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Peripheral artery disease (PAD) is a serious but relatively underdiagnosed and

undertreated clinical condition associated with a marked reduction in functional capacity

and a heightened risk of morbidity and mortality. The pathophysiology of lower

extremity PAD is complex, and extends beyond the atherosclerotic arterial occlusion

and subsequent mismatch between oxygen demand and delivery to skeletal muscle

mitochondria. In this review, we evaluate and summarize the available evidence

implicating mitochondria in the metabolic myopathy that accompanies PAD. Following

a short discussion of the available in vivo and in vitro methodologies to quantitate

indices of muscle mitochondrial function, we review the current evidence implicating

skeletal muscle mitochondrial dysfunction in the pathophysiology of PADmyopathy, while

attempting to highlight questions that remain unanswered. Given the rising prevalence of

PAD, the detriment in quality of life for patients, and the associated significant healthcare

resource utilization, new alternate therapies that ameliorate lower limb symptoms and

the functional impairment associated with PAD are needed. A clear understanding of the

role of mitochondria in the pathophysiology of PAD may contribute to the development

of novel therapeutic interventions.

Keywords: mitochondria, mitochondrial function, bioenergetics, peripheral artery disease, peripheral vascular

disease, skeletal muscle

INTRODUCTION

Peripheral artery disease (PAD) is the third leading cause of cardiovascular morbidity after
coronary heart disease and stroke (Fowkes et al., 2013). In the preceding decade, the global
prevalence of PAD increased by ∼24%, corresponding to an estimated 202 million people living
with PAD worldwide (Fowkes et al., 2013). In the US alone, ∼8.5 million adults aged ≥40 years
are affected by PAD (Allison et al., 2007; Mozaffarian et al., 2015), with annual hospitalization costs
estimated at more than $21 billion (Mahoney et al., 2008, 2010). Yet, diagnosis and treatment of
PAD is often overlooked, and clinical trials focusing on PAD are relatively sparse considering the
prevalence and impact of the disease (Jaff, 2014; Subherwal et al., 2014).

As an atherosclerotic occlusive disease, PAD results in obstruction of the conduit arteries
serving the lower extremities. Reduced blood flow, and skeletal muscle and nerve abnormalities
contribute to the functional impairment and limb manifestations associated with PAD. In primary
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care facilities, 30–60% of all PAD patients are diagnosed as
asymptomatic, (i.e., no exertional leg symptoms), ∼10% exhibit
classic symptoms of intermittent claudication (i.e., exertional
calf pain that is induced by exercise/walking and subsides with
rest), and the remainder present with atypical leg symptoms,
i.e., exertional leg symptoms that are not consistent with classic
intermittent claudication. Atypical leg symptoms commonly
include leg pain on exertion and rest (i.e., exertional leg pain that
initiates at rest but is not associated with critical limb ischemia),
and leg pain/carry on (i.e., exertional leg pain that does not
prompt the patient to stop exercising/walking; McDermott, 2015;
Hiatt et al., 2015). Over a 5-year follow-up, 1–2% of PAD cases
will progress to critical limb ischemia (i.e., ischemic rest pain
and tissue loss, such as skin ulceration and gangrene; Hirsch
et al., 2006; McDermott, 2015). Irrespective of this classification,
all patients with PAD, even asymptomatic individuals, have
reduced functional capacity (McDermott et al., 2000, 2008) and a
heightened risk of morbidity and mortality (Diehm et al., 2009).
Over time, functional capacity in PADdeclines further, the degree
of the change being associated with the severity of the disease
(McDermott et al., 2004).

Individuals with PAD are less physically active (McDermott
et al., 2002) and tend to have a maximal exercise capacity
that is approximately half of that of age-matched healthy
individuals (Hiatt et al., 1987). Further, patients with PAD who
develop critical limb ischemia are at increased risk for limb
loss. Strikingly, PAD accounts for ∼70,000 major amputations
performed annually within the U.S., with an estimated cost of
$10.6 billion (Yost, 2014). It is predicted that the number of all-
cause amputees living in the US will rise from 1.6 million to
3.6 million by 2,050, with PAD accounting for the majority of
this projected increase (Ziegler-Graham et al., 2008). Moreover,
PAD patients who require lower limb amputation have a 5-year
mortality of over 50%, a poorer prognosis to that of breast,
prostate, and colon cancer patients (Armstrong et al., 2007;
Robbins et al., 2008). Thus, PAD represents a significant problem
in modern health care, in terms of its increasing prevalence, fiscal
impact on health care systems, and detriment in quality of life for
patients.

