, several other studies demonstrate that HMT
occurs in vivo from MSCs to recipient cells to protect the latter
or to repair their mitochondrial injury (Ippolito et al., 2019;
Crewe et al., 2021; Moschoi et al., 2016; Jackson et al., 2016a;
Jackson et al., 2016b), as well as in a variety of other systems
with functional consequences. This is consistent with res-
piratory competent mitochondria being essential for cancer
(Wallace, 2012).

Pathophysiological and phylogenic evidence of HMT and its
role in cancer
Mitochondrial dysfunction is associated with many types of
human disease (Paliwal et al., 2018; Liu et al., 2014; Berridge
et al., 2020). Transfer of healthy mitochondria appears to be
an effective rejuvenation process in several types of damaged
cells, such as cancer cells, epithelial cells, ECs, and CMs (Paliwal
et al., 2018), in the context of multiple diseases. These include
ischemia-reperfusion models (Liu et al., 2014), amelioration of
acute renal ischemia/reperfusion injury (Gu et al., 2016a), re-
covery of mitochondrial function in rat CMs after ischemia/re-
perfusion injury (Han et al., 2016), attenuation of alveolar
destruction and altered severity of fibrosis in models of cigarette
smoke–induced lung damage (Li et al., 2014), neuroprotective
effects, and decline of infarct volume in the brain (Babenko
et al., 2015). Moschoi and colleagues found that acute myeloid
leukemia cells take up functional mitochondria from murine or
human bone marrow (BM) stromal cells following chemother-
apy (Moschoi et al., 2016). Concerning physiology, Lei and
Spradling showed that germ cells in primordial germ cysts do-
nate organelles, including mitochondria, to facilitate differenti-
ation of mature mouse oocytes (Lei and Spradling, 2016).

Random accumulation of mtDNA deletions and the subse-
quent mosaic of respiratory chain deficiencies accelerate the
aging process (Baris et al., 2015; Krishnan et al., 2008), and the
main purpose of HMT is to restore the respiratory activity of
acceptor cells with aberrant mitochondrial function (Patananan
et al., 2016). Initial studies that demonstrated intercellular HMT
were performed in vitro. Human lung carcinoma cells were
depleted of mtDNA, with the resulting ρ0 cells devoid of respi-
ratory function. Co-culture with MSCs or skin fibroblasts res-
cued ρ0 cells by import of functional mitochondria (Spees et al.,
2006; Katrangi et al., 2007). Human osteosarcoma 143B ρ0 cells

featured collapse of their mitochondrial electron transfer chain
(ETC) function and thymidine kinase activity, with impaired de
novo synthesis of pyrimidines (King and Attardi, 1989; Cho et al.,
2012). When co-cultured with MSCs, they acquired functional
mitochondria. The authors reasoned that HMT likely occurs
under situations of highly compromised mitochondrial respira-
tory function (Cho et al., 2012).

We used a similar system to investigate HMT in vivo and
found that ρ0 tumor cells lacking mitochondrial respiratory
function showed delayed tumor growth. Acquisition of mtDNA
from host cells in the tumor stroma by ρ0 tumor cells re-
established respiration as well as tumor-initiating and metastatic
potential (Tan et al., 2015). We reported that whole mitochondria
were transferred from stromal to ρ0 tumor cells with their mtDNA
payload prior to recovery of tumorigenic capacity (Dong et al.,
2017; Bajzikova et al., 2019; Fig. 1).

While complete mtDNA removal is an extreme case that in-
forms on mechanism but is not likely to occur in cancer, HMT
was also reported in a more “natural” cancer settings. BM
stromal cells donate mitochondria to acute myeloid leukemic
cells in xenotransplants in vivo, conferring resistance to che-
motherapy and survival advantage (Moschoi et al., 2016) to
support their high energy demand and protection from meta-
bolic stress (Marlein et al., 2017; Wang et al., 2018), as also
shown in a mouse model of radiation-exposed glioblastoma
multiformae (GBM; Osswald et al., 2015; Saha et al., 2022).

HMT has an intriguing role in transmissible cancer in feral
dogs and likely in the Tasmanian devil. For feral dogs, CTVT is
transmitted via coitus while Tasmanian devil spreads cancer via
saliva entering open wounds. These animals live in partially
inbred family packs, lowering the barrier against transfer of
genes between individuals. Transmissible cancers in dogs were
first described more than a decade ago (Rebbeck et al., 2009). It
was then hypothesized that mtDNA damage during cancer
progression accumulates to the point of irreversible damage to
mitochondrial respiration triggering transfer of healthy mito-
chondria from donor to cancer cells (Rebbeck et al., 2011). While
these two types of cancer are evolutionarily “old,” having
developed thousands of years ago (Murchison et al., 2010;
Murchison et al., 2012; Murchison et al., 2014; Strakova and
Murchison, 2015), little is known about HMT in facial tumors
(Kwon et al., 2020), while HMT in CTVT has been well defined
with interesting caveats (Strakova et al., 2016; Strakova et al.,
2020). Sequencing nDNA and mtDNA from CTVT tumors
across ∼450 individual animals from countries around the
world showed no homology in nDNA, while there were only
five haplotypes, indicating at least five transfers of mito-
chondria with mtDNA over 1,500 yr. Interestingly, clade
1 haplotype bearers were found in countries as distal as
Australia, India, Romania, Tanzania, and Chile, and clade 5
haplotype bearers were found only in India. Further work by
this group (Strakova et al., 2020) showed that HMT in CTVT
results in positive selection of the transferred mtDNA.

Mitochondrial transfer in non-cancerous systems
The notion that HMT between cells is a more general phenom-
enon that occurs also in normal physiology is now emerging, and
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Table 1. Overview of donor/acceptor cells (types of cells) involved in mitochondrial transfer

Donor cells Acceptor cells Type of transfer References

Rat neuroendocrine
pheochromocytoma cells

Rat neuroendocrine pheochromocytoma cells TNTs Rustom et al., 2004

Human embryonic kidney cells Human embryonic kidney cells TNTs Rustom et al., 2004

Normal rat kidney cells Normal rat kidney cells TNTs Rustom et al., 2004

Rat neonatal CMs Human endothelial progenitor cells Nanotubes Koyanagi et al., 2005

Human macrophage Human macrophages TNTs Onfelt et al., 2006

Human MSCs Human alveolar adenocarcinoma cells TNTs Spees et al., 2006

Human skin fibroblast Human alveolar adenocarcinoma cells TNTs Spees et al., 2006

Human MSCs Rat CM Nanotubes Plotnikov et al., 2008

Rat MSCs Rat lung ECs Cx43-based intercellular gap junctional
communication

Otsu et al., 2009

MSCs Rat cardiomyoblasts Nanotubes Cselenyak et al., 2010

Rat kidney renal tubular cells Human MSCs TNTs and gap junctions Plotnikov et al., 2010

Human MSCs Rat kidney renal tubular cells TNTs and gap junctions Plotnikov et al., 2010

Mouse endothelial progenitor cells Human umbilical vein ECs TNTs Yasuda et al., 2010

Human adipose-derived stem cells Mouse CMs Partial cell fusion Acquistapace et al.,
2011

Human proximal tubular epithelial
cells

Human proximal tubular epithelial cells TNT-like structures Domhan et al., 2011

Rat ventricular CMs Rat fibroblasts Nanotubes He et al., 2011

Rat ventricular CMs Rat ventricular CMs Nanotubes He et al., 2011

Rat fibroblasts Rat fibroblasts Nanotubes He et al., 2011

Rat fibroblasts Rat ventricular CMs Nanotubes He et al., 2011

Rat hippocampal astrocytes Rat hippocampal astrocytes TNTs Wang et al., 2011

Human MSCs Human osteosarcoma cells Partial cell fusion Cho et al., 2012

Mouse BM-derived stromal cells Mouse BM-derived stromal cells Cx43-containing gap junctional
channels, nanotubes, MVs

Islam et al., 2012

Human BM-derived stromal cells Human BM-derived stromal cells Cx43-containing gap junctional
channels, nanotubes, MVs

Islam et al., 2012

Mouse BM-derived stromal cells* Mouse alveolar epithelial cell* Cx43-containing gap junctional
channels, nanotubes, MVs

Islam et al., 2012

Human BM-derived stromal cells* Mouse alveolar epithelial cell* Cx43-containing gap junctional
channels, nanotubes, MVs

Islam et al., 2012

Human pleural mesothelioma cells Human pleural mesothelioma cells TNTs Lou et al., 2012

Human MSCs Human vascular smooth muscle cells TNTs Vallabhaneni et al.,
2012

Human vascular smooth muscle cells Human MSCs TNTs Vallabhaneni et al.,
2012

Human retinal pigment epithelial cells Human retinal pigment epithelial cells TNTs Witting et al., 2012)

Human ECs Human ovarian cancer cells TNTs Pasquier et al., 2013

Human ECs Human breast cancer cells TNTs Pasquier et al., 2013

MSC* Bronchial epithelial cells* TNTs Ahmad et al., 2014

Platelets Neutrophils ECVs Boudreau et al., 2014

Murine neuronal cells* Murine glial cells* Protrusions Davis et al., 2014

MSCs* Lung epithelial cells* TNTs Li et al., 2014

MSCs Human umbilical vein ECs TNTs Li et al., 2014

Human multipotent MSCs Rat neuronal cells Intercellular contacts Babenko et al., 2015
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Table 1. Overview of donor/acceptor cells (types of cells) involved in mitochondrial transfer (Continued)

Donor cells Acceptor cells Type of transfer References

Human multipotent MSCs Rat glial cells Intercellular contacts Babenko et al., 2015

Breast cancer cells Breast cancer cells n.s. Jayaprakash et al., 2015

Normal fibroblast cells Normal fibroblast cells n.s. Jayaprakash et al., 2015

Human MSCs Macrophages MVs Phinney et al., 2015

Human MSCs* Macrophages* MVs Phinney et al., 2015

Pheochromocytoma cells Pheochromocytoma cells TNTs Okafo et al., 2017

MSCs Rat cardiomyoblasts TNTs Han et al., 2016

Astrocytes* Neuronal cells* Extracellular mitochondrial particles Hayakawa et al., 2016

MSCs* Lung alveolar macrophages* TNTs Jackson et al., 2016a, b

MSCs Corneal epithelial cells TNTs Jiang et al., 2016

Mouse sister germ cells Mouse oocytes Microtubes Lei and Spradling, 2016

BM stromal cells Acute myeloid leukemic cells Endocytosis Moschoi et al., 2016

BM stromal cells* Acute myeloid leukemic cells* Endocytosis Moschoi et al., 2016

MSCs* Murine CMs* TNTs Zhang et al., 2016

MSCs Murine CMs TNTs Zhang et al., 2016

MSCs MERRF cybrid cells n.s. Chuang et al., 2017

Malignant urothelial carcinoma cells Non-malignant urinary papillary urothelial tumor
cells

