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Abstract Human mitochondrial (mt) ATP synthase, or
complex V consists of two functional domains: F1, situated
in the mitochondrial matrix, and Fo, located in the inner
mitochondrial membrane. Complex V uses the energy
created by the proton electrochemical gradient to phos-
phorylate ADP to ATP. This review covers the architecture,
function and assembly of complex V. The role of complex
V di-and oligomerization and its relation with mitochon-
drial morphology is discussed. Finally, pathology related to
complex V deficiency and current therapeutic strategies are
highlighted. Despite the huge progress in this research field
over the past decades, questions remain to be answered
regarding the structure of subunits, the function of the
rotary nanomotor at a molecular level, and the human
complex V assembly process. The elucidation of more
nuclear genetic defects will guide physio(patho)logical
studies, paving the way for future therapeutic interventions.

Mitochondrial ATP production is the main energy source
for intracellular metabolic pathways (Schapira 2006). The
human mitochondrial (mt) ATP synthase, or complex V (EC
3.6.3.14) is the 5th multi subunit oxidative phosphorylation
(OXPHOS) complex. It synthesizes ATP from ADP in the
mitochondrial matrix using the energy provided by the
proton electrochemical gradient (Capaldi et al. 1994;

Nijtmans et al. 1995; Zeviani and Di Donato 2004). To
date, numerous mutations in the mtDNA encoded subunits
a and A6L have been found, next to mutations in a
structural subunit (subunit epsilon, (Mayr et al. 2010)), an
assembly factor (ATP12, (De Meirleir et al. 2004)) and an
ancillary factor (TMEM70, (Cizkova et al. 2008)) which
are nuclear-encoded. Most of these mutations give rise to
severe mitochondrial disease phenotypes, ranging from
NARP (Neuropathy, Ataxia, and Retinitis Pigmentosa) or
MILS (Maternally Inherited Leigh Syndrome) for subunit a
mutations to neonatal mitochondrial encephalo(cardio)my-
opathy and dysmorphic features in patients with an ATP12
or TMEM70 gene mutation (De Meirleir et al. 2004;
Cizkova et al. 2008). In this article, we have aimed to
review the 5th OXPHOS complex with respect to architec-
ture, function, assembly, pathology, current therapeutic
options and future perspectives. The structure and, intrigu-
ingly, the oligomerization of complex V determine its
function, the former by the so-called “rotary catalysis”
(Devenish et al. 2008) and the latter by influencing
mitochondrial and cristae morphology (Strauss et al.
2008), as will be discussed below.

ATP synthase: architecture (Fig. 1)

ATP synthase consists of two well defined protein entities:
the F1 sector, a soluble portion situated in the mitochondrial
matrix, and the Fo sector, bound to the inner mitochondrial
membrane. F1 is composed of three copies of each of
subunits α and β, and one each of subunits γ, δ and ε. F1
subunits γ, δ and ε constitute the central stalk of complex
V. Fo consists of a subunit c-ring (probably comprising eight
copies, as shown in bovine mitochondria (Watt et al. 2010))
and one copy each of subunits a, b, d, F6 and the
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oligomycin sensitivity-conferring protein (OSCP). Subunits b,
d, F6 and OSCP form the peripheral stalk which lies to one
side of the complex. A number of additional subunits (e, f, g,
and A6L), all spanning the membrane, are associated with Fo
(Walker and Dickson 2006; Devenish et al. 2008). Two of the
Fo subunits, subunit a and subunit A6L are encoded by the
mtDNA ATP6 and ATP8 genes, respectively (Anderson et al.
1981). The detailed structure of most of the bovine
mitochondrial complex V subunits, which will not be
covered in this review, has been resolved by X-ray
crystallography by John Walker and his group (see, among
others, (Stock et al. 1999; Gibbons et al. 2000; Cabezon et
al. 2001; Arechaga et al. 2002; Cabezon et al. 2003; Dickson
et al. 2006; Walker and Dickson 2006; Rees et al. 2009)).

For comparison, the subunit composition of human,
yeast and E. coli ATP synthase is presented in Table 1
(Kucharczyk et al. 2009a, b, c; Watt et al. 2010).

How structure relates to function: the rotary F1Fo ATP
synthase

The function of ATP synthase is to synthesize ATP from
ADP and inorganic phosphate (Pi) in the F1 sector. This is
possible due to energy derived from a gradient of protons
which cross the inner mitochondrial membrane from the
intermembrane space into the matrix through the Fo portion
of the enzyme. The proton gradient establishes a proton-

motive force, which has two components: a pH differential
and an electrical membrane potential (Δψm) (Campanella
et al. 2009). The released energy causes rotation of two
rotary motors: the ring of c subunits in Fo (Cox et al. 1984)
(relative to subunit a), along with subunits γ, δ and ε in F1
(Boyer and Kohlbrenner 1981), to which it is attached.
Protons pass Fo via subunit a to the c-ring (Wittig and
Schagger 2008). Rotation of subunit γ within the F1 α3β3

hexamer provides energy for ATP synthesis. This is called
“rotary catalysis” (Devenish et al. 2008) and can be
explained by the “binding-change” mechanism, first pro-
posed by Boyer (Boyer 1975). This mechanism describes
ATP synthesis and ATP hydrolysis at the catalytic sites, located
in each of the three β subunits, at the interface with an
adjacent α subunit. In the case of ATP synthesis, each site
switches cooperatively through conformations in which ADP
and Pi bind, ATP is formed, and then released. ATP
hydrolysis uses the same pathway, but in reverse (Adachi et
al. 2007). These transitions are caused by rotation of the γ
subunit. The α3β3 hexamer must remain fixed relative to
subunit a during catalysis, this occurs through the peripheral
stalk. Complex V can therefore mechanically be divided into
“rotor” (c-ring, γ, δ, ε) and “stator” (α3β3, a, b, d, F6,
OSCP) components (Devenish et al. 2008).

Table 1 Subunit composition of human, yeast and E. coli ATP
synthase (Kucharczyk et al. 2009a, b, c; Watt et al. 2010)

Stoichiometry Bacteria Mitochondria

E. coli S. cerevisiae H. sapiens

F1 3 α α α

3 β β β

1 γ γ γ

1 ε δ δ

1 - ε ε

1 δ OSCP OSCP

Fo 1 a 6 a

1 - 8 A6L

10-15 c10-12 910 c8
1-2 b2 4 b

1 - d d

1 - h F6
1 - f f

t.b.d. - e e

t.b.d. - g g

1 - i -

1 - k -

Regulators 1 - Inh1p IF1
t.b.d. - Stf1p -

t.b.d. - Stf2p -

t.b.d.: to be determined

Fig. 1 Human mitochondrial ATP synthase, or complex V, consists of
two functional domains, F1 and Fo. F1 comprises 5 different subunits
(three α, three β, and one γ, δ and ε) and is situated in the
mitochondrial matrix. Fo contains subunits c, a, b, d, F6, OSCP and the
accessory subunits e, f, g and A6L. F1 subunits γ, δ and ε constitute
the central stalk of complex V. Subunits b, d, F6 and OSCP form the
peripheral stalk. Protons pass from the intermembrane space to the
matrix through Fo, which transfers the energy created by the proton
electrochemical gradient to F1, where ADP is phosphorylated to ATP.
One β subunit is taken out to visualize the central stalk
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Oligomycin is an inhibitor of proton translocation in ATP
synthase, putatively binding the Fo subunits a and c
(Devenish et al. 2000).