Considering the largely asymptomatic nature of PAD in
its early stages (McDermott et al., 2000; Hirsch et al., 2006;
McDermott, 2015), and the detrimental consequences of its
progression, early clinical diagnosis, and effective management
of PAD is imperative. The most cost-effective tool for early
clinical diagnosis of lower extremity PAD is the ankle-brachial
index (ABI), which is the ratio of resting systolic blood pressure
measured at the ankle (dorsalis pedis and posterior tibial arteries)
to that at the brachial artery; an ABI value of <0.90 is 68–
84% sensitive and 84–99% specific for PAD (Aboyans et al.,
2012; Gerhard-Herman et al., 2016). Major risk factors for
PAD include advancing age, hypertension, smoking, diabetes
mellitus, and hyperlipidemia (Fowkes et al., 2013). As with other
forms of atherosclerotic vascular disease, the 2016 AHA/ACC
guidelines for treatment of PAD recommend cardiovascular
risk factor modification, in addition to PAD specific treatment
for claudication and critical limb ischemia. Claudication is
primarily addressed via exercise training, and administration

of phosphodiesterase inhibitors for their antiplatelet and
vasodilatory properties (Hirsch et al., 2006; Gerhard-Herman
et al., 2016).

Effective long-term management of limb symptomatology
and functional impairment in PAD depends on targeted
therapies addressing the pathophysiology of the disease. While
atherosclerotic occlusive disease, decreased blood perfusion,
and restricted O2 delivery to skeletal muscle is a major
contributor to the limb manifestations in PAD, reduced
blood flow only partially accounts for the functional deficit
associated with PAD. Additional factors contribute to the
pathophysiology of the functional impairment in PAD, with
evidence suggesting abnormalities in skeletal muscle metabolism,
where mitochondria may play a key role (Brass and Hiatt, 2000;
Kemp, 2004; Pipinos et al., 2007). Accordingly, the aim of this
review article is to explore and discuss the current evidence for
a role of mitochondrial dysfunction in the metabolic myopathy
observed in PAD patients. Given the rising prevalence of PAD
and the societal impact that it incurs, a better understanding of
the underlying determinants of reduced muscle function seen
in PAD patients represents a critical step in the development of
novel therapeutic interventions.

PATHOPHYSIOLOGY OF LIMB
MANIFESTATIONS AND FUNCTIONAL
IMPAIRMENT IN PAD

Hemodynamic Abnormalities
The sequelae of events leading to limited functional capacity in
PAD patients originate from a hemodynamic deficit resulting
from one or more arterial stenoses and/or occlusions in the
iliac, femoral, popliteal, or tibial arteries (Hiatt et al., 2015).
Blood flow distribution to tissues is relative to their metabolic
activity. At rest, skeletal muscle perfusion represents ∼20% of
cardiac output (McArdle et al., 2007). During exercise, blood
flow is redistributed to the active skeletal muscles, with muscle
blood flow accounting for up to 80–85% of cardiac output
at high exercise intensities (McArdle et al., 2007). Although
the presence of arterial stenosis or occlusion can adversely
affect blood flow dynamics, in the absence of critical limb
ischemia resting blood flow to lower extremities is preserved via
compensatory mechanisms distal to the site of the occlusion,
such as collateral blood supply (Bragadeesh et al., 2005; Traupe
et al., 2013). However, in states of high metabolic demand,
such as exercise, the arterial stenosis, and occlusions in PAD
become flow limiting. Blood flow is further compromised
by impaired peripheral vasodilation, as evidenced by macro-
and micro-vascular endothelial dysfunction (Joras and Poredos,
2008; Coutinho et al., 2011a; Grenon et al., 2014; Heinen
et al., 2015), and increased arterial stiffness and pressure wave
reflections in patients with PAD (Brewer et al., 2007; Amoh-
Tonto et al., 2009; Coutinho et al., 2011b; Beckmann et al., 2015).
This flow limitation results in inadequate O2 delivery to the
mitochondria of contracting skeletal muscle, limiting oxidative
phosphorylation (Brass and Hiatt, 2000; Pipinos et al., 2000,
2003).
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Skeletal Muscle Abnormalities
Although reduced blood flow is a significant contributor to
clinical limb manifestations as indicated by the association
of low ABI with leg pain symptoms (Wang et al., 2005),
leg blood flow and ABI appear to be no more than
weakly associated with functional/exercise capacity (Pernow
and Zetterquist, 1968; Szuba et al., 2006; McDermott et al.,
2013; Nardi Gomes et al., 2015). Indeed, revascularization
of occluded blood vessels does not fully restore the muscle
functional limitations in PAD patients (Regensteiner et al.,
1993a; Gardner and Killewich, 2001; West et al., 2012), while
exercise treatment improves functional capacity with negligible
(Larsen and Lassen, 1966; Sorlie and Myhre, 1978) to modest
increases in leg blood flow (Hiatt et al., 1990). These findings
indicate that additional factors besides hemodynamic limitations
contribute to the pathophysiology of the functional impairment
in PAD.