TNTs Lu et al., 2017

Human MSCs Human CMs n.s. Mahrouf-Yorgov et al.,
2017

Human MSCs Human ECs n.s. Mahrouf-Yorgov et al.,
2017

Human CMs Human MSCs n.s. Mahrouf-Yorgov et al.,
2017

Human ECs Human MSCs n.s. Mahrouf-Yorgov et al.,
2017

BM stromal cells* Acute myeloid leukemia cells* TNTs Marlein et al., 2017

Mesenchymal stromal cells* Macrophages* EVs Morrison et al., 2017

Human healthy astrocytes Human stressed astrocytes TNTs Rostami et al., 2017

Human multipotent MSCs Rat astrocytes TNTs Babenko et al., 2018

Human multipotent MSCs Neuron-like PC12 pheochromocytoma ρ0 cells TNTs Babenko et al., 2018

MSCs Neural stem cells Actin-based intercellular structures Boukelmoune et al.,
2018

Monkey kidney cells Monkey kidney cells TNTs Guo et al., 2018

Porcine alveolar macrophages Porcine alveolar macrophages TNTs Guo et al., 2018

Porcine umbilical cord MSCs Porcine alveolar macrophages TNTs Guo et al., 2018

Endothelial progenitor cells Brain ECs Endothelial progenitor cell–derived
mitochondrial particles

Hayakawa et al., 2018

Myeloid-derived regulatory cells T Cells ECVs Hough et al., 2018

Cardiac myofibroblasts Cardiomyocytes Nanotubes Shen et al., 2018

T cell acute lymphoblastic leukemia
cells

MSCs TNTs Wang e al., 2018

MSCs T Cell acute lymphoblastic leukemia cells TNTs Wang et al., 2018

Human induced pluripotent stem
cell–derived MSCs

Human bronchial epithelium cells TNTs (Cx43 mediated) Yao et al., 2018

Human induced pluripotent stem
cell–derived MSCs*

Murine epithelial cells* TNTs (Cx43 mediated) Yao et al., 2018
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Table 1. Overview of donor/acceptor cells (types of cells) involved in mitochondrial transfer (Continued)

Donor cells Acceptor cells Type of transfer References

Scattered tubular-like cells Tubular epithelial cells ECVs Zou et al., 2018

MSCs Acute lymphoblastic leukemia cells TNTs Burt et al., 2019

BM MSCs Human ECs TNTs Feng et al., 2019

Human astrocytes Human astrocytes n.s. Gao et al., 2019

Human neuronal cells Human astrocytes n.s. Gao et al., 2019

Cancer-associated fibroblasts Prostate cancer cells Cellular bridges Ippolito et al., 2019

Cancer-associated fibroblasts* Prostate cancer cells* Cellular bridges Ippolito et al., 2019

BM-derived MSCs Proximal tubular epithelial cells n.s. Konari et al., 2019

BM-derived MSCs* Proximal tubular epithelial cells* n.s. Konari et al., 2019

Rat MSCs Rat neurons Gap junction intercellular
communication

Li et al., 2019

Rat MSCs* Rat neurons* Gap junction intercellular
communication

Li et al., 2019

Astrocytes Primary rat neuronal cells n.s. Lippert and Borlongan,
2019

BM stromal cells MM cells TNTs Marlein et al., 2019

BM stromal cells Hematopoietic stem cells Gap junction Mistry et al., 2019

BM stromal cells* Hematopoietic stem cells* Gap junction Mistry et al., 2019

Astrocytes Neurons n.s. English et al., 2020

Murine hematopoietic stem and
progenitor cells*

Murine mesenchymal stromal cells* Cell-contact dependent, Cx43-
mediated

Golan et al., 2020

Murine CMs* Murine macrophages* Cardiomyocyte-derived exophers
(subcellular particles)

Nocolas-Avila et al.,
2020

Mesenchymal stromal cells Islet β cells TNTs Rackham et al., 2020

Murine white adipocytes* Murine macrophages* n.s. Brestoff et al., 2021

Human MSCs Injured alveolar epithelial cells Cx43-containing gap junctional
channels

Huang et al., 2021

Platelets MSCs Dynamin-dependent clathrin-
mediated endocytosis

Levoux et al., 2021

Platelets* MSCs* Dynamin-dependent clathrin-
mediated endocytosis

Levoux et al., 2021

BM stromal cells Myeloma cells TNTs and partial cell fusion Matula et al., 2021

Myeloma cells BM stromal cells TNTs and partial cell fusion Matula et al., 2021

Murine ovarian follicles Murine ovarian follicles Gap junction internalization Norris, 2021

Glioblastoma stem cells Glioblastoma stem cells TNTs Pinto et al., 2021

3D-glioblastoma organoids 3D-glioblastoma organoids TNTs Pinto et al., 2021

Human breast epithelial cancer cells Human breast epithelial cancer cells ECVs Rabas et al., 2021

Murine high-metastatic lung
carcinoma cells

Murine low-metastatic lung carcinoma cells ECVs Takenaga et al., 2021

Murine low-metastatic lung
carcinoma cells

Murine high-metastatic lung carcinoma cells ECVs Takenaga et al., 2021

Murine high-metastatic lung
carcinoma cells*

Murine low-metastatic lung carcinoma cells and
cancer-associated fibroblasts*

ECVs Takenaga et al., 2021

MSCs Neurons Cell-to-cell contact Tseng et al., 2021

Human glioblastoma cells Human primary astrocytes TNTs Valdebenito et al., 2021

Human neurons Human astrocytes TNTs Lampinen et al., 2022

Murine neurons Murine astrocytes TNTs Lampinen et al., 2022

Murine brown adipocytes* Murine adipocytes* ECVs Rosina et al., 2022
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HMT plays a role not only in the context of cancer and other
pathologies but also under physiological conditions (Lei and
Sprandling, 2016; Jayaprakashet al., 2017; Torralba et al., 2016;
Valenti et al., 2021). This is supported by reports of HMT
modulating in vivo adipose tissue and heart homeostasis or
thermogenesis (Nicolas-Avila et al., 2020; Brestoff et al., 2021;
Rosina et al., 2022).

Mitochondrial transfer in respiratory system injury
and inflammation
Tissue injury and inflammation that involve considerable cel-
lular stress may drive HMT. A decade ago, HMT from BM-
derived stromal cells to pulmonary alveoli was reported,
indicating that transfer of intact mitochondria can contrib-
ute to tissue repair in vivo, implying that HMT can be utilized
as a beneficial approach in MSC-based therapy (Islam et al.,
2012), enhancing cellular bioenergetics with ensuing im-
proved organ function (Sinha et al., 2016). An in vivo study
showed that increased expression of Miro1 in MSCs increased

HMT from the stem cells into injured bronchial epithelial cells
through intercellular TNTs. This resulted in attenuation of
epithelial cell apoptosis, reduced infiltration of inflammatory
cells, and lower collagen deposition and mucus hypersecretion
in the lungs (Ahmad et al., 2014).

Further research confirmed that exposure of the respiratory
system to injury or inflammation triggers HMT from MSCs to
lung epithelium, using a mouse model of cigarette smoke–
induced lung damage (Li et al., 2014). Lung alveolar macro-
phages were also shown to acquire mitochondria from MSCs by
means of TNT-like structures, resulting in enhanced phagocytic
activity in a model of pneumonia. This presents a novel mech-
anism for the anti-microbial effect of MSCs in the acute respi-
ratory distress syndrome (Jackson et al., 2016a; Jackson et al.,
2016b).

Mitochondrial transfer in the cardiovascular system
The cardiovascular system includes cell types with both high
and low dependence on mitochondrial ATP production. The
former cell type is represented by CMs, the latter by ECs. While
generating little ATP in their mitochondria (mtATP), ECs use
mitochondrial respiration to support stress resistance and bio-
synthesis (Magalhaes-Novais et al., 2022; Diebold et al., 2019).
Despite these differences, both CMs and ECs engage HMT,
suggesting that HMT is not restricted to mtATP-dependent cell
types, and emphasizing the role of HMT in stress resistance. An
earlier report indicated that mitochondria could move sponta-
neously from CMs to ECs via transient nanotube-like structures
(Koyanagi et al., 2005). Mitochondria were then shown to be
endocytosed by CMs and other cells in both in vitro and in vivo
models of cardiomyopathy and ischemia, indicating therapeutic
potential (Masuzawa et al., 2013; Cowan et al., 2016). MSCs were
found to donate mitochondria, rescuing ischemia-exposed CMs
and ECs from cell death (Cselenyak et al., 2010; Mahrouf-Yorgov
et al., 2017).

Unidirectional mitochondrial transfer was found in the di-
rection of CMs upon co-culture of human MSCs with rat CMs
(Boukelmoune et al., 2018), or from myofibroblasts to damaged
CMs to attenuate their apoptosis during hypoxia/reoxygenation
(Shen et al., 2018). Mitochondria from endothelial progenitor
cells can be delivered into damaged brain ECs (Hayakawa et al.,
2018). Bidirectional movement of mitochondria between car-
diofibroblasts and CMs (He et al., 2011), or between MSCs and
CMs or ECs (Mahrouf-Yorgov et al., 2017) was reported. Mito-
chondrial dysfunction plays a central pathogenic role in neonatal

Table 1. Overview of donor/acceptor cells (types of cells) involved in mitochondrial transfer (Continued)

Donor cells Acceptor cells Type of transfer References

Effector immune cells Breast cancer cells TNTs Saha et al., 2022

T cells* Lung carcinoma cells* TNTs Saha et al., 2022

T cells* Melanoma cells* TNTs Saha et al., 2022

*in vivo work
Note: TNTs, nanotubes, protrusions, microtubes, actin-based intercellular structures, cellular bridges—types of filamentous tubes that function as
intercellular bridges. n.s., not specified in original paper.

Figure 1. Movement of mitochondria between MSCs and B16 ρ0 mela-
noma cells. MSCs isolated from a transgenic Su9DsRed mouse expressing
RFP in their mitochondria were co-cultured with B16 ρ0 cells labeled with
BFP targeted to nuclei and GFP targeted to the plasma membrane. Confocal
microscopy shows the presence of RFP mitochondria in a TNT connecting an
MSC and a B16 ρ0 cell (Dong et al., 2017).

Dong et al. Journal of Cell Biology 7 of 27

Horizontal mitochondrial transfer https://doi.org/10.1083/jcb.202211044

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/222/3/e202211044/1447818/jcb_202211044.pdf by guest on 21 Septem

ber 2023

https://doi.org/10.1083/jcb.202211044


cardiomyopathy, and HMT improves CM bioenergetics and vi-
ability in rats exposed to pre-gestational diabetes (Louwagie
et al., 2021).

Recently, it was shown that cardiac tissue releases “damaged”
mitochondria via extracellular vesicles (ECVs) called exospheres
are taken up by macrophages via their Mertk surface receptors
and disposed of (Melentijevic et al., 2017), contributing to mi-
tochondrial homeostasis in the heart (Nicolas-Avila et al., 2020).
Inter-organ HMT from adipose tissue to CMs, causing “meta-
bolic pre-conditioning” of the heart (Crewe et al., 2021), has also
been demonstrated.