F1Fo ATP synthases, or F-type ATPases, belong to a
bigger rotor protein family, consisting of F-, V-, and A-type
ATPases (Cross and Muller 2004; Lee et al. 2010). The
different ATPases are categorized on the basis of their
function and taxonomic origin. They are related in both
structure and mechanism (Toei et al. 2010). F-type ATPases
synthesize ATP, but are also capable of the reversed reaction
and can hydrolyze ATP. Vacuolar or V-type ATPases use the
energy derived from ATP hydrolysis to pump protons
through membranes (Lee et al. 2010). V-ATPases are localized
to intracellular membranes where they acidify intracellular
compartments (e.g., lysosomes). They also lie in the plasma
membrane, to transport protons out of highly specialized cells,
like kidney cells or osteoclasts (Toei et al. 2010). Eukaryotes
contain both F- and V-ATPases. In contrast, archaea typically
contain only one complex which is evolutionarily closer to V-
ATPases, called A-ATPase/synthase (Lee et al. 2010). A-
ATPases are structurally simpler than F- or V-ATPases, but
functionally more versatile, performing both ATP synthesis
and ATP hydrolysis (Lee et al. 2010). F-type ATP synthases
contain only one peripheral stalk, while A- and V-ATPases
have two and three peripheral stalks, respectively, each made
of an E-G heterodimer (Lee et al. 2010).

Proteins related to mammalian ATP synthase

Coupling factors: the inhibitor protein IF1 and factor B

In normally respiring mitochondria, Δψm is high (estimat-
ed at between 150 and 180 mV negative to the cytosol),
favoring ATP synthesis by F1Fo ATP synthase (Campanella
et al. 2009). However, when mitochondrial respiration is
compromised and Δψm falls below a threshold, F1Fo ATP
synthase can reverse, hydrolyzing ATP to pump protons
through the membrane. Since depletion of ATP precipitates
cell death, wasteful hydrolysis of ATP is not desirable, and
must be prevented during inhibition of respiration (Devenish
et al. 2008). This regulation is carried out by the inhibitor
protein IF1, which inhibits mitochondrial F1-ATPase activity
(Pullman and Monroy 1963) in a pH-dependent manner (Van
Heeke et al. 1993). The active form predominates at pH
values<6.5 (Cabezon et al. 2000). IF1 conserves ATP at the
expense of Δψm, which has been shown to be protective to
cells during ischemia (Campanella et al. 2008, 2009). IF1
acts as a homodimer, binding to two F1-ATPase sectors via
subunits β and γ. IF1 has no prokaryotic counterpart but is
highly conserved through evolution in eukaryotic species,
which indicates its functional importance (Campanella et al.
2009). Remarkably, an increased IF1 expression - as found in

certain tumors and cancer cells – will inhibit both the
synthetic and hydrolytic activities of complex V (Sanchez-
Cenizo et al. 2010).

Factor B, which has no prokaryotic homologue nor a
counterpart in Saccharomyces cerevisiae, appears to bind to
Fo on the matrix side (Belogrudov and Hatefi 2002). It
seems to have a regulatory function, like IF1. In addition to
the classic proton-translocating pathway in Fo, situated at
the interface of subunit a and the c-ring, it has been
proposed that the membrane sector Fo of animal mitochon-
dria could harbor a second, latent proton-translocating
pathway, to the assembly of which supernumerary subunits
e, f, g, and A6L, as well as the ADP/ATP carrier could
contribute their transmembrane segments (Belogrudov
2009). It has further been proposed that factor B occludes
the latent proton-translocating pathway (Belogrudov 2009).
Doing so, factor B blocks a proton leak, keeping Δψm high
and thus favoring ATP synthase activity (Belogrudov 2009).

Assembly factors: ATP11 and ATP12

ATP11 and ATP12 bind to unassembled β and α subunits,
respectively, by shielding their hydrophobic surfaces (Wang
et al. 2000; Ackerman 2002). In the absence of these
assembly factors, the α-F1 and β-F1 aggregate within large
inclusion bodies in the mitochondrial matrix (Ackerman
and Tzagoloff 1990; Lefebvre-Legendre et al. 2005).

TMEM70

Transmembrane protein 70 (TMEM70) has been shown to
be localized in mitochondria (Calvo et al. 2006). The N-
terminal part of the cytosolic 29 kDa precursor is cleaved to
a 21 kDa mature mitochondrial protein (Hejzlarova et al.
2011). Analysis of submitochondrial fractions has shown
that TMEM70 is associated with the inner mitochondrial
membrane (Hejzlarova et al. 2011). It has been demonstrat-
ed that TMEM70 is required to maintain normal expression
levels and activity of complex V (Cizkova et al. 2008). It
however does not interact directly with holocomplex V
(Hejzlarova et al. 2011). A transient binding to complex V
assembly intermediates has been proposed (Cameron et al.
2011). Since TMEM70 is a low abundant mitochondrial
protein, like the ATP11 and ATP12 assembly factors, a
regulatory role of TMEM70 in complex V biogenesis has
been suggested (Hejzlarova et al. 2011). Further studies are
necessary to clarify the exact mechanism by which
TMEM70 defects lead to complex V deficiency.

Proteins associated with mammalian ATP synthase

Two ATP synthase-associated membrane proteins were
identified a few years ago (Meyer et al. 2007). Both
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proteins had been identified earlier in a different context.
The first one is a 6.8-kDa mitochondrial proteolipid (MLQ
protein), the second one has been denoted as diabetes-
associated protein in insulin-sensitive tissue (DAPIT) (AGP
protein). It has been shown recently that DAPIT has a role
in maintaining ATP synthase amount in mitochondria and
therefore possibly can influence cellular energy metabolism
(Ohsakaya et al. 2011). The functional role of the 6.8-kDa
proteolipid as ATP synthase-associated protein still has to
be elucidated (Meyer et al. 2007).