The mismatch between oxygen and substrate demand and
delivery to active skeletal muscles during exercise via a blood
flow reduction (exercise-induced ischemia) and the associated
prolonged hyperemic effect in the post-exercise resting period
(reperfusion) trigger a cascade of pathophysiological responses
(Hiatt et al., 2015). During ischemia and reperfusion, there is
a rise in cytosolic Ca2+ with subsequent mitochondrial Ca2+

overload owing to mitochondria’s role as an intracellular Ca2+

buffer, and there is a concurrent burst of reactive oxygen
species (ROS) generation (Murphy and Steenbergen, 2008).
These events can trigger mitochondrial permeability transition
pore opening, which can limit adenosine triphosphate (ATP)
production and activate apoptotic signaling, ultimately leading
to cell death (Murphy and Steenbergen, 2008). Indeed, there is
evidence of elevated ROS production and associated oxidative
damage in skeletal muscle of PAD patients, which may be
exacerbated by a compromised antioxidant defense system
(Bhat et al., 1999; Pipinos et al., 2006, 2008). Most notably,
previous studies in PAD patients demonstrated increased
mitochondrial DNA injury (Bhat et al., 1999) as well as elevated
protein oxidation and lipid peroxidation (Pipinos et al., 2006).
Mitochondrial DNA damage has been detected in both limbs
of patients with unilateral PAD, suggesting a potential systemic
effect (Bhat et al., 1999). Inflammation and oxidant stress
are likely implicated in subsequent skeletal muscle structural
and metabolic abnormalities associated with PAD, including
mitochondrial dysfunction, muscle fiber degeneration, muscle
fibrosis, and muscle apoptosis and atrophy (Regensteiner et al.,
1993b; Brass and Hiatt, 2000; Mitchell et al., 2007; Pipinos
et al., 2007; Koutakis et al., 2015). In PAD patients with
intermittent claudication, 3.8% of gastrocnemius cells were
determined as apoptotic vs. 1.5% in age-matched controls,
and caspase-3 activity (a key component of apoptosis which
is activated by the mitochondrion) was double that in
patients without PAD (Mitchell et al., 2007), suggesting that
mitochondrial stress is linked to programmed cell death in
skeletal muscle of PAD patients. The complex pathophysiology
of exertional limb manifestations has been reviewed in
detail by others (Pipinos et al., 2007, 2008; Hiatt et al.,
2015).

THE ROLE OF THE MITOCHONDRION IN
PAD

Mitochondria are the microscopic cellular combustion engines
that utilize glucose and fat to provide our cells with ATP.
Given its role in locomotion, skeletal muscle of the lower
extremities is abundant with mitochondria. Mitochondrial
oxidation of fuel substrates (glucose, fatty acids) converts to
acetyl-CoA. The subsequent condensation of acetyl-CoA with
oxaloacetate within the mitochondrial matrix forms citrate,
initiating the tricarboxylic acid cycle (TCA). Generation of TCA
cycle intermediates results in the reduction of electron carriers
(NADH and FADH2), which in turn shuttle electrons to the
electron transport chain of the inner mitochondrial membrane.
Electron transfer results in the translocation of protons across
the inner mitochondrial membrane, resulting in electro-chemical
potential. This membrane potential is used by ATP synthase
to phosphorylate adenosine diphosphate (ADP; i.e., oxidative
phosphorylation; Mitchell, 1961). Critical to the process of
oxidative phosphorylation is the requirement for a terminal
electron acceptor, a role fulfilled in mitochondria by molecular
O2. Thus, a patent arterial circulation is critical in providing
cells and in particular their mitochondria with O2 to support
mitochondrial respiration and thus oxidative phosphorylation
(Figure 1).

As described above, the pathophysiology of the limb
manifestations in lower extremity PAD is complex, and extends
beyond the atherosclerotic occlusive disease and inadequate O2

delivery to the mitochondria of the working muscles. Since
more than 90% of O2 is consumed within mitochondria (Rolfe
and Brown, 1997), deficits in mitochondrial respiratory capacity
and/or function may also contribute to limb manifestations in
PAD patients. Early studies suggest incomplete oxidation of
fuel substrates in PAD skeletal muscle biopsies as indicated by
accumulation of metabolic intermediates (Brass and Hiatt, 2000;
Pipinos et al., 2007; Hiatt et al., 2015). PAD gastrocnemius
muscle displayed accumulation of acylcarnitines, which is
suggestive of incomplete acyl-CoAs oxidation. Additionally,
short-chain acylcarnitine accumulation was associated with
impaired peak exercise performance (Hiatt et al., 1992). Muscle
lactate concentrations have also been reported to be elevated
in PAD patients, reflecting anaerobic glucose oxidation (Hiatt
et al., 1992). While incomplete oxidation of substrates might
be reflective of reduced mitochondrial oxidative capacity, it
may also reflect adaptations in muscle that are independent of
mitochondrial function, namely reduced blood flow.