Mitochondrial transfer in the nervous system
The central nervous system (CNS) controls basic physiological
functions, emotional changes, and mental health (Zheng et al.,
2019). Mitochondria serve not only as the “powerhouse” of
neurons but also play essential roles in metabolizing neuro-
transmitters, buffering Ca2+, and sending signals modulating
neuronal survival (Course and Wang, 2016; Misgeld and
Schwarz, 2017). Vesicles containing mitochondria are trans-
ported unidirectionally between neuronal cells (Rustom
et al., 2004). Contrary to our understanding that healthy
cells degrade their own mitochondria, the organelles move
from retinal ganglion axons to adjacent astrocytes in the
optic nerve to be disposed of via trans-mitophagy (Davis
et al., 2014), and neural trans-mitophagy was shown in a
mouse model of Alzheimer’s disease (AD; Lampinen et al.,
2022). In the hippocampus, motility of axonal mitochondria
affects the pre-synaptic strength (Sun et al., 2013). Inter-
cellular mitochondrial transport is critical in maintaining the
healthy state of mitochondria in axons and homeostasis of
the CNS (Nguyen et al., 2014), and this process plays an im-
portant role in various neurological and psychiatric disorders
(Zheng et al., 2019; Picard et al., 2015; Gaetani et al., 2022).

Mitochondrial motility not only impacts on tissues/cells in
the CNS but also in the peripheral nervous tissue. A recent
experiment demonstrated that exogenous mitochondria
transplanted into injured rat spinal cord contribute to
acute maintenance of bioenergetics as well as functional re-
covery after spinal cord injury (Gollihue and Rabchevsky,
2017). Mitochondria can move from BM MSCs to oxygen and
glucose-deprived neurons, improving their survival, de-
creasing neuronal apoptosis, and promoting locomotor func-
tion recovery in rats after spinal cord injury, indicating
potential stem cell therapy (Li et al., 2019), while mitochondria
from multipotent MSCs move to neurons or astrocytes, leading
to restoration of respiration in recipient cells and alleviation of
ischemic damage (Babenko et al., 2015; Babenko et al., 2018).

Astrocytes have been suggested as potential mitochondrial
donors. An in vivo mouse model of stroke indicated that as-
trocytes release functional mitochondria that were delivered to
damaged neurons, resulting in ischemic injury repair and neu-
ronal recovery (Hayakawa et al., 2016; Berridge et al., 2016).
Mitochondria from astrocytes transfer to cerebrospinal fluid
after subarachnoid hemorrhage, both in a rat model and humans
(Chou et al., 2017), and stressed astrocytes acquire functional
mitochondria from healthy astrocytes via direct contact or TNTs

facilitating their own recovery (Rostami et al., 2017). Astrocytes
transfer healthy mitochondria to neurons after cisplatin treat-
ment to restore “neuronal health” (English et al., 2020). Mito-
chondria were found to move between astrocytes and neurons
by a process involving CD38/cADP-ribose signaling and mito-
chondrial Rho GTPases (Miro1, Miro2; Hayakawa et al., 2016;
Gao et al., 2019). Mitochondrial transfer (or exogenous delivery)
may open an avenue for treatment of neurological diseases such
as stroke and spinal cord injury (Han et al., 2020).

Mitochondrial transfer in other systems
Mitochondria collected from murine hepatocytes improve em-
bryonic development following transfer to fertilized murine
zygotes from young and older mice (Yi et al., 2007). Cells in
primordial oocyte cysts transfer mitochondria to definitive oo-
cytes (Lei and Spradling, 2016). Also, donation of mitochondria
by MSCs protects retinal ganglion cells against mitochondrial CI
defect-induced degeneration (Jiang et al., 2019).

Mitochondria released from damaged somatic cells (CMs or
ECs) can be engulfed by MSCs and rapidly degraded. As a con-
sequence, elevation of heme levels in the cytosol of recipient
MSCs triggered upregulation of heme oxygenase-1, a stress-
inducible protein endowed with cytoprotective properties
that converts toxic heme into health-promoting compounds
(Gozzelino et al., 2010). Thus, heme oxygenase-1 activation
increased mitochondrial biogenesis and protected against so-
matic cell apoptosis by stimulating HMT from MSCs to dam-
aged cells (Mahrouf-Yorgov et al., 2017). Although the majority
of studies on HMT focus on stress-linked reactions, it is of
importance to investigate the potential role of HMT in main-
taining tissue homeostasis (Liu et al., 2021).

In vitro studies found that intercellular transfer of mito-
chondria can be bidirectional. This is exemplified by exchange of
mitochondria between renal tubular cells and mesenchymal
multipotent stromal cells (Plotnikov et al., 2010). Bidirectional
exchange of mitochondria was detected under normal culture
conditions between human vascular smooth muscle cells and
BM MSCs, and this process promoted MSC proliferation
(Vallabhaneni et al., 2012). Human BM-derived MSCs transfer
mitochondria to macrophages in vivo via TNTs, resulting in
enhanced macrophage phagocytosis, a novel mechanism pro-
moting anti-microbial function of MSCs (Jackson et al., 2016a;
Jackson et al., 2016b). A report documented HMT from MSCs to
corneal epithelial cells to protect them from mitochondrial
damage (Jiang et al., 2016). In retinal cells, mitochondria and
endocytic organelles were found inside TNTs, indicating that
mitochondria may be transferred between individual cells or
between retinal pigment epithelium cells and photoreceptors
(Wittig et al., 2012). Mitochondria move from adipose tissue to
macrophages in order to maintain white adipose tissue homeo-
stasis, with positive impact on obesity (Brestoff et al., 2021).
Consistent with this, damaged mitochondria transfer from
brown adipocytes to macrophages to regulate thermogenesis
(Rosina et al., 2022). Finally, several reports indicate that pla-
telets donate mitochondria to neutrophils or MSCs, eliciting
immune (Boudreau et al., 2014) or regenerative responses
(Levoux et al., 2021).
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Pathological and non-pathological systems in which mito-
chondrial transfer has been documented are summarized in
Table 2.

Modes of HMT
Intercellular mitochondrial transfer is important in multiple
scenarios during physiology and pathophysiology. Mechanisms

of HMT between cells are diverse as discussed in more detail
below, including tunnelling nanotubes/cytoplasmic bridges, gap
junctions, cell fusion, endocytosis of vesicles, or as free organ-
elles (Moschoi et al., 2016; Osswald et al., 2015; Masuzawa et al.,
2013; Cowan et al., 2016; Hayakawa et al., 2016; Wang and
Gerdes, 2015; Herst et al., 2018). The various modes of HMT
are depicted schematically in Fig. 2.

Table 2. Pathological and non-pathological systems featuring mitochondrial transfer

Condition Result Reference

Pathological Lung carcinoma Rescued mitochondrial function Spees et al., 2006

Osteosarcoma Rescued mitochondrial function Cho et al., 2012

Acute lung injury Cellular protection and tissue repair Islam et al., 2012

Ischemia Preserving myocardial energetics, cell viability, and enhanced post-infarct cardiac
function—protect the heart from ischemia-reperfusion injury

Masuzawa et al., 2013

Allergic airway
inflammation

Enhanced rescue of epithelial injury Ahmad et al., 2014

Chronic obstructive
pulmonary disease

Attenuation of cigarette smoke–induced lung damage Li et al., 2014

Ischemia Cardioprotection from ischemia-reperfusion injury Cowan et al., 2016

Cerebral ischemia Amplified cell survival signals—neurorecovery Hayakawa et al., 2016

Acute respiratory distress
syndrome

Enhancement of phagocytic activity of lung alveolar macrophages Jackson et al., 2016a;
Jackson et al., 2016b

Acute myeloid leukemia Resistance to chemotherapy Moschoi et al., 2016

Canine transmissible
venereal tumor

Acquisition of functional mtDNA Strakova et al., 2016, 2020

Bladder cancer Increased invasiveness Lu et al., 20178

Acute respiratory distress
syndrome

Anti-inflammatory and highly phagocytic macrophage phenotype resulting in
amelioration of lung injury

Morrison et al., 2017

PD Acquisition of functional mitochondria Rostami et al., 2017

Oxygen-glucose
deprivation

Restoring brain endothelial energetics and barrier integrity Hayakawa et al., 2018

Hypoxia/reoxygenation
injury

Attenuation of CM apoptosis Shen et al., 2018

Asthma Alleviated asthmatic inflammation Yao et al., 2018

Diabetic nephropathy Structural and functional restoration of renal proximal tubular epithelial cells Konari et al., 2019

MM Enhanced mitochondrial metabolism, protumoral effect Marlein et al., 2019

Neonatal cardiomyopathy Improvement of CM bioenergetics and viability in male rats exposed to pre-
gestational diabetes

Louwagie et al., 2021

Lung carcinoma Enhancement of metastatic potential during tumor progression Takenaga et al., 2021

Cerebral ischemia Increased neuronal survival and improved metabolism Tseng et al., 2021

Glioblastoma Adaptation of non-tumor astrocytes to tumor-like metabolism and hypoxia
conditions

Valdebenito et al., 2021

AD Increased transmitophagy of defective neuronal mitochondrial, potential
alleviation of AD pathology and symptoms

Lampinen et al., 2022

Non-
pathological

Cardiac homeostasis Preserved metabolic stability and organ function Nicolas-Avila et al., 2020

White adipose tissue
homeostasis

Metabolic homeostasis, impairment leads to obesity Brestoff et al., 2021

Metabolic preconditioning
of the heart

Cardio-protection against lipotoxic or ischemic stresses elicited by obesity Crewe et al., 2021

Wound healing Promotion of pro-angiogenic activity of MSCs via their metabolic remodeling Levoux et al., 2021
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Mitochondrial transfer via TNTs
The most studied mechanism of HMT is by means of F-actin–based
cytoplasmic bridges referred to as TNTs (Rustom et al., 2004;
Gerdes and Carvalho, 2008; Gurke et al., 2008; Rustom, 2016;
Zurzolo, 2021). TNTs are dynamic structures with a diameter of
50–200 nm and length up to several cell diameters. They are
derived from plasma membrane and can form within minutes.
These cell–cell connections mediate continuity between the
cytoplasm of adjacent or remote cells, allowing for trafficking
of mitochondria and other organelles, i.e., vesicles, individual
molecules (nucleic acids), ions, and even pathogens travelling
from donor to recipient cells (Rustom et al., 2004; Sowinski
et al., 2008; Bukoreshtliev et al., 2009; Eugenin et al., 2009;
Thayanithy et al., 2014; Roehlecke and Schmidt, 2020;
Haimovich et al., 2021). Drugs that depolymerize F-actin sup-
press formation of TNTs (Bukoreshtliev et al., 2009). In several
cases microtubules and cytokeratin filaments are present in
these structures together with F-actin, their key component
(Veranic et al., 2008; Wang et al., 2010).

Two basic mechanisms of TNT formation exist: actin-driven
protrusion of the cell membrane that fuses with another cell or
its protrusion and “cell dislodgement,” where two initially at-
tached cells part from each other, forming a TNT containing
F-actin filaments (Rustom et al., 2004; Ljubojevic et al., 2021).
Existence of two different types of TNTs, with or without mi-
crotubules, implies different functions. TNTs without micro-
tubules likely serve more as a short-distance connection, while
those containing microtubules and with a wider bore serve for
transport of molecules and organelles over longer distances
(MacAskill and Kittler, 2010; Zampieri et al., 2021).