Complex V assembly

Current knowledge about the assembly of ATP synthase is
mainly based on research performed on assembly-deficient
yeast mutants (Kucharczyk et al. 2009a, b, c). Nevertheless
complex V assembly remains puzzling and partially
hypothetical because the biogenesis of ATP synthase is
not easily studied biochemically (Rak et al. 2009). This is
due to rapid turnover of subunits of Fo and the stator in
these yeast mutants (Rak et al. 2009). This problem has
been addressed lately by labeling and tracking the mito-
chondrial gene products of Fo in isolated mitochondria (Rak
et al. 2011).

It is known that the assembly of F1, the stator and the c-
ring occurs separately, but the assembly sequence of subunits
into the different modules and the sequence between the
modules is not entirely clear (Velours and Arselin 2000;
Wittig et al. 2010). Using clear native polyacrylamide gel
electrophoresis (CN-PAGE), performed with milder deter-
gents than blue native PAGE (BN-PAGE), it has been shown
in human mitochondria lacking mtDNA (and therefore
subunits a and A6L) that ATP synthase can assemble into a
complex with a mass of 550 kDa (Wittig et al. 2010). This is
a little bit smaller than holocomplex V (597 kDa), suggesting
that the only subunits lacking in the 550 kDa complex are
subunit a (24.8 kDa) and A6L (8 kDa), and possibly the
small associated proteins AGP and MLQ (Wittig et al. 2010).
This implies that the so-called F1-z complex (or V*
(Nijtmans et al. 1995)) contains the c-ring and that it is a
breakdown product of the 550 kDa complex under the
harsher conditions of BN-PAGE instead of an assembly
intermediate (Wittig et al. 2010). Based on these findings and
on previous yeast work (reviewed in (Kucharczyk et al.
2009a, b, c; Rak et al. 2009)) a proposal regarding the
assembly of mammalian ATP synthase has been made:
assembly of the c-ring followed by binding of F1, the stator
arm, and finally of subunits a and A6L (Wittig et al. 2010)
(Fig. 2). A recent yeast study indicated that ATP synthase is

Fig. 2 Complex V assembly and dimerization. The current working
model is based on assembly of the c-ring followed by binding of F1,
the stator arm, and finally of subunits a and A6L. Two ATP synthase

monomers dimerize via the Fo sector, where subunits a, e, g, b and
A6L stabilize the monomer-monomer interface
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formed from three different modules: the c-ring, F1 and the
Atp6p/Atp8p complex (Rak et al. 2011). It is proposed that
ATP synthase assembly in yeast involves two separate
pathways (F1/Atp9p and Atp6p/Atp8p/2 stator subunits/
Atp10p chaperone) that converge at the end stage (Rak et
al. 2011). The final addition of the mitochondrial encoded
subunits to mammalian complex V is in line with the yeast
studies describing that the expression of yeast subunits 6 and
8 is translationally regulated by the F1 sector (Rak and
Tzagoloff 2009; Rak et al. 2011). Therefore a balanced
output can be achieved between the nuclear encoded and
mtDNA encoded subunits. The role of complex V subunits
in the assembly process has been studied. The peripheral
stalk is important for the stability of the c-ring/F1 complex
(Rak et al. 2009). It has been described that subunit A6L
provides a physical link between the proton channel and the
other subunits of the peripheral stalk (Stephens et al. 2003).
F1 subunit ε is indispensable for the assembly of holocom-
plex V (Havlickova et al. 2010). More specifically, subunit ε
plays a role in the biosynthesis and assembly of the F1 sector
and seems to be involved in the incorporation of subunit c to
the rotor structure of ATP synthase (Mayr et al. 2010).
Subunit c isoforms (P1, P2, and P3) are not functionally
interchangeable since their targeting peptides have different
roles, varying from mitochondrial import to the regulation of
the assembly and function of other OXPHOS complexes
(Vives-Bauza et al. 2010). On the contrary, an example of
over engineering is the F1 subunit γ, which only needs its N-
terminal helix together with subunit δ in an upward position
to catalyze ATP synthesis (Iino et al. 2009; Mnatsakanyan et
al. 2009).

Complex V di- and oligomerization

An important role of subunits a and A6L is the stabilization of
holocomplex V (Wittig et al. 2010). It has been shown that
ATP synthase is organized in dimers and higher oligomers
(Arnold et al. 1998; Schagger and Pfeiffer 2000; Arselin et al.
2003; Krause et al. 2005; Wittig and Schagger 2005; Thomas
et al. 2008; Wittig and Schagger 2008). The interaction
between two ATP synthase monomers mainly takes place via
the Fo sector (Fig. 2). It has been suggested that subunit a
forms the most important basis for dimerization since it has a
high number of predicted transmembrane helices (Wittig and
Schagger 2008). Next to subunit a, subunits of the stator stalk
and accessory subunits (e, g, b, and A6L) stabilize the
monomer-monomer interface (Bisetto et al. 2008; Wittig and
Schagger 2008; Wittig et al. 2010). Another protein that has a
role in the stabilization of di- and oligomers is IF1. Mature
IF1 is only bound to di- and oligomeric ATP synthase in
mammals (Wittig et al. 2010). IF1 links two ATP synthases
via the F1 sector (Devenish et al. 2008).

Monocomplex V is fully capable of ATP synthesis.
Nevertheless forming di- and oligomers has been proven
to be beneficial to the cell. First, di- and oligomers provide
stabilization of complex V, which is continuously subject to
dynamic rotor/ stator interactions and can therefore be
dissociated more easily (Wittig and Schagger 2009).
Secondly, oligomerization of complex V facilitates ATP
synthesis (Strauss et al. 2008). This happens because dimer
ribbons of ATP synthase shape the inner mitochondrial
membrane (Strauss et al. 2008). Because of the angular
association of two monomers, dimerization leads to
bending of the inner mitochondrial membrane, creating
protrusions of the membrane in the matrix, called mito-
chondrial cristae. Clustering of ATP synthase dimers at the
apex of the cristae creates a strong local positive curvature
which generates a proton trap. This facilitates ATP synthesis
(Strauss et al. 2008). IF1 contributes to this mechanism and
is therefore beneficial during ischemia, since ATP synthesis
can be preserved when mitochondrial respiration is com-
promised (Campanella et al. 2008, 2009).

Complex V and mitochondrial morphology

The association of ATP synthase dimers as generating the
tubular cristae has been hypothesized by Allen (Allen
1995). The link between dimerization of mitochondrial ATP
synthase, through subunits e, g, and –as described just
recently, subunits i, k, and the biogenesis of cristae has been
provided by studying yeast cells (Paumard et al. 2002;
Thomas et al. 2008; Wagner et al. 2010). Due to cristae
formation, the inner mitochondrial membrane can be
divided into the inner boundary membrane and the cristae
membrane. The cristae are connected to the inner boundary
membrane by narrow structures, called crista junctions. In
yeast, it has been suggested that the formation of cristae and
crista junctions in mitochondria depends on antagonism
between Fcj1 (formation of crista junction 1) and subunits
e/g (Rabl et al. 2009). IF1 contributes to cristae formation
(Campanella et al. 2008). Other components such as
prohibitins or OPA1 or others yet to be identified also
could contribute to crista junction and cristae tip formation
(Rabl et al. 2009; Zick et al. 2009).