ASSESSMENT METHODS FOR SKELETAL
MUSCLE MITOCHONDRIAL RESPIRATORY
CAPACITY AND FUNCTION

The numerous analytical techniques and read-outs of
mitochondrial function can often lead to confusion as to
the role of the mitochondrion in a given pathology. Thus, careful
consideration in selecting appropriate analytical endpoints
and interpretation of the data that these techniques provide
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FIGURE 1 | Schematic overview of mitochondrial bioenergetics in healthy individuals with normal muscle blood flow, and in patients with peripheral

artery disease (PAD) and occluded muscle blood flow. In healthy individuals with normal muscle blood flow, pyruvate can undergo oxidation through pyruvate

dehydrogenase (PDH), subsequently participating in the TCA cycle (as acetyl-CoA). Sufficient cellular O2 availability provides a terminal electron acceptor for the

electron transport chain (ETC), ultimately allowing electron transfer and the generation of the electro-chemical potential needed for oxidative phosphorylation (ATP

production). Further, electron flow to complex IV (IV) of the ETC prevents stagnation of electrons (e−) in the chain, thereby preventing superoxide (O−
2) formation. In

this setting, the creatine phosphokinase (CPK) reaction remains at a basal state of flux, where approximately two-thirds of the creatine (Cr) pool is stored as

phosphocreatine (PCr). In contrast, reduced muscle blood flow in patients with PAD results in hypoxia and subsequent alterations in muscle bioenergetics. Specifically,

in hypoxic tissue, pyruvate is unable to undergo an oxidative fate within the mitochondrion, instead being metabolized by lactate dehydrogenase in the cell cytosol,

forming lactate. Similarly, reduced O2 availability in the mitochondria limits electron transfer and respiration resulting in electron accumulation in the ETC, which may

lead to O−
2 production at complex I and complex III, and subsequent oxidative stress. Importantly, reduced O2 availability and the subsequent impairment in

oxidative phosphorylation in the muscle of patients with PAD will result in a reduction in ATP levels and a concomitant increase in ADP levels. This change in the

cellular ATP to ADP ratio will drive the CPK reaction to breakdown PCr in order to buffer cellular ATP. This phenotype is most pronounced in muscle of patients with

PAD when ATP turnover rates are higher, i.e., during muscle contraction associated with physical activity/exercise, and can lead to the localized muscle cramping and

pain (claudication) experienced by individuals with PAD.

is important if robust conclusions are to be made. Available
techniques for measuring mitochondrial function (Figure 2)
can be broadly categorized into: (i) in vivo measures of tissue
oxidative capacity, (ii) in vitro determination of mitochondrial
respiration in tissue samples or isolated mitochondria
preparations, assaying ATP production rates, membrane
potential, or ROS production in isolated organelles, or the
quantification of mitochondrial protein abundance/enzyme
activity. The pros and cons of these approaches are discussed in
brief below.

Mitochondrial oxidative capacity can be assessed in vivo
by 31Phosphorus Magnetic Resonance Spectroscopy (31PMRS;
Hoult et al., 1974; Ackerman et al., 1980), a non-invasive method
for the determination of relative concentrations of high-energy
phosphate metabolites, principally phosphocreatine (PCr), and
their kinetic changes during exercise (or ischemia) and their
subsequent recovery rate constants. At the onset of intense
exercise, PCr supplies ADP with its high-energy phosphate to
form ATP, thereby buffering intracellular ATP levels, resulting
in PCr degradation; the mean rate of PCr degradation during
exercise provides an estimate of the failure of oxidative (plus
glycolytic) ATP synthesis to meet ATP demand/turnover (Kemp
et al., 1995b, 2001), with the initial rate of the PCr degradation
being a measure of ATP turnover rate. During recovery following
exercise, PCr and ADP return to baseline concentrations; the

initial rate of PCr re-synthesis post-exercise serves as an estimate
of the end-exercise rate of oxidative ATP synthesis (Blei et al.,
1993).

Tissue oximetry by near-infrared spectroscopy (NIRS) offers
a non-invasive approach for the assessment of the kinetics of
(muscle) tissue O2 saturation and hemoglobin/deoxyhemoglobin
levels (Jobsis, 1977). Analogous to PCr kinetics determined
by 31PMRS, the rate of O2 desaturation in muscle during
exercise reflects the rate of failure of O2 delivery to meet
tissue O2 demand, and the post-exercise/occlusion recovery of
O2 saturation rate correlates well with PCr recovery rate and
provides an index of muscle respiratory capacity (Kemp et al.,
2001; Nagasawa et al., 2003; Ryan et al., 2013).

Determination of muscle oxidative capacity in vivo offers
several advantages. Firstly, oxidative capacity is determined
under physiologic conditions. Further, measurements can be
made non-invasively. While determination of PCr recovery can
be costly, NIRS offers a more affordable alternative to highly
costly MRI scanners, which correlates well with MRI-based
approaches (Ryan et al., 2013) and muscle biopsy assessment
of muscle respiratory capacity (Ryan et al., 2014). However,
a caveat of these approaches is that while the capacity for
oxidative phosphorylation can be quantified in vivo, it is
difficult to discern whether a deficit in oxidative capacity
results from impaired blood flow, reduced mitochondrial volume
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FIGURE 2 | Schematic overview of available methods for the assessment of skeletal muscle mitochondrial respiratory capacity and function.