Mitochondria associate with actin or tubulin fibers by means
of Miro proteins, playing a role in mitochondrial transport
(Nahacka et al., 2021). In vitro experiments show that over-
expression of Miro-1 in MSCs increased the metabolic/bioen-
ergetic benefit of HMT following oxidative damage of recipient
cells (Ahmad et al., 2014; Tseng et al., 2021). We have shown a
role for TRAK-1, another adaptor protein linking mitochondria
to motor proteins like kinesin (KIF5A), enabling movement of
mitochondria at long range and crossing “crowded” environ-
ments (Henrichs et al., 2020). An interesting phenomenon is
bidirectional transfer of mitochondria shown for several sys-
tems (see above) and as can be expected for cancer. One can
envisage that mitochondria moving to the plus ends of tubulin
fibers use the kinesin mobility system, while those moving in
the anterograde direction use dynein as the motor protein. That
these two mitochondrial transport systems do not collide can be
due to a mechanism analogous to the movement of interflagellar
trains in cilia (Stepanek and Pigino, 2016; Jordan et al., 2018;
Pigino, 2021).

Occurrence of TNTs is a rather infrequent process taking
place under a wide range of physiological conditions (develop-
ment, regeneration, cell migration, etc.) and different patho-
logical situations including tumor formation andmetastasis (Lou
et al., 2012; Ariazi et al., 2017; Valdebenito et al., 2021; Takenaga
et al., 2021). TNTs present a component of the tumor microen-
vironment and can form in solid tumors and in primary cancer
cells, playing an important role in cancer cell pathogenesis and

invasion (Lou et al., 2012). Spontaneously formed TNTs mediate
hetero-cellular exchange between various cancer and stromal
cells for transfer of mitochondria, promoting tumor progression.
Tomaintain HMT, TNTs form as previously shown in a model of
ischemic vascular disease for injured cells via the so-called “find
me” signals, such that phosphatidylserine exposed on the sur-
face of ECs facilitates their connection with neighboring MSCs
(Liu et al., 2014).

Stress signals generated during cellular mitochondrial dam-
age, together with elevated levels of ROS, prompt donor cells to
enhance their bioenergetics and initiate mitochondrial donation
to injured recipient cells (Paliwal et al., 2018; Mahrouf-Yorgov
et al., 2017; Zhang et al., 2010). Formation of TNTs via actin-
driven protrusions of plasma membrane in MSCs is initiated by
the cytokine TNF-α, regulating the TNFα/NF-κB/TNF-αip2 sig-
naling pathway that leads to F-actin polymerization and TNT
formation (Zhang et al., 2010; Hase et al., 2009). In 2006, Spees
and colleagues reported that healthy mitochondria move from
MSCs to cells with dysfunctional mitochondria, restoring their
respiration (Spees et al., 2006). In a model of acute respiratory
distress syndrome, TNTs were found to form betweenMSCs and
lung macrophages, moving mitochondria across, resulting in
higher phagocytic activity of lung macrophages (Jackson et al.,
2016a; Jackson et al., 2016b). In a model of simulated ischemia/
reperfusion injury, mitochondrial transfer occurred from MSCs
to injured H9c2 cardiomyoblasts via TNTs, rescuing cardiac cells
from apoptosis (Han et al., 2016). Mitochondria move in a bi-
directional manner between MSCs and vascular smooth muscle
cells via TNTs to initiate their proliferation (Vallabhaneni et al.,
2012). BMMSCs move mitochondria to myeloma cells via TNTs,
initiated by CD38 expression on myeloma cells (Marlein et al.,
2019). A study of ECs exposed to chemotherapeutic stress
showed mitochondrial transfer from BM MSCs via TNTs (Feng
et al., 2019).

Donor cells other than MSCs also transfer mitochondria via
TNTs to recipient cells. Within the same cell type, healthy cells
donate mitochondria to their injured counterparts. Pheochro-
mocytoma (PC12) cells exposed to UV light were rescued when
co-cultured with untreated PC12 cells. This was promoted by
TNTs formed by the stressed cells, allowing for transfer of
functional mitochondria and rescuing the cells from apoptosis
(Wang and Gerdes, 2015). Porcine reproductive and respiratory
syndrome virus-infected cells were rescued from apoptosis/
necrosis in early stages of infection by transfer of functional
mitochondria via TNTs from uninfected cells (Guo et al., 2018).

TNTs also form between lung epithelial cells over distances
from 1 μm tomore than 100 μm (Kumar et al., 2017). In vitro and
in vivo evidence shows that TNTs promote intercellular HMT
between heterogeneous cancer cells, followed by increased in-
vasiveness of bladder cancer cells (Lu et al., 2017). Pathologically
stressed astrocytes with swollen ER and impaired mitochondrial
dynamics signal to healthy astrocytes, which promotes HMT via
TNTs (Rostami et al., 2017). A recent study showed mitochon-
drial transfer from astrocytes to GBM cells via TNTs as an ad-
aptation to hypoxic and nutrient deficiencies in the tumor
microenvironment (Valdebenito et al., 2021). TNTs were also
found to form in retinal pigment epithelium, with HMT
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Figure 2. Models of horizontal transfer of mitochondria. (A)Horizontal transfer of mitochondria by TNTs. TNTs are in general formed by F-actin filaments.
In case of intercellular transfer of mitochondria, TNTs also contain microtubules and are thicker, thus able to transport bulkier structures. Transport of mi-
tochondria along these cytoskeletal elements is propelled by dynein and kinesin motor complexes consisting of several adaptor proteins, such as Miro1 or
Miro2, that are integrated in the outer mitochondrial membrane and facilitate mitochondrial transport not only along microtubules but also along actin fil-
aments (together with Myo19). Formation of TNTs starts either as an actin-driven protrusion of the cell membranes of the two cells involved or as the
dislodgement of two previously attached cells that during the partition from each other form the TNT. (B)Horizontal transfer of mitochondria by gap junctions.
Gap junctions were shown to involve connexin structures, i.e., protein complexes consisting of six subunits of connexin proteins, such as Cx43. Two juxta-
positioned connexon channels form pores connecting two neighboring cells, allowing for bidirectional transport of ions, signaling molecules or whole mito-
chondria. (C) Horizontal transfer of mitochondria by cell fusion. Cell fusion is a process that is relatively common in cancer progression and comprises several
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maintaining homeostasis of the tissue (Wittig et al., 2012;
Chinnery and Keller, 2020), and in cancer spheroid 3D struc-
tures, in which cancer and stromal cells communicate via TNTs
with ensuing HMT from ECs to cancer cells, contributing to
chemotherapy resistance (Pasquier et al., 2013).

Mitochondrial transfer via gap junctions
Gap junctions couple nearly all cells that line external and in-
ternal surfaces of the human body, being known for transferring
small molecules between cells (Goodenough and Paul, 2009).
During gap junction internalization, one cell engulfs small parts
of the neighboring cell (Bettadapur et al., 2020). The integral gap
junction protein, connexin 43 (Cx43), is involved in ischemia/
reperfusion damage of myocardial and cerebral tissue, implying
HMT (Islam et al., 2012; Antanaviciute et al., 2014; Schulz et al.,
2015; Norris, 2021; Qin et al., 2021; Rodriguez-Sinovas et al.,
2021). Gap junction associated HMT involves Cx43 gap junc-
tions within ovarian follicles (Norris, 2021). Mitochondrial
transfer from donor Cx43-expressing hematopoietic progen-
itors to stromal cells is required to support BM regeneration
following irradiation (Golan et al., 2020). Promotion of pro-
inflammatory status following bacterial LPS challenge was
found to enable injured pulmonary epithelial cells to fuse with
human stem cells using Cx43 during the formation of TNTs
(Islam et al., 2012; Bagheri et al., 2020). Additionally, HMT via
gap junctions occurs from BM MSCs to injured motor neurons
to protect them from apoptosis (Li et al., 2019).

Interestingly, the role of Cx43 in the process of TNT forma-
tion was also shown in other models of HMT, for example in
asthmatic inflammation, virus infection and leukemia (Smith
et al., 2011; Okafo et al., 2017; Griessinger et al., 2017), indicat-
ing that the connexin system may be involved in mitochondrial
transfer other than via gap junctions.

Mitochondrial transfer via cell fusion
Cell fusion is a process of two individual cells fusing their plasma
membranes, sharing organelles and cytosolic compounds while
their nuclei remain intact (Bagheri et al., 2020). Cytosolic con-
stituents and organelles are hence evenly or, in some cases,
partially shared between juxtaposed cells (Aguilar et al.,
2013), resulting in mitochondrial delivery into recipient
cells (Gomzikova et al., 2021), being common in myogenesis
and placental development. An in vivo study showed that BM-
derived cells fuse with neurons, CMs, and hepatocytes, raising
the possibility that cell fusion may contribute to cellular

homeostasis (Alvarez-Dolado et al., 2003). Stem cells can also
fuse with neurons (Cusulin et al., 2012) and hepatocytes
(Terada et al., 2002). Cell fusion in target organs can be driven
by injury and inflammation (Weimann et al., 2003), irradiation
(Alvarez-Dolado et al., 2003), or hypoxia-induced apoptosis
(Noubissi et al., 2015). Cells of myeloid and lymphoid lineages
fuse with cells in different tissues in response to injury or
inflammation (Nygren et al., 2008). Cell fusion also occurs
following co-culture of mouse CMs with human multipotent
adipose-derived stem cells, resulting in HMT into CMs
(Acquistapace et al., 2011).

Mitochondrial transfer via ECVs
ECVs are lipid-bound structures secreted into the extracellular
space (EL Andalousi et al., 2013; Yáñez-Mó et al., 2015;
Zaborowski et al., 2015). They include micro-vesicles (MVs) of
0.1–1 μm in diameter, and exosomes with diameter of 30–150 nm
(Doyle and Wang, 2019; Isaac et al., 2021). The original notion
was that exosomes and MVs are used by cells for disposal of
unwanted material to maintain homeostasis (Yáñez-Mó et al.,
2015). However, it became evident that ECVs are involved in
cell-to-cell communication at a longer range, often provoking
changes in the recipient cell (Isaac et al., 2021; White et al., 2006;
Harding et al., 2013), also providing energy (Kumar et al., 2021).
MVs can encapsulate mitochondria (∼0.5 μm in diameter) and
deliver them to target cells (Vignais et al., 2017). Encapsulation
of mitochondria into ECVs could be a rescue mechanism to re-
lease oxidative stress and to clear depolarized mitochondria
(Gomzikova et al., 2021; Phinney et al., 2015), maintaining tissue
homeostasis (Brestoff et al., 2021).