It has been shown in yeast that in the absence of
complex V dimerization (by depleting subunits e and g)
normal cristae formation is hampered, resulting in onion-
like structures (Paumard et al. 2002). Inhibition of F1
synthesis in yeast leads to an absence of cristae (Paumard et
al. 2002; Lefebvre-Legendre et al. 2005). Another yeast
study describes that the lack of Atp6p rather than an ATP
production deficit modifies the overall structure of the
mitochondria (Kucharczyk et al. 2009a, b, c). Taken
together, the complex V structure and not its enzymatic
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activity seems to modify cristae morphology, which is in
agreement with the necessity of ATP synthase dimerization
for mitochondrial cristae formation (Paumard et al. 2002;
Campanella et al. 2008; Strauss et al. 2008).

Complex V deficiency

Complex V deficiency is one of the rarer OXPHOS
deficiencies. Based on the results of mitochondrial bio-
chemical diagnostics in Nijmegen in the years 2005-2009,
complex I, IV and combined enzyme deficiencies are
encountered most frequently (8%, 5% and 7%, respectively
of 1,406 fresh muscle samples examined), followed by
complex III (3%), complex II (2%) and complex V (1%)
(Rodenburg 2011).

Biochemical diagnosis

Measurement of the mitochondrial energy-generating sys-
tem (MEGS) capacity in fresh muscle tissue is a powerful
tool to assess mitochondrial function and to detect
deficiencies of complex V and other OXPHOS complexes.
The MEGS capacity can be examined in detail by
measurement of 14CO2 production rates from oxidation of
[1-14C]pyruvate and carboxyl-14C-labeled TCA cycle inter-
mediates in combination with measurement of ATP pro-
duction in intact mitochondria from a muscle biopsy
(Janssen et al. 2006), or by examining mitochondrial
respiration by measuring oxygen consumption in
digitonin-permeabilized cells (Jonckheere et al. 2010). A
reduced pyruvate oxidation rate that is normalized by
addition of an uncoupler, e.g. carbonyl cyanide 3-
chlorophenyl hydrazone (CCCP), indicates a defect in
complex V, the adenine nucleotide transporter, or the
phosphate carrier (Rodenburg 2011). Enzyme analysis of
complex V (mtATPase) in skeletal muscle biopsy and in
cultured fibroblasts remains the mainstay of the diagnostic
process (Janssen et al. 2003). In Nijmegen, mtATPase
activity is measured spectrophotometrically in isolated
mitochondria from fresh muscle tissue and fibroblasts as
described (Rodenburg 2011): a solution of 980 μl contain-
ing 250 mM sucrose, 50 mM KCl, 30 mM phosphate buffer
pH 7.4, 25 mM phosphate buffer pH 8.0, 0.1 mM
phosphoenolpyruvate, 5 mg/L Ap5A, 0.3% BSA, 0.2 mM
EGTA, 3 mM ATP, 7.5 mM MgCl2, 250 μM NADH, 2.5 U/
ml lactate dehydrogenase, and 1.5 U/ml pyruvate kinase is
incubated for 10 min at 37°C. A mitochondrial suspension
is freeze-thawed three times and 20 μl is added to the
reaction mixture, mixed and transferred to a cuvette, after
which the absorption at 340 nm is measured for 8 min.
Simultaneously, the absorption is measured in a second
cuvette after addition of 1 μl of an 8 mg/ml oligomycin

solution in ethanol to the mitochondrial suspension and the
reaction mixture. The oligomycin-sensitive activity of
complex V is calculated using an ε340 for NADH of
6.22×103 L/mol.cm and is expressed in units (the amount
of enzyme required to convert 1 μmol NADH per min) per
unit cytochrome oxidase (COX) (Cooperstein and Lazarow
1951) activity. Analysis of complex V in frozen tissue is
considered to be less reliable than in fresh muscle tissue
((Kirby et al. 2007), and personal experience (data not
shown)). In addition, BN-PAGE followed by western
blotting (Schagger and von Jagow 1991; Nijtmans et al.
2002) and in-gel activity measurements of ATP hydrolysis
(Nijtmans et al. 2002) can be performed to assess the
amount and activity of complex V. BN-PAGE can also
provide information about the assembly of complex V
(Cizkova et al. 2008; Jonckheere et al. 2008).

Molecular genetics

Hitherto, complex V mutations have been described in the
mtDNA encoded ATP6 (MT-ATP6) and ATP8 (MT-ATP8)
genes. ATP synthase deficiency due to the nuclear encoded
ATP12 and TMEM70 genes has also been described (De
Meirleir et al. 2004; Cizkova et al. 2008). Interestingly, only
one mutation has hitherto been described in a nuclear
encoded structural complex V subunit, ATP5E (Mayr et al.
2010).

ATP synthase subunit a; MT-ATP6 (MIM ID +516060)

Mutations in MT-ATP6 were the first complex V genetic
defects to be reported (Holt et al. 1990) and have been
described most frequently to date. The classical clinical
picture is found in m.8993T>G/C and m.9176T>G/C
mutations and covers a spectrum which varies between
isolated ataxia, NARP, bilateral striatal necrosis, to Leigh or
Leigh-like syndromes (www.mitomap.org). Also other
clinical features have been associated with MT-ATP6
mutations (www.mitomap.org). Below, an overview of a
part of the hitherto described mutations in this gene is
given, i.e., the mutations that have been well studied in
humans and in yeast and those that, in our opinion, add
interesting information regarding the clinical expression of
mitochondrial complex V diseases. They have been out-
lined in relation to their clinical picture.