Abbreviations: ADP, adenosine diphosphate; ATP, adenosine triphosphate; H2O2, hydrogen peroxide; NIRS, near-infrared spectroscopy; PCr, phosphocreatine;
31PMRS, 31Phosphorus magnetic resonance spectroscopy.

density, altered mitochondria quality, or a combination of these
factors.

Biochemical analysis of muscle biopsy samples allows
mitochondrial function to be assayed in tightly controlled
systems. Typically, mitochondria can be isolated from muscle
tissue by homogenization and centrifugation, or muscle fiber
bundles can be chemically permeabilized and mitochondria
studied in situ. For several decades, studying respiration or
ATP production in isolated organelles was the gold-standard
approach. However, mechanical isolation of mitochondria from
muscle tissue liberates only ∼50% of the total mitochondrial
pool (Rasmussen et al., 2003). Further, more recent evidence
has highlighted that the reticular structure and network
formed by mitochondria in situ is significantly disrupted
by isolation from skeletal muscle (Picard et al., 2011a,b).
Importantly, this may lead to erroneous data concerning
mitochondrial functionality (Picard et al., 2010). This may
also explain the contradictory findings between mitochondrial
respiratory capacity in isolated mitochondria and in muscle
fiber bundles from PAD patients discussed in the following
section. The development of high-resolution respirometry
methodologies where mitochondrial respiration can be
determined in permeabilized fiber preparations (Saks et al.,
1998) now allows mitochondrial function to be determined when

organelles remain in their normal architectural environment. In
addition, the entire mitochondrial pool can be studied in ∼5mg
(wet weight) of tissue, whereas much greater tissue volumes
are typically required to isolate a viable pool of mitochondria.
Biochemical approaches, such as high-resolution respirometry,
allow for the determination of mitochondrial respiratory capacity
and function in skeletal muscle samples (Kuznetsov et al., 2008;
Gnaiger, 2009). Further, the function of specific complexes of
the electron transport system can be determined. Collectively,
such biochemical approaches allow detailed information to
be generated on mitochondrial function. However, it should
be noted that in vitro approaches typically employ supra-
physiological O2 tensions and substrate concentrations. Clearly,
these caveats need to be considered when interpreting data.

Finally, since assaying mitochondrial function in biopsy
samples requires the use of specialized equipment and needs
to be performed on fresh tissue, investigators often assay
the protein levels and/or activity of mitochondrial enzymes
spectrophotometrically as indicators of muscle oxidative
function/capacity. These measurements can serve as valid
surrogate markers of mitochondrial volume density and thus
oxidative capacity. In particular, cardiolipin content and citrate
synthase activity correlate well with electron microscopic
determination of mitochondrial volume density in healthy adults
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(Larsen et al., 2012). Moreover, cytochrome C oxidase activity
correlates with mitochondrial respiratory capacity (Larsen et al.,
2012), at least in young healthy adults.

The various approaches described above allow different
parameters of muscle mitochondrial performance to be
determined, each having its own strengths and weaknesses.
Due to the complementary nature of in vivo and in vitro
measurements, a combination of approaches within a single
study will likely offer the most comprehensive evaluation of
skeletal muscle mitochondrial function.

SKELETAL MUSCLE MITOCHONDRIAL
FUNCTION IN PAD

Evidence of Altered Muscle Oxidative
Capacity in vivo
A number of descriptive studies in small cohorts of PAD patients,
primarily claudicants, have determined skeletal muscle oxidative
capacity in PAD by means of 31PMRS or NIRS. The majority
of these studies demonstrate increased PCr hydrolysis during
exercise, and slower PCr recovery post-exercise in patients with
PAD (Keller et al., 1985; Hands et al., 1986; Zatina et al., 1986;
Wahl et al., 1994; Kemp et al., 1995a, 2001; Di Marzo et al., 1999;
Pipinos et al., 2000; Greiner et al., 2006; Anderson et al., 2009).
Greater PCr degradation during submaximal exercise reflects a
greater mismatch between oxidative phosphorylation and ATP
turnover. Slower PCr recovery post-exercise indicates reduced
capacity for mitochondrial ATP production in PAD. To account
for a confounding effect of exercise-induced ischemia and pH
change (Kemp, 2004; Pipinos et al., 2007), PCr recovery was
evaluated following mild isometric exercise by Pipinos et al.
(2000) in order to minimize pH changes, which showed a similar
slower PCr recovery in PAD patients compared to control, again
suggesting reduced skeletal muscle oxidative capacity in patients
with PAD. Collectively, these studies demonstrate that skeletal
muscle oxidative capacity is diminished in PAD, where there is
a greater reliance in substrate level phosphorylation to support
cellular ATP demand. Additionally, prolonged PCr recovery was
associated with poor treadmill performance but not with calf
muscle perfusion in a cross-sectional study of 85 patients with
mild to moderate PAD (mean ABI, 0.69), suggesting a role for
reduced muscle oxidative capacity in the functional impairment
in PAD, possibly independent of reduced blood flow (Anderson
et al., 2009).