Delivery of mitochondria by ECVs participates in immune
regulation, modulating the function of macrophages and neu-
trophils and other cells, including alveolar epithelial cells, neu-
rons, and ECs, and contributing to intercellular communication
(She et al., 2021). The first report of ECV-mediated HMT is a
study showing HMT from BM MSCs to injured lung alveolar
epithelial cells in a model of acute lung injury (Islam et al., 2012).
ECV-mediated HMT fromMSCs to macrophages, contributing to
amelioration of lung injury, enhances the phagocytic capacity of
M2-type alveolar macrophages and reduces secretion of TNF-α,
suppressing lung inflammation (Morrison et al., 2017). Using a
mouse model of focal cerebral ischemia, astrocytes were shown
to use ECVs to transfer functional mitochondria to protect
neurons from hypoxia and glucose deprivation (Hayakawa et al.,
2016).

steps. At first two cells are recognized via the so-called fusogenic trigger that could involve different signalingmolecules depending on the cell type (TNFα, IL-1,
IL-4, and others) or specific conditions (e.g., hypoxia). The cells then approach each other and, using several cell–cell adhesion molecules, such as E-cadherin,
syncytin-1 and -2, or ASCT2, which form pore expansions, “fusion” of the two neighboring cells occurs. This yields a cell that shares mitochondria from the two
original cells. During this process, several signaling pathways are triggered that result in higher tumorigenesis and increased metastatic potential of the cancer
cells. (D) Horizontal transfer of mitochondria by ECVs. Transfer of mitochondria via ECVs involves small double membrane structures that are formed by
blebbing of plasma membrane. In contrast, exosomes are of endosomal origin and can transport various cargo including signaling molecules (different me-
tabolites), trans-membrane proteins, nucleic acids, amino acids, and organelle fragments. (E) Inter-organ transport of mitochondria. This mode of mito-
chondrial horizontal transfer has been recently shown for the organelles moving from adipocytes to the heart tissue. In this particular case, damaged
mitochondria from energetically stressed adipocytes of obese patients are transferred via small extracellular vesicles (sEV) to the blood circulation and are
taken up by CMs of the heart tissue, triggering small ROS burst. This process results in compensatory antioxidant signaling in the heart muscle, causing
metabolic pre-conditioning.
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ECV-mediated HMT was found to occur between renal
scattered tubular cells and tubular epithelial cells to alleviate
renal stenosis and to recover mitochondrial respiration (Zou
et al., 2018). Mitochondria derived from MSCs move to macro-
phages via ECVs to increase ATP production (Phinney et al.,
2015). As a consequence of stimulating neutrophil activation
and promoting their pro-inflammatory responses, platelets shed
mitochondria in ECVs that are taken up by neutrophils in a
damage-related model (Boudreau et al., 2014). Mitochondria
encapsulated in ECVs can integrate into T cells to affect their
mitotic processes (Hough et al., 2018). We showed that vesicular
mitochondria released by platelets are internalized by MSCs,
activating their pro-angiogenic properties (Levoux et al., 2021).
These findings indicate that delivery of mitochondria by ECVs
allows for communication between cells and participation in
regulating the immune system and tissue repair processes, ap-
plicable for ECV-based mitochondrial therapy (She et al., 2021).

An interesting form of HMT between cells (or even organs) in
response to stress involves release of damaged mitochondria
from adipocytes in ECVs, with individual mitochondria origi-
nating from mitochondria-derived vesicles formed by budding
from the mitochondrial network (Crewe et al., 2021). The
function of mitochondria-derived vesicles is transport of cargo
between mitochondria and other organelles, including ECVs
(Todkar et al., 2021). ECVs are taken up by CMs, where they
exert elevated oxidative stress that causes “metabolic” pre-
conditioning of the heart (Crewe et al., 2021). We have re-
cently shown that mitochondria move from platelets to MSCs in
ECVs and as “isolated” mitochondria, ∼50% of each (Levoux
et al., 2021). Both in the case of isolated mitochondria and
those in ECVs, the organelles are taken up by clathrin-dependent
endocytosis. Vesicles released by cancer cells contain “naked”
mtDNA, which causes higher invasiveness of recipient cells
(Rabas et al., 2021). While some of these reports are indicative of
the existence of isolated mitochondria (or mtDNA) within the
extracellular compartment, systematic studies on the mecha-
nism by which these organelles are shed by donor cells and in-
ternalized by acceptor cells are lacking.

A novel means of HMT has recently emerged involving mi-
grasomes (Ma et al., 2015) that form on retraction fibers of
migrating cells via tetraspanin microdomains (Huang et al.,
2019). These structures contain damaged mitochondria that
are disposed of by the process of mitocytosis (Lu et al., 2020; Jiao
et al., 2021). While migrasomes have been suggested to play a
role in stroke (Schmidt-Pogoda et al., 2018), they likely deliver
mitochondria (albeit damaged) to other cells (Yu and Yu, 2022).

Consequences of mitochondrial transfer
HMT has been shown to play a critical role in cell and tissue
regeneration, and in damage repair, or may contribute to heal-
ing processes in brain injury, ischemic heart disease, muscle
sepsis, stroke, and lung disorders (Paliwal et al., 2018). Various
stress signals act as triggers of HMT, occurring primarily from
MSCs to recipient cells, often in response to increased levels of
ROS, damaged mitochondria/mtDNA, or inflammation (Zhang
et al., 2016; Mistry et al., 2019). Cells injured by oxidative
stress due to dysfunctional mitochondria send environmental

cues to MSCs, triggering HMT (Islam et al., 2012; Ahmad et al.,
2014). Bidirectional transfer of mitochondria occurs between
MSCs and the surrounding environment where MSCs dispose of
damaged mitochondria. Using rotenone to induce oxidative
stress in corneal epithelial cells, HMT was initiated from MSCs,
enhancing the survival capacity of the cells, paralleled by ele-
vated mitochondrial respiration and enhanced corneal wound
healing (Jiang et al., 2016). In cells derived from a patient with
the mitochondrial disease MERRF (myoclonus epilepsy with
ragged-red fibers), MSCs donate mitochondria leading to the
rescue of injured cells via improved aerobic respiration, sup-
pressed apoptosis and decreased mutational load and oxidative
damage (Chuang et al., 2017).

In cancer, chemotherapy is mostly directed at cancer cells,
driving them into apoptosis. Tumor cells importing mitochon-
dria from stromal cells are better protected from apoptosis in-
duced by chemotherapy or radiation therapy (Osswald et al.,
2015; Pasquier et al., 2013). HMT from BM MSCs to acute my-
eloid leukemia cells in vivo confers chemoresistance and pro-
motes their survival (Moschoi et al., 2016). Acquisition of new
mitochondria via HMT generally increases cell fitness and
overall resilience (Bererdi and Fantin, 2011; Suomalainen, 2019).
Therefore, an important consequence of HMT is increased stress
resistance of recipient cells.

Another consequence of HMT particularly important for
rapidly proliferating cancer cells relates to the ETC playing an
essential role in anabolic cell proliferation (Vander Heiden et al.,
2009; Koppenol et al., 2011; Birsoy et al., 2015; Sullivan et al.,
2016; Spinelli and Haigis, 2018). Invasive cancer cells favor
mitochondrial respiration and increased ATP formation to meet
their energy demands (LeBleu et al., 2014). A subpopulation of
quiescent tumor cells that self-renew slowly/infrequently are
responsible for tumor relapse (Visvader and Lindeman, 2012),
and are addicted to OXPHOS for their survival (Kapoor et al.,
2014; Viale et al., 2014).

HMT is triggered by severely affected mitochondrial func-
tions, such as mtDNA deletion or treatment with mitochondrial
inhibitors (Cho et al., 2012; Wang and Gerdes, 2015). We showed
that cancer cells without mtDNA acquire healthy mitochondria
from stromal cells, recovering their respiratory ability and tu-
morigenic capacity (Tan et al., 2015; Dong et al., 2017). These
findings demonstrate that mitochondrial respiration is indis-
pensable for tumor formation and progression. Respiration
transfers electrons to oxygen, providing a cellular redox state
that allows biosynthesis. CIII/IV maintain redox cycling of co-
enzyme Q (CoQ; re-oxidizing its reduced form to its oxidized
counterpart) needed for de novo pyrimidine synthesis via di-
hydroorotate dehydrogenase (DHODH; Bajzikova et al., 2019;
Boukalova et al., 2020). In addition, CoQ as well as CI activity
support biosynthesis of other essential metabolites, including
aspartate, that feed into nucleotide synthesis pathways (Birsoy
et al., 2015; Guarás et al., 2016; Sullivan et al., 2016; Bajzikova
et al., 2019; Mart́ınez-Reyes et al., 2020;Murphy and Chouchani,
2022). Conceivably, HMT plays an important role within the
tumor microenvironment by maintaining metabolic ho-
meostasis that favors biomass build up (Tan et al., 2015;
Mohammadalipour et al., 2020).
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Regulation of mtDNA copy number in tumorigenesis (Dickinson
et al., 2013), control of respiratory complex formation and function
by translational crosstalk (Couvillion et al., 2016), plus epigenetic
mechanisms suggest that maintaining optimum bioenergetic bal-
ance is a dynamic and adaptive process. Emerging data indicate
that, when needed, this balance is maintained via HMT (Lee et al.,
2015; Sun et al., 2018). The question of mtDNA copy number and
HMT is intriguing. It is unclear at present what extent of mtDNA
damage provokes HMT, and the extent to which damage can be
reversed by mtDNA repair. GBM cells form tumors in mice with a
delay directly related to mtDNA copy number, and this is linked to
animal survival (Dickinson et al., 2013). This may have con-
notations for translational applications, such as cancer therapy.

Mitochondria are not only the primary powerhouse of cells,
but also important regulators of life, death, proliferation, mo-
tility, stemness, and other functions (Ohta, 2003). Whole mito-
chondria withmtDNA are “mobile elements” that move between
cells, with a role in cancer development, progression, and
treatment (Dong et al., 2017; Ishikawa et al., 2008). Thus,
transfer of mitochondria with intact mtDNA to cancer cells in-
creases mtDNA copy number and promotes OXPHOS to support
proliferation and metastasis (Mohammadalipour et al., 2020).
Mitochondrial OXPHOS, biogenesis and respiration, as well as
ROS levels, elevated as a consequence of mtDNA mutations, are
important for motility of cancer cells and ensuing metastasis
(LeBleu et al., 2014; Ishikawa et al., 2008).

Our discovery that cancer cells lacking mtDNA acquire mi-
tochondria from stromal cells to promote cancer progression
(Tan et al., 2015) can be reconciled with a study showing that
cancer cells responsible for tumor relapse rely on OXPHOS for
survival (Viale et al., 2014). Using time-resolved analysis of
tumor formation by mtDNA-depleted cells and genetic ma-
nipulation of OXPHOS, we showed that de novo pyrimidine
biosynthesis, dependent on respiration-linked DHODH activity,
is required to overcome cell-cycle arrest. Thus, DHODH-driven
de novo pyrimidine biosynthesis is an essential anabolic path-
way coupling respiration with tumorigenesis (Bajzikova et al.,
2019). This points to mitochondrial respiration being crucial for
cancer cell proliferation, while energy is supplied primarily via
glycolysis. The proposed link between mitochondrial respira-
tion and de novo pyrimidine synthesis is depicted in Fig. 3.