m.8993T>G This mutation leads to NARP (typically <90-
95% heteroplasmy) or MILS (when >95% heteroplasmy).
Biochemically a decreased ATPase activity (measured
spectrophotometrically) and a severely decreased ATP
production rate (until 70% when >90% heteroplasmy) is
observed (Tatuch and Robinson 1993; Trounce et al. 1994;
Baracca et al. 2000; Garcia et al. 2000; Pallotti et al. 2004;
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Morava et al. 2006; Sgarbi et al. 2006). Subunit a has two
functions: (i) it conducts protons from the inner mitochon-
drial membrane to the matrix, which (ii) leads to the
rotation of the ring of c-subunits that contacts subunit a in
the membrane. The resulting mechanical energy is used to
induce conformational changes at the level of the catalytic
sites in the F1 extra-membrane domain that favor ATP
synthesis (Sgarbi et al. 2006; Kucharczyk et al. 2010). The
m.8993T>G point mutation leads to p.Leu156Arg. Leu156
is highly conserved in eukaryotes (Boyer 1997; Sgarbi et al.
2006) and is situated in the region of subunit a that
regulates proton translocation coupled to rotation of the c-
ring (Sgarbi et al. 2006; Kucharczyk et al. 2009a, b, c). The
introduction of a positively charged amino acid (arginine)
instead of the hydrophobic leucine causes a structural
change that has been shown to affect rotation of the c-ring
(Sgarbi et al. 2006). The proton flux through Fo is slower,
but not blocked (Sgarbi et al. 2006). Furthermore, it has
been shown that ATP synthase still assembles and oligo-
merizes correctly. This is confirmed by an intact oligomycin
sensitivity (Cortes-Hernandez et al. 2007), a property that is
lost when enzyme structure is severely altered (Matsuno-
Yagi et al. 1985; Penefsky 1985). The assembly of F1 with
Fo has only been shown to be delayed because of a slower
subunit a synthesis or an increased subunit a instability and
degradation (D'Aurelio et al. 2010). Taken together, the
severe impairment of ATP synthesis is due to functional
inhibition in a correctly assembled ATP synthase (Cortes-
Hernandez et al. 2007).

m.8993T>C The clinical picture is similar to the m.8993T>
G mutation, but is generally milder (de Vries et al. 1993;
Vazquez-Memije et al. 1998; Morava et al. 2006; Debray et
al. 2007). The mutation results in p.Leu156Pro. Opposite to
the positive charged arginine in the m.8993T>G mutation,
proline is a non-charged amino acid. Biochemically, ATP
synthesis is not severely affected (Sgarbi et al. 2006). So
this does not fully explain the NARP or MILS phenotypes
seen in patients. It has been shown that the m.8993T>C
mutation favors reactive oxygen species (ROS) production,
which is believed to be the major pathogenic mechanism
(Sgarbi et al. 2006). ROS plays a major role in the
pathogenesis of neurological diseases related to mitochon-
drial dysfunction (Lenaz et al. 2004; Wallace 2005).

m.9176T>G/C The clinical picture is characterized by
familial bilateral striatal necrosis (FBSN) and Leigh
syndrome (Thyagarajan et al. 1995; Dionisi-Vici et al.
1998). A hereditary spastic paraplegia-like disorder has
been described in a family carrying the homoplasmic
m.9176T>C mutation (Verny et al. 2011). The mutations
also change a highly conserved hydrophobic leucine residue
into arginine (m.9176T>G) or proline (m.9176T>C) at

position 217 of the protein. Position 217 of subunit a also
lies in proximity to the c-ring (Kucharczyk et al. 2009a, b, c).
It has been shown in human cells with a high degree of
heteroplasmy that the m.9176T>G mutation severely
decreases the rate of ATP production (Carrozzo et al.
2001). In yeast carrying the m.9176T>G mutation, it has
been described that that incorporation of subunit a into ATP
synthase was almost completely prevented (Kucharczyk et
al. 2009a, b, c). This resulted in a disturbed assembly which
profoundly altered mitochondrial morphology (Kucharczyk
et al. 2009a, b, c). This finding is in contrast to the
m.8993T>G mutation, where the assembly is not altered
(as mentioned before). Taken together, the pathogenicity of
m.9176T>G may not be limited to a bio-energetic deficiency,
but may also be attributed to an altered mitochondrial and
cristae morphology (Kucharczyk et al. 2009a, b, c). Also the
m.9176T>C mutation has been studied in yeast, only
showing a mild decrease in ATP production (Kucharczyk et
al. 2010). There is a poor correlation between genotype and
phenotype for the m.9176T>C mutation (Kucharczyk et al.
2010). Additional determinants may be responsible and are a
plausible explanation for this finding. One of these determi-
nants has been proposed to be the higher degree of
oligomycin vulnerability in the mutant than in wild type
(Kucharczyk et al. 2010).

In tightly coupled mitochondria the oxygen consumption
rate and ATP synthesis depend on each other (Rak et al.
2007a, b). Therefore it is not very surprising to see a
decreased respiratory activity in many ATP synthase
defective mutants (Rak et al. 2007a, b). In several yeast
models with NARP-MILS mutations (atp6-p.Leu183Pro
(Kucharczyk et al. 2009a, b, c), atp6-p.Leu183Arg (Rak et
al. 2007a, b), atp6-p.Leu247Arg (Kucharczyk et al. 2009a,
b, c), atp6-p.Leu247Pro (Kucharczyk et al. 2010), and
Δatp6 (Rak et al. 2007a, b)), it has been shown that there is
a linear correlation between ATP synthase activity and
complex IV activity (Kucharczyk et al. 2010). So it appears
that complex IV is an important target for the co-regulation
of electron transfer and ATP synthesis in mitochondria
(Kucharczyk et al. 2010).

m.9035T>C, m.9185T>C, m.9191T>C, m.8851T>C These
mutations are illustrations of variants of the earlier
described NARP-MILS clinical spectrum. m.9035T>C has
been found in a family with maternally transmitted
cognitive developmental delay, learning disability, and
progressive ataxia (Sikorska et al. 2009). Mutant cybrids
had less than half of the steady-state content of ATP and a
substantial higher basal level of reactive oxygen species
(ROS) (Sikorska et al. 2009). m.9185T>C (p.Leu220Pro)
results in a phenotype varying from mild learning difficul-
ties and foot deformities, ataxia, an acute neurological
presentation with complete recovery, to Leigh syndrome
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(Moslemi et al. 2005; Childs et al. 2007). m.9191T>C (p.
Leu222Pro) has been described in a patient with Leigh
syndrome (Moslemi et al. 2005). The pathogenic mecha-
nism of the m.9185T>C and m.9191T>C mutations is
unknown, but they are situated in a highly conserved region
of the protein. The observed phenotypical differences are
proposed to result from additional genetic and/or environ-
mental modifying factors (Childs et al. 2007). A patient
suffering from bilateral striatal necrosis and harboring a
m.8851T>C mutation has also been described (De Meirleir
et al. 1995). This phenotype is less severe than found in
typical Leigh disease (De Meirleir et al. 1995).

ΔTA9205 This mutation has been reported in a patient with
seizures and lactic acidemia (Seneca et al. 1996). ΔTA9205
is situated at the junction between the two genes MT-ATP6
and MTCO3 (which codes for COX3, a complex IV
subunit). It removes the termination codon from RNA14,
the bi-cistronic RNA unit encoding MT-ATP8 and MT-
ATP6, which has been shown to cause a decrease in the
steady-state level of the mutated RNA14 (Temperley et al.
2003). The level of RNA15, the RNA transcribed from
MTCO3, is not affected (Temperley et al. 2003). This
mutation illustrates how a mtDNA mutation can influence
the turnover of a human mitochondrial mRNA.