In support of PCr kinetic data, measurement of O2 kinetics
by NIRS suggest increased muscle deoxygenation during exercise
and slower reoxygenation post-exercise in PAD (Kooijman et al.,
1997; Kemp et al., 2001; Egun et al., 2002; Comerota et al., 2003),
where O2 recovery rate correlate well with PCr recovery rate
in PAD patients (Kemp et al., 2001). Collectively, both MRS
and NIRS provide robust evidence in vivo of impaired oxidative
capacity in skeletal muscle of PAD patients. However, given the
nature of these measurements, it is not possible to discern the
underlying cause of reduced skeletal muscle oxidative capacity
in PAD. For example, whether reduced oxidative capacity is
the result of reduced mitochondrial volume density and/or

diminished mitochondrial quality cannot be concluded from
these in vivo measurements. Determination of mitochondrial
function and protein abundance in biopsy samples is required
to delineate potential deficits in mitochondrial density and/or
quality in the metabolic myopathy that accompanies PAD.

Evidence of Altered Mitochondrial Function
in Skeletal Muscle of PAD Patients
A number of studies have attempted to determine skeletal
muscle mitochondrial function in PAD patients (Jansson et al.,
1988; Pipinos et al., 2003, 2006; Koutakis et al., 2015; van
Schaardenburgh et al., 2016). In a series of studies, Pipinos
and colleagues (Pipinos et al., 2003, 2006; Koutakis et al.,
2015) evaluated mitochondrial respiratory capacity in saponin-
permeabilized myofiber bundles from the gastrocnemius muscle
of PAD patients using Clark-type oxygen electrodes. In the
first of these studies, mitochondrial respiration was determined
in skeletal muscle from 9 patients with advanced PAD (mean
ABI, 0.4) and 9 PAD-free individuals (Pipinos et al., 2003).
These authors found that ADP stimulated respiration supported
by complex I was lower in PAD patients compared to
controls, suggesting a quantitative deficit in mitochondrial
respiratory capacity in PAD. Further, mitochondrial coupling
control determined after the inhibition of adenine nucleotide
translocase (via atractyloside titration) was lower in PAD vs.
PAD-free individuals (Pipinos et al., 2003), suggesting altered
mitochondrial quality (i.e., coupling control) in skeletal muscle
of PAD patients.

In a consecutive study, Pipinos et al. (2006) combined
respirometric and spectrophotometric measurements in
gastrocnemius muscle biopsies of 25 advanced PAD (mean ABI,
0.34) and 16 PAD-free individuals to assess several parameters of
muscle oxidative capacity. Mitochondrial respiration supported
by electron transfer from complex I and complex II of the
electron transport chain was assayed. Further, titration of
mitochondrial inhibitors and specific electron donors was
used to assay the respiratory capacity of complex III and
complex IV of the electron transport chain. When normalized
to citrate synthase activity, the investigators reported lower
ADP-stimulated respiration supported by complex I in PAD
patients, but no differences between groups in respiration
supported by complex II, suggesting substrate specific deficits
in respiratory capacity of muscle mitochondria of PAD patients.
Moreover, these authors reported lower respiratory capacity at
the level of complex III and complex IV, which likely reflect
an overall reduction in mitochondrial respiratory capacity in
muscle of PAD patients. In support of these respirometric data,
spectrophotometric assays of mitochondrial enzyme activities
normalized to citrate synthase activity demonstrated lower
NADH dehydrogenase (complex I), ubiquinol cytochrome c
oxidoreductase (complex III) and cytochrome c oxidoreductase
(complex IV) activities inmuscle of PAD patients, where complex
I and III enzyme activities correlated with complex-I-supported
respiration and complex-III-supported respiration, respectively
(Pipinos et al., 2006). In agreement with the above findings, Brass
et al. (2001) demonstrated lower NADH dehydrogenase activity
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when normalized to citrate synthase activity in gastrocnemius
muscle biopsies from 17 PAD (mean ABI, 0.64) patients
compared with 9 controls. However, these authors found no
significant differences in mitochondrial enzyme activities of
other electron transport chain complexes. These contrasting
results may relate to disparate control groups and/or severity of
PAD between studies (advanced vs. moderate ABI values).