Therapeutic approaches and implications of horizontal
transfer of mitochondria
HMT contributes to the rescue of mitochondrial function in
recipient cells. It is a “double-edged sword” that provides both
benefit and harm to cells and tissues, depending on the context.
Its therapeutic implications are also twofold. HMT is detri-
mental in cancer where new mitochondria can rejuvenate
damaged cancer cells and promote tumorigenicity, thus ther-
apeutical benefit will be provided by inhibition of the process. In
situations where new mitochondria enable normal tissue ho-
meostasis, tissue stress resistance, or wound healing, thera-
peutic benefit will be provided by increased HMT. While
pharmacological intervention targeting HMT is in an experi-
mental stage, we outlined approaches with potential therapeutical
relevance that imply mitochondrial transfer. The priority in this

context is to identify molecular targets allowing selective modu-
lation of HMT without compromising physiology of mitochondria
and the cytoskeleton. An overview of possible therapeutic im-
plications of mitochondrial transfer is in Table 3.

Therapeutic approaches in cancer
The primary goal of HMT-focused therapy in cancer is to
curb tumorigenicity and resistance associated with mito-
chondrial fitness of cancer cells (Berardi and Fantin, 2011;
Suomalainen, 2019; Wei et al., 2019). Cancer cells can remove
damaged mitochondria and transfer them to somatic cells,
while healthy mitochondria can move in the opposite di-
rection to “fix” cancer cells. The possible approaches include
(i) interference with actin filaments in order to disrupt
TNTs, (ii) interference with components required for TNT
formation, (iii) reducing cell adhesion to lower transfer by
limiting the time two cells spend in close proximity, and (iv)
suppression of signals that stimulate HMT.

Pharmacological targeting of HMT may be applied in he-
matologic malignancies since HMT contributes to treatment
resistance. Inhibition of the adhesion molecule ICAM-1 and
treatment with cytochalasin D, an inhibitor of actin polymeri-
zation that disrupts TNTs, prevents mitochondrial transfer
from MSCs to leukemia cells, promoting chemotherapy-
induced cell death (Wang et al., 2018). Application of micro-
tubule/actin inhibitors (vincristine, nocodazole, latrunculin B)
reduces resistance to therapy (Burt et al., 2019). Suppression of
ROS production reduced HMT from BM stem cells to acute
myeloid leukemia blasts stimulates apoptosis and improves
survival (Marlein et al., 2017). Similar reduction was observed
in multiple myeloma (MM) upon TNT disruption by cyto-
chalasin D as well as after blocking of CD38, a surface glycoprotein
that stimulates TNT formation (Marlein et al., 2019). Targeting
CD38 by monoclonal antibodies has been explored as a ther-
apeutic strategy in leukemias, but it is unclear if inhibition of
HMT contributes to its benefits (Koundinya et al., 2018; Martin
et al., 2019; Moreno et al., 2019). During chemotherapy, in-
cluding the use of the BH3 mimetic venetoclax, MM cells ac-
quire healthy mitochondria from BM-derived MSCs via TNTs,
and damaged mitochondria are mobilized from MMs by TNTs
and MVs to be disposed of by MSCs (Matula et al., 2021).

Pharmacological targeting of HMT has been pursued in
solid tumors. Breast/lung cancer cells hijack mitochondria
from tumor-resident immune cell via TNTs, dampening the
anti-tumor immune response and reducing the effectiveness
of immune checkpoint therapy. Pharmacological inhibition of
TNT formation in syngeneic subcutaneous mouse models
of lung and breast cancer by the farnesyl/geranyl-1 transferase
inhibitor L-778123 (inhibits Ras/Rho GTPase activity re-
quired for TNT formation) enhanced the efficacy of immune
checkpoint blockade, restored immune response, and limited
tumor growth (Saha et al., 2022). HMT was observed in a
mouse model of GBM undergoing radiotherapy (Osswald
et al., 2015). This supports the view that interference with
HMT may be used as an approach for hard-to-treat tumors
and lower their resistance to therapy (van Solinge et al.,
2022).
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Therapeutic approaches in non-cancerous pathologies
In non-cancerous pathologies HMT is mostly beneficial. HMT
improves the outcome of neurological injury and degenerative
diseases affecting the brain, spinal cord, and visual system
(Mohammadalipour et al., 2020), cardiovascular diseases includ-
ing ischemia and cardiomyopathy (Han et al., 2016; Zhang et al.,
2016), lung injury and asthma (Islam et al., 2012; Ahmad et al.,
2014; Yao et al., 2018), wound healing (Levoux et al., 2021), and
immune system function (Jackson et al., 2016a; Jackson et al.,
2016b; Phinney et al., 2015; Morrison et al., 2017). The main ob-
jective is thus to stimulate HMT. This is a challenging task as
pharmacological stimulation is usually more difficult than its in-
hibition. Researchers have tried to circumvent this issue, for ex-
ample, by supplying healthy mitochondria to be incorporated into
targeted cells, resorting to the so-called “mitotherapy.”

The therapeutic potential of mitotherapy was first explored
in the cardiovascular system during ischemia/reperfusion in-
jury. Respiration-competent mitochondria, isolated from
healthy cardiac tissue, injected directly into the ischemic area of
rabbit hearts during early reperfusion, enhanced myocardial
functional recovery and cell viability (McCully et al., 2009).
Autologous local transplantation of isolated mitochondria
protected CMs from ischemia-reperfusion injury (Masuzawa
et al., 2013) and offered protection during prolonged cold is-
chemia prior to heart transplantation (Moskowitzova et al.,
2019; Moskowitzova et al., 2020). Infusion of mitochondria in
the coronary artery reduced the infarct size and improved
heart function (Guariento et al., 2020; Louwagie et al., 2021;
Doulamis et al., 2020), and this procedure was applied in pe-
diatric patients with congenital heart disease (Emani andMcCully,
2018). Itwas shown that in response to energetic stress, adipocytes

release ECVs containing respiration-competent mitochondria
that are taken up by CMs, where they induced transient mi-
tochondrial oxidative stress leading to pre-conditioning that
protects against ischemia/reperfusion injury. This “‘metabolic
pre-conditioning” was recapitulated by injection of adipocyte-
derived ECVs (Crewe et al., 2021), and transplantation of
mitochondria affected CM bioenergetics (Ali Pour et al., 2020).
As mitotherapy also improves outcome in animal models of is-
chemia/reperfusion in the liver and lung (Moskowitzova et al.,
2019; Moskowitzova et al., 2020; Lin et al., 2013), and in liver
damage due to non-alcoholic fatty liver disease or exposure to
toxic compounds (Fu et al., 2017; Shi et al., 2018), it can be
concluded that mitotherapy by isolated mitochondria or
mitochondria-containing ECVs has the potential to provide
clinical benefit.

Mitotherapy was also extensively explored in the central and
peripheral nervous system. Mitochondria derived from ham-
sters administered either via local intracerebral or systemic
intraocular-arterial injection attenuated the area of brain in-
farction and neuronal death, and restored motor performance
in a stroke model of middle cerebral artery occlusion (Huang
et al., 2016). Administration of mitochondria by intra-
cerebroventricular injection gave similar results, reducing
reactive astrogliosis (Zhang et al., 2019). In a model of spinal
cord injury exogenous mitochondria contributed to the main-
tenance of acute bioenergetics as well as functional recovery
(Gollihue and Rabchevsky, 2017). In a model of Parkinson’s
disease (PD), delivery of mitochondria into the medial fore-
brain attenuated the oxidative damage and degeneration of
dopaminergic neurons, improving locomotion (Chang et al.,
2016). In a model of schizophrenia, injection of mitochondria

Figure 3. Scheme of oxidative phosphorylation and its link to de novo pyrimidine synthesis and tumor formation. In cells with functional mitochondria,
electrons are fed into the ETC by CI and CII, and by DHODH, which catalyzes conversion of dihydroorotate (DHO) to orotate in the fourth reaction of de novo
pyrimidine synthesis. The electrons are intercepted by the oxidized form of CoQ, which is reduced and carries the electrons to CIII and CIV. CoQ is re-oxidized
to accept more electrons from the entry points. This includes DHODH, which allows for de novo pyrimidine synthesis to occur, so that cells can transit the
S-phase and eventually undergo cytokinesis, facilitating tumor initiation and progression. In cells devoid of mtDNA (ρ0 cells), respiration is completely inhibited,
so that DHODH does not function, de novo pyrimidine synthesis is halted, and tumors cannot develop or progress. DHODHKO cells with functional respiration
cannot transit the S-phase of the cell cycle since DHODH is inhibited. Restoration of the function of CIII and CIV, for example, by transfecting ρ0 cells with
alternative oxidase (AOX), results in redox-cycling of CoQ, which restores the DHODH activity so that tumors can form and progress. Modified from Bajzikova
et al. (2019). OMM, outer mitochondrial membrane; IMS inter-membrane space; IMM, inner mitochondrial space; UMP, uridine monophosphate.
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Table 3. Pathologies where mitochondrial transfer (or its blockage) has therapeutic impact

Pathology Experimental model Route of
administration*

Result Reference

Heart

Ischemia Heart regional ischemia Injection into ischemic
region

Enhanced myocardial functional recovery and cell
viability

McCully et al., 2009

Heart regional ischemia Injection into ischemic
region

Enhancement of post-ischemic myocardial
function

Masuzawa et al.,
2013

Heart global ischemia Coronary artery injection Enhancement of post-ischemic myocardial
function

Cowan et al., 2016

Heart regional ischemia Injection into ischemic
region

Enhancement of myocardial cell viability Kaza et al., 2017

Heterotopic heart
transplantation

Coronary artery injection Enhancement of graft function and attenuation of
necrosis

Moskowitzova et al.,
2019

Warm global ischemia Coronary artery injection Enhancement of post-ischemic myocardial
function

Doulamis et al.,
2020

Heart regional ischemia Pre-ischemic coronary
artery injection

Enhancement of post-ischemic myocardial
function

Guariento et al.,
2020

Liver

Ischemia Partial liver ischemia Intrasplenic injection Attenuation of hepatic injury Lin et al., 2013

Non-alcoholic fatty liver
disease

Intravenous tail injection Attenuation of lipid accumulation and oxidative
stress

Fu et al., 2017

Acetaminophen-induced liver
injury

Intravenous tail injection Attenuation of tissue injury and enhancement of
hepatocyte metabolism

Shi et al., 2018

Lungs

Experimental lung silicosis Intravenous injection of
MSCs or MSC-derived
exosomes

Reduction in the size of silicotic nodules, total
number of white blood cells in BALF, and
expression of inflammatory and pro-fibrotic genes
in the lung

Phinney et al., 2015

Acute lung ischemia-
reperfusion

Pulmonary artery injection
and nebulization

Improvement of lung mechanics and attenuation
of tissue injury

Moskowitzova et al.,
2020

Pulmonary fibrosis Intravenous tail injection of
MSCs

Mitigation of fibrotic progression Huang et al., 2021

Kidney

Renal artery stenosis Intra-arterially injection Improved perfusion and oxygenation, protective
effects on injured tubular cells

Zou et al., 2018

Diabetic
nephropathy

Streptozotocin-induced
diabetic rats

Injection under renal
capsule

Improved cellular morphology and structure of the
tubular basement membrane and brush border

Konari et al., 2019

CNS

Stroke Middle cerebral artery
occlusion

Intravenous injection Decrease of brain infarction area and partial
neurological status restoration

Babenko et al., 2015

Middle cerebral artery
occlusion

Injection into ischemic
striatum

Attenuation of brain infarction area and neuronal
death, restoration of motor performance

Huang et al., 2016

Middle cerebral artery
occlusion

Intravenous injection Restoration of neural function Babenko et al., 2018

Middle cerebral artery
occlusion

Intra-arterial injection of
MSCs

Improved mitochondrial function in peri-infarct
area and functional recovery

Wang et al., 2019

Middle cerebral artery
occlusion

Intracerebro-ventricular
injection

Promotion of neuroprotection, reduced brain
infarct size, induced neurogenesis

Zhang et al., 2019

PD Neurotoxin 6-
hydroxydopamine induced PD

Medial forebrain bundle
injection

Attenuation of oxidative damage and degeneration
of dopaminergic neurons, and improved
locomotion

Chang et al., 2016
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into the pre-frontal cortex of young rats prevented the loss of
mitochondrial potential of brain cells and attention deficit in
adulthood (Robicsek et al., 2018).