Modifiers Phenotypical variations between patients harbor-
ing the same mtDNA mutation have classically been
attributed to mtDNA heteroplasmy. However, a discrepancy
between the levels of mutant mtDNA and disease severity
is sometimes observed (D'Aurelio et al. 2010). The mtDNA
background has been shown to play an important role in
modulating the biochemical defects and clinical outcome
(D'Aurelio et al. 2010). MT-ATP6 mutations m.8741T>G
and m.8795A>G have been shown to be protective factors
for the m.8993T>G MILS mutation (Mkaouar-Rebai et al.
2009). A MT-ATP6 polymorphism, m.9055G>A, signifi-
cantly reduces the risk of Parkinson disease, especially in
women (van der Walt et al. 2003). The mitochondrial
haplogroup J has been shown to be associated with
longevity and protection against certain diseases (Verny et
al. 2011). Vice versa, respiratory chain defects upstream of
ATP synthase contribute to ATP synthesis impairment,
worsening the biochemical and clinical phenotype, e.g., of
m.8993T>G/C and m.9176T>G mutations (D'Aurelio et al.
2010). The germ-line mutation m.8932C>T has, together
with somatic mtDNA mutations in the cytochrome oxidase
subunit I (COI) gene, been associated with prostate cancer
(Petros et al. 2005; Arnold et al. 2009). The mtDNA
variants m.8836T>G, m.9016A>G, m.9101T>C,
m.9139G>A have been linked with patients who had Leber
hereditary optic neuropathy (LHON) or LHON-like optic
neuropathies (Lamminen et al. 1995; Povalko et al. 2005;

Abu-Amero and Bosley 2006; La Morgia et al. 2008).
Hence, mtDNA background can explain the biochemical
and clinical variations observed between patients with the
same mutation and a comparable mutation load. This also
illustrates the role of mtDNA variants in the complexity of
mtDNA disease expression. In general, phenotypic vari-
ability is proposed to be the result of interactions between
the casual genes, genetic background or modifier genes
(mitochondrial or nuclear), and probably environmental
factors (Carelli et al. 2002).

ATP synthase subunit A6L; MT-ATP8 (MIM ID +516070)

m.8529G>A This homoplasmic mutation has been found in
a 16-year-old patient presenting with apical hypertrophic
cardiomyopathy and neuropathy (Jonckheere et al. 2008).
The mutation is situated in an overlap region between MT-
ATP8 and MT-ATP6, resulting in a silent change in MT-
ATP6 (Met1Met; ATG>ATA), but introducing a premature
stopcodon in a conserved region of MT-ATP8 (p.Trp55X)
(Jonckheere et al. 2008). This resulted in an improper
assembly and a decreased activity of the complex V
holoenzyme (Jonckheere et al. 2008).

m.8528T>C This homoplasmic mutation has been found in
four unrelated patients who presented as infants with
isolated hypertrophic cardiomyopathy and congestive heart
failure, evolving to multisystem disease (Ware et al. 2009).
Electron microscopy of muscle tissue showed increased
variation in size and shape of mitochondria with dense
parallel cristae in one patient (Ware et al. 2009). For A6L,
m.8528T>C (p. Trp55Arg) is a pathogenic missense
mutation, replacing a hydrophobic tryptophan into a basic
arginine in a conserved region of the subunit. In subunit a,
the nucleotide alteration results in the change of the
initiation methionine to threonine, but the effect of this
mutation on the function of this subunit is not clear (Ware et
al. 2009).

Taken together, theMT-ATP8 mutations m.8529G>A and
m.8528T>C both affect the same amino acid (tryptophan)
and clinically cause a cardiomyopathy.

m.8411A>G The de novo mutation with 97% heteroplasmy
has been described in a patient with psychomotor delay,
epilepsy, tetraplegia, congenital deafness, central blindness
and swallowing difficulties (Mkaouar-Rebai et al. 2010).
He died at the age of 10 years. Brain MRI showed
involvement of the interpeduncular nucleus, the central
tegmental tract, the white matter and the cerebellum. This
leucodystrophy phenotype differs from the other mutations
described in MT-ATP8, where cardiac involvement predom-
inates. Leucodystrophy has been described in two siblings
with Leigh syndrome harboring the m.9176T>C mutation
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in MT-ATP6 (Hung and Wang 2007). It should be noted that
complex V enzyme analysis was not performed in this
patient (Mkaouar-Rebai et al. 2010), and therefore the
pathogenicity of the m.8411A>G mutation has not been
firmly established yet.

ATP12 (MIM ID *608918)

A homozygous T>A mutation, changing an evolutionary
conserved tryptophan to an arginine at position 94
(p.Trp94Arg) of the nuclear encoded complex V assembly
gene ATP12 has been found in a patient who presented with
a severe neonatal encephalopathy and dysmorphic features,
evolving to basal ganglia atrophy within months and death at
the age of 14 months (De Meirleir et al. 2004; Meulemans et
al. 2010). The mutation resulted in a severely decreased
complex V amount and activity. It was hypothesized that the
change of a neutral polar amino acid (tryptophan) into a
basic one (arginine) resulted in an ATP12 protein that was no
longer able to mediate F1 assembly (De Meirleir et al. 2004).
Later, it has been shown in a yeast model that the p.Trp94Arg
mutation decreases the solubility of the protein, implying that
the primary impact of the mutation was a change in physical
rather than functional parameters (Meulemans et al. 2010).
Mitochondrial morphology has been studied in fibroblasts,
but no alterations compared to control cells could be
observed (Meulemans et al. 2010).

TMEM70 (MIM ID *612418)

The TMEM70 gene encodes a mitochondrial protein,
transmembrane protein 70. A common splice site mutation
and an isolated frameshift mutation have been described in
the TMEM70 gene particularly in a homogeneous ethnic
group (Romanies), with a clinical phenotype characterized
by neonatal mitochondrial encephalocardiomyopathy, lactic
acidosis and dysmorphic features (Cizkova et al. 2008). The
description of four novel mutations in the TMEM70 gene
has confirmed and expanded this classical clinical picture
with early onset cataract, gastrointestinal dysfunction,
congenital hypertonia and a fetal presentation of the
syndrome (Spiegel et al. 2011). One patient with a milder
clinical phenotype carrying the common splice site muta-
tion and a missense variant has also been described
(Shchelochkov et al. 2010). This phenotype corroborates
with two reported patients who are compound heterozygous
for the common splice site mutation and a frame-shift
mutation in exon 1 (Honzik et al. 2010; Cameron et al.
2011). It was shown that TMEM70 is required to maintain
normal expression levels of complex V (Cizkova et al.
2008). The exact mechanism behind this remains to be
elucidated, although it has been suggested that TMEM70 is
involved in complex V biogenesis (Cizkova et al. 2008).