More recently, the group led by Pipinos (Koutakis et al.,
2015) provided further evidence of skeletal muscle mitochondrial
dysfunction in PAD. Studying 30 PAD (mean ABI, 0.55)
and 30 PAD-free patients, the authors reported significantly
lower ADP-stimulated respiration supported by complex I and
complex IV-dependent respiration normalized to citrate synthase
activity in PAD patients vs. controls (Koutakis et al., 2015).
In contrast to their previous report (Pipinos et al., 2006),
PAD patients did not have diminished complex III-dependent
respiration. Once again, this possibly pertains to differences
in the characteristics of the control groups between studies,
with the control group being closely matched to the PAD
group in the latest study (Koutakis et al., 2015) compared
with a relatively healthier control group in the prior study
(Pipinos et al., 2006). Furthermore, fluorescent microscopy
data revealed an irregular, uneven and patchy distribution of
mitochondria in PAD gastrocnemius myofibers, with absence of
mitochondria in desmin-dense myofiber areas that correlated
with decreased complex I- and IV-dependent respiration. In
addition, this group has reported increased protein carbonyl
and 4-hydroxy-2-nonenal (4-HNE) contents in gastrocnemius
myofibers in PAD patients compared to PAD-free individuals,
across all myofiber types (Pipinos et al., 2006; Weiss et al., 2013;
Koutakis et al., 2014), indicating elevated oxidative stress in
muscle of patients with PAD. Increased oxidative damage in
muscle samples from these PAD patients was associated with
reduced myofiber size, and clinical disease progression (Weiss
et al., 2013; Koutakis et al., 2014). Type II (fast-twitch) and
I/II fibers (mixed) myofibers had higher carbonyl content (i.e.,
greater oxidative damage) and displayed a greater reduction
in size compared to Type I fibers (slow-twitch) in PAD vs.
PAD-free gastrocnemius muscle. The oxidative damage and
reduced fiber size is also coupled to a shift from Type II
myofibers to Type I and Type I/II fibers (Koutakis et al., 2014).
These findings suggest that oxidative stress and changes in the
mitochondrial structure and architecture may contribute to the
lower respiratory capacity of skeletal muscle from PAD patients.
Furthermore, data from a recent study by White et al. (2016)
is suggestive of impaired clearance of damaged mitochondria
despite greater activation of mitophagy in gastrocnemius muscle
biopsies from PAD patients, which may influence mitochondrial
turnover rates.

Besides the observations in patients, evidence from studies
using a mouse model of hindlimb ischemia indicates that
disruption of mitochondrial detoxifying/antioxidant systems
may partially account for compromised mitochondrial
respiration and skeletal muscle abnormalities in PAD patients.
In these studies, mitigation of mitochondrial oxidative stress
by mitochondrial-targeted therapy improved mitochondrial
function (Ryan et al., 2016a,b). In addition, mice deficient in

mitochondrial aldehyde dehydrogenase 2, an enzyme responsible
for toxic aldehyde clearance (such as 4-HNE), exhibited greater
gastrocnemius muscle atrophy in response to chronic hindlimb
ischemia compared to wild-type mice (Liu et al., 2015), further
supporting a role for oxidative stress in the mitochondrial
myopathy accompanying PAD.

It should be noted that while measurement of citrate synthase
activity correlates well with mitochondrial volume density in
healthy adults (Larsen et al., 2012), whether this is true in
PAD patients has not been confirmed. Several studies suggest
no significant differences in mitochondrial volume density as
indicated by citrate synthase activity in the gastrocnemius muscle
between PAD and PAD-free patients (Bhat et al., 1999; Wang
et al., 1999; Brass et al., 2001; Hou et al., 2002; Pipinos et al.,
2006). However, other studies report higher citrate synthase
activity in gastrocnemius muscle of the claudicant leg than the
asymptomatic leg in patients with unilateral PAD or between legs
of different PAD severity (Jansson et al., 1988; Hiatt et al., 1996),
in line with mitochondrial volume density data determined
by electron microscopy (EM) in anterior tibial muscle of
unilateral PAD patients (Angquist and Sjöström, 1980). Yet,
a more recent study has demonstrated reduced mitochondrial
volume density by EM in the vastus lateralis of 14 claudicants
(mean ABI, 0.73; Baum et al., 2016). Differences in muscle
sampling sites, severity of PAD, or methodologies used may
account for the disparate findings between studies. Non etheless,
muscle citrate synthase activity was recently identified as a
predictor of mortality rate in PAD patients, with mid-range
values being associated with greater survival (Thompson et al.,
2015).

While the current literature is somewhat conflicting, the
above data suggest reduced muscle mitochondrial respiratory
capacity in PAD, which is likely accompanied by a change
in the mitochondrial volume density, at least in the more
severe manifestations of the disease. However, there is a paucity
of data on skeletal muscle mitochondrial coupling and flux
control in patients with PAD. Early work by Elander et al.
(1985) studied both mitochondrial respiratory capacity and
coupling control in isolated mitochondrial sub-populations
from the gastrocnemius muscle of PAD patients (mean ABI,
0.58) and PAD-free controls. Contrary to the more recent
evidence suggesting impaired mitochondrial respiration, these
authors reported higher respiration supported by complex I
and respiratory control ratio for complex I and II in specific
isolated mitochondrial sub-populations of PAD vs. PAD-free
patients. The discrepant findings may reflect certain limitations
with studyingmitochondrial respiration in isolatedmitochondria
than in permeabilized muscle fibers, such as low yields and
disruption of the mitochondrial network (Picard et al., 2010,
2011a,b). Indeed, van Schaardenburgh et al. (2016) recently
studied both mitochondrial respiratory capacity and coupling
control in permeabilized muscle fibers from the gastrocnemius
muscle of 11 patients with PAD (mean ABI, 0.65) and 11
PAD-free healthy older adults. They found lower mitochondrial
respiration supported by complex I but normal complex-II-
supported respiration in PAD vs. PAD-free patients, in contrast
to the previous findings of Elander et al. (1985). However, when
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normalized to citrate synthase activity, mitochondrial respiration
ceased to differ between PAD and PAD-free patients, even
though citrate synthase activity values per se did not differ
between groups. Yet, the coupling control efficiency (similar to
respiratory control ratio) for complex I was 2.5 times lower in
PAD vs. healthy older adults, which may serve as an index of
intrinsic mitochondrial dysfunction at complex I. Moreover, the
coupling control factor (and index of respiratory control) for
complex II was greater in PAD patients vs. controls, perhaps
suggesting a compensatory response to impaired complex
I function. Here, it should be noted that this study (van
Schaardenburgh et al., 2016) was designed to examine the acute
effects of exercise on mitochondrial respiration within groups
separately, possibly explaining why the groups were not age-
matched, and thus, any between group baseline comparisons
should be interpreted with caution. Yet, these recent findings
(van Schaardenburgh et al., 2016) provide valuable insight in
mitochondrial quality and offer the basis for future studies
to comprehensively characterize skeletal muscle mitochondrial
function in PAD.