Besides mitotherapy, there are indirect approaches to stimulate
HMT into damaged cells by delivery of efficient mitochondrial

donors, such as MSCs that, once in close proximity, transfer mito-
chondria to recipient cells by ECVs or TNTs. Application of induced
pluripotent stem cell-derived MSCs resulted in Miro1-dependent
transfer of mitochondria, rescuing anthracycline-exposed CMs
(Zhang et al., 2016). Administration of MSCs into lungs improved

Table 3. Pathologies where mitochondrial transfer (or its blockage) has therapeutic impact (Continued)

Pathology Experimental model Route of
administration*

Result Reference

Neurotoxin MPTP induced PD Intravenous injection Reduction of neuronal death and attenuation of
damage by ROS and improved behavioral
symptoms

Shi et al., 2018

Schizophrenia Poly-I:C induced schizophrenia Prefrontal cortex injection Prevention of the loss of brain Δψm and attention
deficit in adulthood

Robicsek et al., 2018

AD AD model produced by the
intra-cerebro-ventricular
injection of Aβ peptide

Intravenous injection (tail) Attenuation of neuronal loss and reactive gliosis,
restoration of cognitive deficits

Nitzan et al., 2019

Depression LPS-induced model of
depression

Intravenous injection Improved symptoms such as exploratory behavior
and promotion of neurogenesis, antidepressant-
like effects

Wang et al., 2019

Aging Aged mice (18 mo) Intravenous injection (tail) Significant improvement of cognitive and motor
performance of aged mice

Liu et al., 2019

Spinal cord Spinal cord injury Mediolateral gray matter of
injury site

Maintenance of acute bioenergetics, functional
recovery

Zhao et al., 2020

Spinal cord ischemia Intravenous injection
(jugular)

Improved hindlimb motor function Feng et al., 2019;
Gollihue et al., 2018

Spinal cord injury Injected into the epicenter
of the injured spinal cord

Improved locomotor functional recovery Li et al., 2019

Glaucoma Optic nerve crush Intravitreal injection Promoted short-term neuroprotection (14 d) to
retinal ganglion cells and modulated retinal
oxidative metabolism; importantly, mitochondria
also increased the number of axons extending
ahead of the injury site in a long-term period (28 d)

McCully et al., 2017

Retinal ganglion cell
degeneration

Ndufs4 knockout mouse model Vitreous cavity injection Protection against mitochondrial damage-induced
retinal ganglion cell loss

Jiang et al., 2019

Corneal injury Alkaline burn-induced corneal
damage

Transplantation of MSC
scaffold to the center of
the cornea

Improved corneal wound healing Jiang et al., 2016

Cancer

Melanoma lung metastasis Intravenous tail injection Retardation of tumor growth and prolonged
animal survival

Fu et al., 2019

MM Intravenous injection of
CD38 myeloma cells

Targeting of CD38 reduced significantly
mitochondrial transfer and improved animal
survival

Marlein et al., 2019

Glioma cell (U87) xenograft
tumors

Injection into xenograft Inhibited glioma growth, enhanced radiosensitivity
of gliomas

Sun et al., 2019

Embryonic
development

In vitro blastocyst stage
development

Injection into zygotes Improved embryonic development Yi et al., 2007

Tissue injury Full-thickness cutaneous
wound and dystrophic skeletal
muscle

Engraftment of MSCs and
platelets into the wound
area

Enhanced therapeutic efficacy of MSCs Levoux et al., 2021

BM transplantation
(BMT)

Total body irradiation as a
preconditioning mechanism
before BMT

Intravenous tail injection of
BM cells

Rapid recovery of BM microenvironment,
improved hematopoietic reconstitution after BMT

Golan et al., 2020

*administration of mitochondria unless stated otherwise
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the outcome of LPS- and oxidative stress–induced lung injury
(Islam et al., 2012; Li et al., 2018), allergic inflammation (Ahmad
et al., 2014), and asthma (Yao et al., 2018). Mitochondria mobilized
from mesenchymal stromal cells have beneficial effect on β cells,
linking HMT and the metabolic syndrome (Rackham et al., 2020).
Promising results of HMT were also observed in a model of AD
(Nitzan et al., 2019) and wound healing (Levoux et al., 2021).

That HMT has a wide range of applications can be epitomized
by two recent studies. Iron oxide nanoparticles enhanced for-
mation of Cx43-containing gap junctions and increased the rate
of HMT from administered MSCs in a model of pulmonary fi-
brosis (Huang et al., 2021); and exposure to hyperbaric oxygen
led to amelioration of inflammation involving HMT (Lippert and
Borlongan, 2019).

Conclusions and future directions
Since the discovery of HMT in vitro (Rustom et al., 2004) and
in vivo in mouse models of lung damage (Islam et al., 2012;
Ahmad et al., 2014), and in tumormodels where we usedmtDNA
polymorphisms and somatic cells from transgenic mice with
RFP-decorated mitochondria (Tan et al., 2015; Dong et al., 2017),
research on HMT has gainedmomentum. Initial in vivo research
focused on the role of HMT in cancer and its functional con-
sequences (Tan et al., 2015; Bajzikova et al., 2019) and possible
modulation of resistance to cancer therapy (Osswald et al., 2015;
Moschoi et al., 2016), and later on regulation of cancer-related
immune responses (Saha et al., 2022). Role of HMT has been
reported for a wide array of (patho)physiological conditions
such as cardiovascular diseases, metabolic syndrome–related
pathologies, and wound healing (Nicolas-Avila et al., 2020;
Crewe et al., 2021; Levoux et al., 2021; Rackham et al., 2020). It is
likely that HMT also occurs under natural conditions, as shown
for outbred mice, with the idea being that regular exchange of
mitochondria between cells contributes to maintaining balanced
heteroplasmy (Jayaprakash et al., 2015), or during mouse de-
velopment (Marti Gutierrez et al., 2022), which is important for
homeostasis (Jackson et al., 2020) that may involve mitochon-
drial respiration-linked remodeling (Bennett et al., 2022). More
research is needed to explore the role of HMT as a process in
normal development and tissue homeostasis, in particular re-
garding the control of mtDNA heterogeneity. This is complicated
because the vast majority of experimental animals are inbred
with very limited mtDNA heteroplasmy.

Heterogeneity, mutations, and deletions inmtDNA have been
implicated in a wide range of diseases, frequently involving
neurodegenerative/neuromuscular pathologies (Burté et al.,
2015; Lightowlers et al., 2015; Area-Gomez et al., 2019; Monzio
Compagnoni et al., 2020; Ng et al., 2021). It is plausible that
mitochondrial therapy, by stimulation of HMTor bymitochondrial
transplantation, may be effective in alleviating pathologies, with
neurodegenerative or cardiovascular diseases being “hot” candi-
dates for the emerging therapeutic modality (Emani and McCully,
2018; Picard et al., 2016; Caicedo et al., 2017; Chang et al., 2019;
McCully et al., 2017; Nascimento-Dos-Santos et al., 2021; Gorman
et al., 2018). Mitochondrial transplantation has been used to re-
place faulty maternal mitochondrial genes (Gorman et al., 2018;
Jacoby et al., 2022). We have witnessed considerable progress in

mitotherapy based on mitochondrial transplantation including
sophisticated approaches such as transfer of mitochondria from
fetal to adult MSCs using optical tweezers (Shakoor et al., 2021).
Mitotherapy has been boosted by the discovery of the so called
MitoCeption that allows for controlled delivery of mitochondria
isolated from donor cells (Caicedo et al., 2015; Sercel et al., 2021).

Faster implementation of mitotherapy, in particular based on
HMT, is hindered due to methodological limitations. Unequivocal
evidence for acquisition of mitochondria in vivo was provided by
stable homoplasmic polymorphisms in mtDNA (Tan et al., 2015),
known to occur in inbred mouse tumor models (Bayona-Bafaluy
et al., 2003). Another problem in studying the molecular mecha-
nisms and regulation of HMT is its visualization. This is nowmore
facile by cutting-edge microscopic techniques, such as total in-
ternal reflection fluorescence microscopy (Henrichs et al., 2020),
iterative tomography (Wu et al., 2021a), or multiview confocal
super-resolution microscopy (Wu et al., 2021b), in particular in
combination with genetically encoded fluorescent proteins deco-
rating mitochondria (Barrasso et al., 2018).