ATP synthase subunit epsilon; ATP5E (MIM ID *606153)

Recently, a homozygous missense mutation c.35A>G
(p.Tyr12Cys) has been described in exon 2 of the ATP5E
gene (Mayr et al. 2010). The patient was a 22 year old
woman presenting with neonatal onset, lactic acidosis, 3-
methylglutaconic aciduria, and mild mental retardation. She
developed peripheral neuropathy (Mayr et al. 2010). The
mutation caused a decrease in the amount and activity of
holocomplex V. Remarkably, subunit c was found to
accumulate, in contrast to the other investigated complex
V subunits, and in contrast to what was found in patients
with a mutation in the TMEM70 (Honzik et al. 2010) and
ATP12 (De Meirleir et al. 2004) genes (Mayr et al. 2010).
Using pulse-chase experiments, this study pointed to the
crucial role of subunit ε in the biosynthesis and assembly of
the F1 part of ATP synthase. Moreover, subunit ε seems to
be involved in the incorporation of subunit c into the rotor
(Mayr et al. 2010).

Therapy

Current available treatment options for patients with
mitochondrial diseases are mainly supportive. Therefore, a
lot of effort is put into the search for both pharmacological
and genetic approaches to cure this devastating group of
disorders (for reviews, see (DiMauro et al. 2006; Koene and
Smeitink 2009, 2010)). Focusing here on complex V
deficiency, current research has mainly covered the therapy
of mtDNA mutations.

Antioxidants

As mentioned above, complex V mutations can increase
ROS production which is deleterious for the cell. The
antioxidants N-acetylcysteine (NAC) and dihydrolipoic
acid (DHLPA) have therefore been tested in fibroblasts
harboring 97% m.8993T>G mutant mtDNA. It has been
shown that they significantly improved mitochondrial
respiration and ATP synthesis in these cells (Mattiazzi et
al. 2004).

Substrates: α-Ketoglutarate/Aspartate

In yeast studies, it has been suggested that forcing
substrate-level phosphorylation to work overtime may
counteract the energy crisis due to OXPHOS impairment
(Schwimmer et al. 2005).

For the application of this approach in OXPHOS-
deficient human cells, exogenous substrates capable of
stimulating the Krebs cycle flux while at the same time
removing the excess of reduced nicotinamide adenine
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dinucleotide (NADH) have been chosen (Sgarbi et al.
2009). It has been demonstrated that homoplasmic cybrids
harboring the m.8893T>G mutation were protected from
cell death and had an ATP content similar to controls after
supplementation of the culture medium with α-
ketoglutarate and aspartate (Sgarbi et al. 2009).

Affecting heteroplasmy of the mtDNA (gene-shifting)

This genetic approach aims to force a shift in heteroplasmy,
reducing the ratio of mutant to wild-type genomes (also
called gene-shifting) (DiMauro et al. 2006). Various
methods can be applied to achieve this goal.

Allotopic expression Here, a normal version of a mutant
mtDNA-encoded protein is imported into the nucleus. For
example, MT-ATP6 can be converted from the mitochon-
drial into the nuclear genetic code (Manfredi et al. 2002;
DiMauro et al. 2006). To be transported to the mitochon-
drion, it has to be provided with a mitochondrial targeting
signal, of which the genetic sequence can be borrowed from
another mtDNA-encoded protein. The biochemical defect
in cybrid cell lines harboring the m.8993T>G mutation has
been corrected successfully using this strategy (Manfredi et
al. 2002).

Xenotopic expression The correction here implies the
transfection of mammalian cells with either mitochondrial
or nuclear genes from other organisms encoding the protein
of interest (DiMauro et al. 2006). This has also been
applied to human cybrids harboring the m.8993T>G
mutation by expressing the nDNA encoded ATPase6
protein of the alga Clamydomonas reinhardtii, which
already possessed the mitochondrial targeting sequence
since it is nuclear encoded (Ojaimi et al. 2002). Also this
approach could correct the biochemical defect in these cells
(Ojaimi et al. 2002).

Restriction endonucleases These are specific proteins that
cut mutant mtDNA but not wild type mtDNA (DiMauro et
al. 2006). For example, the m.8993T>G mutation creates a
unique cleavage site for the restriction endonuclease SmaI.
The gene for SmaI was fused to a mitochondrial targeting
sequence and expressed in heteroplasmic mutant cybrid
cells, which lost mutant mtDNA and recovered biochem-
ically (Tanaka et al. 2002; Alexeyev et al. 2008).

Oligomycin It has been shown that culturing heteroplasmic
m.8993T>G cybrid cells in medium containing oligomycin
(complex V inhibitor) and galactose (which forces the cells
to rely on oxidative metabolism for ATP production)
allowed for the selection of wild type over mutant mtDNA
(Manfredi et al. 1999).

Germline therapy

It has been proposed that nuclear transfer techniques may
be an approach for the prevention of transmission of human
mtDNA disease (Sato et al. 2005; Brown et al. 2006).
Briefly, this means that the pronucleus of an oocyte, or
zygote, of a woman carrying mutated mtDNA could be
transferred to a donor enucleated oocyte, or zygote,
carrying wild type mtDNA (DiMauro et al. 2006; Craven
et al. 2010). In that way, the offspring will carry all the
nuclear – and physiognomonic - traits of the parents, but
not the mutated mtDNA of the mother (DiMauro et al.
2006). Two successful approaches have recently been
described.

Metaphase II spindle transfer between unfertilized meta-
phase II oocytes It has been demonstrated in mature non-
human primate oocytes (Macaca mulatta) that the mito-
chondrial genome can be efficiently replaced by spindle-
chromosomal complex transfer from one egg to an
enucleated, mitochondrial-replete egg (Tachibana et al.
2009). Subsequently, it was possible to have normal
fertilization and embryo development. The offspring was
healthy (Tachibana et al. 2009).

Pronuclear transfer between zygotes This is essentially the
same procedure, except that the nuclear material, both the
male and female pronucleus, is removed after fertilization
(Tachibana et al. 2009). It has been shown that transfer of
pronuclei between abnormally fertilized human zygotes
resulted in minimal carry-over of donor zygote mtDNA and
is compatible with onward development of the blastocyst
stage in vitro (Craven et al. 2010).

There have been few randomized controlled trials for the
treatment of mitochondrial disease (Chinnery et al. 2006).
To date, there is no clear evidence supporting the use of
pharmacological agents, non-pharmacological treatments
(vitamins and food supplements), and physical training in
patients with mitochondrial disorders (Chinnery et al.
2006). Although very promising, all genetic techniques
are still in an experimental phase and different technical,
ethical and safety issues still have to be solved (DiMauro et
al. 2006; Kucharczyk et al. 2009a, b, c; Tachibana et al.
2009; Craven et al. 2010). Nevertheless, they do allow
cautious optimism for the future.

Prenatal and preimplantation diagnosis

Since current therapeutic options for mitochondrial diseases
are insufficient, the possibility of prenatal diagnosis for
fetuses at risk is a valuable alternative. If it concerns a
known nuclear genetic defect, the mutation can directly be
searched for in fetal tissue. If the complex V deficiency is
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caused by a mtDNA defect (in MT-ATP6 or MT-ATP8),
prenatal diagnosis is complicated by several factors. First,
the correlation between mutant mtDNA load and disease
severity is poor in many mtDNA diseases. Second, the
heteroplasmy level differs between tissues and in one tissue
through time (Poulton and Marchington 2002). In this
context, the m.8993 mutation (NARP mutation) is an
exception. There is a correlation between mutant mtDNA
load and disease severity (Poulton and Marchington 2002).
Moreover, it has been shown that the placental/ amniotic
mutant loads do reflect the NARP mutant mtDNA load in
the whole fetus (Dahl et al. 2000; Steffann et al. 2007).
Finally, it is suggested that the heteroplasmy level remains
stable after 10 weeks of gestation (Steffann et al. 2007). A
mutation load <30% gave rise to healthy children at 2-
7 years of age, while the correlation between an interme-
diate mutant load (>30% and <80%) and disease severity
still needs to be assessed (Steffann et al. 2007). Hitherto
termination of pregnancy has been preferred in case of
intermediate mutant loads (Steffann et al. 2007). Remark-
ably, the intermediate mutant loads question the observation
that the m.8993T>G mutation has a skewed segregation
during oogenesis (Blok et al. 1997). Post-zygotic drift
might explain this discrepancy (Steffann et al. 2007).
Current options for women with MT-ATP6 or MT-ATP8
mutations can be oocyte donation or preimplantation
genetic diagnosis (PGD), since the different heteroplasmy
levels between tissues are not yet present in blastomeres
(Jenuth et al. 1997; Poulton and Marchington 2002; Dean et
al. 2003). The interpretation of PGD results nevertheless
demands a known correlation between mutation load and
clinical phenotype. In addition, caution is warranted since
some pathogenic mutations could exhibit different segrega-
tion behavior (Dean et al. 2003). In case the genetic
examination of an index case has revealed no mutations in
both mtDNA and nDNA, prenatal diagnosis could still be
possible. In Nijmegen, complex V activity can be measured
spectrophotometrically in native chorionic villi, cultured
chorionic cells or cultured amniotic cells if there is a clear
isolated complex V deficiency in fibroblasts and muscle
tissue (or other tissue) of the index patient (Niers et al.
2003; Rodenburg 2011).

Concluding remarks and future perspectives

Thanks to the extensive research over the last decades,
nowadays much is known regarding the structure and
function of the world’s smallest rotary nanomotor. As
mentioned briefly, most of the structure of the bovine
mitochondrial enzyme has been resolved. The structure of
the membrane extrinsic part of bovine ATP synthase is
complete (Rees et al. 2009). The structure of the c-ring has

been resolved recently (Watt et al. 2010). The structures of
the membrane domain of subunit b, subunit a, and the
accessory subunits e, f, g, and A6L remain to be determined
(Rees et al. 2009). The mechanism of the rotary F1Fo ATP
synthase has been described by Boyer (Boyer 1997). Still,
understanding the enzyme fully at a molecular level will
require further efforts, both experimental and theoretical
(for a review, see (Junge et al. 2009)). Next to structure and
function of the monocomplex, also the role of di- and
oligomerization of complex V, shaping the inner mitochon-
drial membrane, has been addressed in many studies both in
yeast and in mammalian mitochondria (Paumard et al.
2002; Strauss et al. 2008). The role of IF1 in this process
has been shown to be important (Campanella et al. 2008,
2009).

Despite this huge progress, lots of questions remain to be
answered. As mentioned, the assembly of the different
subunits into the holocomplex continues to be puzzling.
Most of the research has been done in yeast. However, the
yeast assembly process probably differs from the one in
mammalian mitochondria, since there are substantial differ-
ences between higher and lower eukaryotes such as the
number of Fo subunit c-genes, ATP synthase-specific
assembly factors, and factors regulating transcription of
ATP synthase genes (Houstek et al. 2006). To gain further
insight into the assembly of complex V, techniques like blue
native and clear native PAGE, combined with incorporation
and knock-down experiments of different subunits as
described in (Wagner et al. 2010) could refine our current
knowledge. Further, only two assembly factors, ATP11 and
ATP12, are hitherto known in mammalian ATP synthase.
They both have a role in F1 assembly. TMEM70 maintains
normal expression levels of complex V, and has been
suggested to have a role in complex V biogenesis (Cizkova
et al. 2008). The exact mechanism however still remains to
be elucidated. Moreover, the existence of specific factors
involved in mammalian Fo formation is probable (Houstek
et al. 2006). A possible approach could be to study the
evolution of complex V subunits and complex V chaper-
ones by comparative genomics. For example, the yeast Fo
assembly factor Atp23p has a human homolog for which,
however, no involvement in ATP synthase assembly could
be demonstrated (Kucharczyk et al. 2009a, b, c). Also a
homology of complex V chaperones with other human
proteins could be of interest in the search of specific
assembly factors. Another intriguing fact is that to date,
only one mutation has been found in a nuclear structural
complex V gene (Mayr et al. 2010). It could be possible
that mutations in some of the structural subunits are
incompatible with life. On the other hand, given the lower
frequency of complex V deficiency compared to the other
OXPHOS deficiencies, routine screening of all nuclear
structural genes is rarely implemented in a diagnostic
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setting. Whole genome or whole exome screening could
counter this problem and possibly solve some of the
hitherto unknown genetic defects causing complex V
deficiency. Finally, the biggest challenge will be to find a
tailored curative therapy for this patient group. Large-scale
and high-throughput compound screening is needed to find
a possible pharmacological approach. For mtDNA defects,
gene-shifting and germline techniques are promising, but
much more and thorough experimental research is needed
before this can be implemented in the patient setting.

In conclusion, mitochondrial ATP synthase has been and
still is a popular research topic. Thanks to sustained effort,
many aspects of this intriguing protein have been elucidat-
ed. This knowledge will guide further physio(patho)logical
studies, paving the way for future therapeutic interventions.
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