Almost 20 yr after the discovery of mitochondrial transfer
in vitro (Rustom et al., 2004) and <10 yr after the first un-
equivocal report of HMT in mouse tumor models (Tan et al.,
2015), there is considerable momentum indicating that this
very interesting and paradigm-shifting understanding of basic
cell biology will be translated into therapeutic strategies that
will alleviate multiple hard-to-treat pathologies. Of these, mi-
tochondrial diseases linked to pediatric maladies and neurolog-
ical pathologies are likely to be early candidates. We anticipate
that what started as intriguing basic research will soon be
translated for the benefit of mankind.
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Burté, F., V. Carelli, P.F. Chinnery, and P. Yu-Wai-Man. 2015. Disturbed
mitochondrial dynamics and neurodegenerative disorders. Nat. Rev.
Neurol. 11:11–24. https://doi.org/10.1038/nrneurol.2014.228

Caicedo, A., V. Fritz, J.M. Brondello, M. Ayala, I. Dennemont, N. Abdellaoui, F.
de Fraipont, A. Moisan, C.A. Prouteau, H. Boukhaddaoui, et al. 2015.
MitoCeption as a new tool to assess the effects of mesenchymal stem/
stromal cell mitochondria on cancer cell metabolism and function. Sci.
Rep. 5:9073. https://doi.org/10.1038/srep09073

Caicedo, A., P.M. Aponte, F. Cabrera, C. Hidalgo, and M. Khoury. 2017. Ar-
tificial mitochondria transfer: Current challenges, advances, and future
applications. Stem Cells Int. 2017:7610414. https://doi.org/10.1155/2017/
7610414

Chang, J.C., S.L. Wu, K.H. Liu, Y.H. Chen, C.S. Chuang, F.C. Cheng, H.L. Su,
Y.H. Wei, S.J. Kuo, and C.S. Liu. 2016. Allogeneic/xenogeneic trans-
plantation of peptide-labeled mitochondria in Parkinson’s disease:
Restoration of mitochondria functions and attenuation of 6-hydrox-
ydopamine-induced neurotoxicity. Transl. Res 170:40–56.e3. https://doi
.org/10.1016/j.trsl.2015.12.003

Chang, C.-Y., M.-Z. Liang, and L. Chen. 2019. Current progress of mito-
chondrial transplantation that promotes neuronal regeneration. Transl.
Neurodegener. 8:17. https://doi.org/10.1186/s40035-019-0158-8

Chen, Y.H., C.C. Su, W. Deng, L.F. Lock, P.J. Donovan, M.A. Kayala, P. Baldi,
H.C. Lee, Y. Chen, and P.H. Wang. 2019. Mitochondrial Akt signaling
modulated reprogramming of somatic cells. Sci. Rep. 9:9919. https://doi
.org/10.1038/s41598-019-46359-6

Chinnery, H.R., and K.E. Keller. 2020. Tunneling nanotubes and the eye:
Intercellular communication and implications for ocular health and
disease. Biomed. Res. Int. 2020:7246785. https://doi.org/10.1155/2020/
7246785

Cho, Y.M., J.H. Kim,M. Kim, S.J. Park, S.H. Koh, H.S. Ahn, G.H. Kang, J.B. Lee,
K.S. Park, and H.K. Lee. 2012. Mesenchymal stem cells transfer mito-
chondria to the cells with virtually no mitochondrial function but not
with pathogenic mtDNAmutations. PLoS One. 7:e32778. https://doi.org/
10.1371/journal.pone.0032778

Chou, S.H., J. Lan, E. Esposito, M. Ning, L. Balaj, X. Ji, E.H. Lo, and K. Hay-
akawa. 2017. Extracellular mitochondria in cerebrospinal fluid and
neuro-logical recovery after subarachnoid hemorrhage. Stroke. 48:
2231–2237. https://doi.org/10.1161/STROKEAHA.117.017758

Chuang, Y.C., C.W. Liou, S.D. Chen, P.W. Wang, J.H. Chuang, M.M. Tiao, T.Y.
Hsu, H.Y. Lin, and T.K. Lin. 2017. Mitochondrial transfer from Whar-
ton’s jelly mesenchymal stem cell to MERRF cybrid reduces oxidative
stress and improves mitochondrial bioenergetics. Oxid. Med. Cell. Lon-
gev. 2017:5691215. https://doi.org/10.1155/2017/5691215

Cocucci, E., and J. Meldolesi. 2015. Ectosomes and exosomes: Shedding the
confusion between extracellular vesicles. Trends Cell Biol. 25:364–372.
https://doi.org/10.1016/j.tcb.2015.01.004

Conner, S.D., and S.L. Schmid. 2003. Regulated portals of entry into the cell.
Nature. 422:37–44. https://doi.org/10.1038/nature01451

Course, M.M., and X. Wang. 2016. Transporting mitochondria in neurons.
F1000 Res. 5:1735. https://doi.org/10.12688/f1000research.7864.1

Couvillion, M.T., I.C. Soto, G. Shipkovenska, and L.S. Churchman. 2016.
Synchronized mitochondrial and cytosolic translation programs. Na-
ture. 533:499–503. https://doi.org/10.1038/nature18015

Cowan, D.B., R. Yao, V. Akurathi, E.R. Snay, J.K. Thedsanamoorthy, D. Zur-
akowski, M. Ericsson, I. Friehs, Y. Wu, S. Levitsky, et al. 2016. Intra-
coronary delivery of mitochondria to the ischemic heart for
cardioprotection. PLoS One. 11:e0160889. https://doi.org/10.1371/journal
.pone.0160889

Crewe, C., J.B. Funcke, S. Li, N. Joffin, C.M. Gliniak, A.L. Ghaben, Y.A. An, H.A.
Sadek, R. Gordillo, Y. Akgul, et al. 2021. Extracellular vesicle-based in-
terorgan transport ofmitochondria from energetically stressed adipocytes.
Cell Metabol. 33:1853–1868.e11. https://doi.org/10.1016/j.cmet.2021.08.002

Cselenyak, A., E. Pankotai, E.M. Horvath, L. Kiss, and Z. Lacza. 2010. Me-
senchymal stem cells rescue cardiomyoblasts from cell death in an
in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biol.
11:29. https://doi.org/10.1186/1471-2121-11-29

Cusulin, C., E. Monni, H. Ahlenius, J. Wood, J.C. Brune, O. Lindvall, and Z.
Kokaia. 2012. Embryonic stem cell-derived neural stem cells fuse with
microglia and mature neurons. Stem Cells. 30:2657–2671. https://doi
.org/10.1002/stem.1227

D’Souza, A., A. Burch, K.M. Dave, A. Sreeram, M.J. Reynolds, D.X. Dobbins,
Y.S. Kamte, W. Zhao, C. Sabatelle, J.M. Joy, et al. 2021. Microvesicles

transfer mitochondria and increase mitochondrial function in brain
endothelial cells. J. Contr. Release. 338:505–526. https://doi.org/10.1016/j
.jconrel.2021.08.038

Davis, C.H., K.Y. Kim, E.A. Bushong, E.A. Mills, D. Boassa, T. Shih, M. Kin-
ebuchi, S. Phan, Y. Zhou, N.A. Bihlmeyer, et al. 2014. Transcellular
degradation of axonal mitochondria. Proc. Natl. Acad. Sci. USA. 111:
9633–9638. https://doi.org/10.1073/pnas.1404651111

Dejana, E. 2004. Endothelial cell-cell junctions: Happy together.Nat. Rev. Mol.
Cell Biol. 5:261–270. https://doi.org/10.1038/nrm1357

Dickinson, A., K.Y. Yeung, J. Donoghue, M.J. Baker, R.D. Kelly, M. McKenzie,
T.G. Johns, and J.C. St John. 2013. The regulation of mitochondrial DNA
copy number in glioblastoma cells. Cell Death Differ. 20:1644–1653.
https://doi.org/10.1038/cdd.2013.115

Diebold, L.P., H.J. Gil, P. Gao, C.A. Martinez, S.E. Weinberg, and N.S. Chandel.
2019. Mitochondrial complex III is necessary for endothelial cell pro-
liferation during angiogenesis. Nat. Metab. 1:158–171. https://doi.org/10
.1038/s42255-018-0011-x

Domhan, S., L. Ma, A. Tai, Z. Anaya, A. Beheshti, M. Zeier, L. Hlatky, and A.
Abdollahi. 2011. Intercellular communication by exchange of cytoplas-
mic material via tunneling nano-tube like structures in primary human
renal epithelial cells. PLoS One. 6:e21283. https://doi.org/10.1371/journal
.pone.0021283

Dong, L.F., J. Kovarova, M. Bajzikova, A. Bezawork-Geleta, D. Svec, B. Endaya, K.
Schaphibulkij, A. Coelho, N. Sebkova, A. Ruzickova, et al. 2017. Horizontal
transfer of wholemitochondria recovers tumorigenic potential inmtDNA-
deficient cells. Elife. 6:e22187. https://doi.org/10.7554/eLife.22187

Doulamis, I.P., A. Guariento, T. Duignan, A. Orfany, T. Kido, D. Zurakowski,
P.J. Del Nido, and J.D. McCully. 2020. Mitochondrial transplantation for
myocardial protection in diabetic hearts. J. Cardio-Thoracic Surg. 57:
836–845. https://doi.org/10.1093/ejcts/ezz326

Doyle, L.M., and M.Z. Wang. 2019. Overview of extracellular vesicles, their
origin, composition, purpose, and methods for exosome isolation and
analysis. Cells. 8:727. https://doi.org/10.3390/cells8070727
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2021. Selective packaging of mitochondrial proteins into extracellular
vesicles prevents the release of mitochondrial DAMPs.Nat. Commun. 12:
1971. https://doi.org/10.1038/s41467-021-21984-w

Tomasetti, M., W. Lee, L. Santarelli, and J. Neuzil. 2017. Exosome-derived
microRNAs in cancer metabolism: Possible implications in cancer di-
agnostics and therapy. Exp. Mol. Med. 49:e285. https://doi.org/10.1038/
emm.2016.153

Torralba, D., F. Baixauli, and F. Sánchez-Madrid. 2016. Mitochondria know no
boundaries: Mechanisms and functions of intercellular mitochondrial
transfer. Front. Cell Dev. Biol 4:107. https://doi.org/10.3389/fcell.2016.00107

Tseng, N., S.C. Lambie, C.Q. Huynh, B. Sanford, M. Patel, P.S. Herson, and
D.R. Ormond. 2021. Mitochondrial transfer from mesenchymal stem
cells improves neuronal metabolism after oxidant injury in vitro: The
role of Miro1. J. Cereb. Blood Flow Metab. 41:761–770. https://doi.org/10
.1177/0271678X20928147

Valdebenito, S., S. Malik, R. Luu, O. Loudig, M. Mitchell, G. Okafo, K. Bhat, B.
Prideaux, and E.A. Eugenin. 2021. Tunneling nanotubes, TNT, com-
municate glioblastomawith surrounding non-tumor astrocytes to adapt
them to hypoxic and metabolic tumor conditions. Sci. Rep. 11:14556.
https://doi.org/10.1038/s41598-021-93775-8

Valenti, D., R.A. Vacca, L.Moro, andA. Atlante. 2021.Mitochondria can cross cell
boundaries: An overview of the biological relevance, pathophysiological
implications and therapeutic perspectives of intercellular mitochondrial
transfer. Int. J. Mol. Sci. 22:8312. https://doi.org/10.3390/ijms22158312

Vallabhaneni, K.C., H. Haller, and I. Dumler. 2012. Vascular smooth muscle
cells initiate proliferation of mesenchymal stem cells by mitochondrial
transfer via tunneling nanotubes. Stem Cells Dev. 21:3104–3113. https://
doi.org/10.1089/scd.2011.0691

van Solinge, T.S., L. Nieland, E.A. Chiocca, and M.L.D. Broekman. 2022.
Advances in local therapy for glioblastoma - taking the fight to the
tumour. Nat. Rev. Neurol. 18:221–236. https://doi.org/10.1038/s41582
-022-00621-0

Vander Heiden, M.G., L.C. Cantley, and C.B. Thompson. 2009. Understanding
the warburg effect: The metabolic requirements of cell proliferation.
Science. 324:1029–1033. https://doi.org/10.1126/science.1160809

Veranic, P., M. Lokar, G.J. Schütz, J. Weghuber, S. Wieser, H. Hägerstrand, V.
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