Existing Therapeutic Approaches to
Restore Mitochondrial Function and
Skeletal Muscle Abnormalities in PAD
Exercise training, in particular supervised exercise therapy,
is recommended for PAD (Fokkenrood et al., 2013; Rooke
et al., 2013), for its beneficial effects on functional capacity
(McDermott et al., 2009). A limited number of studies
in patients with PAD have highlighted the potential of
exercise therapy to improve skeletal muscle metabolism and
mitochondrial function. In 10 PAD patients, improved exercise
performance with supervised exercise training was associated
with improved lipid oxidation (as indicated by altered carnitine
metabolism; Hiatt et al., 1990, 1996). Supervised exercise
training resulted in an increase in pyruvate- and L-malate-
induced mitochondrial respiration of calf muscle from 8 PAD
patients compared to 7 untrained patients and 11 healthy
controls as demonstrated by in vitro approaches (Hou et al.,
2002). Furthermore, a pilot study has suggested improved
PCr recovery kinetics indicating enhanced oxidative capacity
in PAD patients following supervised exercise training, but
no comparisons were made to a control group (Brizendine
et al., 2014). Pentoxifylline, an FDA approved vasoactive drug
(phosphodiesterase inhibitor) for intermittent claudication, has
been shown to improve oxidative capacity assessed by PCr
recovery kinetics, which in turn is associated with improved
functional capacity in patients with PAD (Pipinos et al.,
2002).

A limited number of studies have also investigated the effects
of revascularization procedures on mitochondrial function
with inconsistent results between studies. Improved but not
complete restoration of oxidative capacity determined by
PCr recovery kinetics in lower extremity muscles has been
demonstrated in PAD patients who underwent lower extremity
revascularization procedures (Schunk et al., 1998; West et al.,
2012). In a third study, treatment of PAD patients with

lower limb PTA or bypass surgery failed to demonstrate
significant improvement in oxidative metabolism determined
by PCr recovery kinetics in calf muscle, albeit normalization
of hemodynamic parameters (Zatina et al., 1986). Collectively,
clear data on the role of surgical revascularization in improving
skeletal muscle oxidative capacity in PAD patients is lacking.
In contrast, the majority of data on exercise training suggests
efficacy in terms of restoring muscle oxidative capacity in
PAD patients. Thus, one may conclude that reduced muscle
mitochondrial function in PAD may be influenced more
directly by reduced muscle contraction, underscoring the
importance of physical activity and exercise training strategies
in the management of PAD. Since oxidative stress may be
responsible for some of the deficits in muscle mitochondrial
function observed in patients with PAD, therapies targeting
mitochondrial antioxidant systems may hold therapeutic value.
Indeed, targeted antioxidant therapy restores mitochondrial
function in a rodent model of hindlimb ischemia (Ryan et al.,
2016a,b). The therapeutic value of manipulating mitochondrial
antioxidant systems as well as other mitochondrial quality
control mechanisms, including mitochondrial dynamics (fusion-
fission balance), and mitochondrial turnover (mitophagy) in the
context of PAD has been comprehensively reviewed elsewhere
(Ueta et al., 2017).

Although this review focuses on the role of mitochondria
in the myopathy of lower extremities PAD, additional factors
also contribute to the development of PAD. Frequently, these
processes are the result of an orchestrated response to ischemia
and involve numerous cell types. In the gastrocnemius muscle
of PAD patients, vascular smooth muscle cells have been found
to shift to a pro-fibrotic phenotype, expressing transforming
growth factor-beta 1 (TGF-β1; a pro-fibrotic cytokine; Ha
et al., 2016). Elevated TGF-β1 expression was associated with
accumulation of fibroblasts and collagen deposition in the
muscle biopsies from these PAD patients. As PAD progresses,
collagen deposition expands from the perivascular area and
infiltrates the gastrocnemius myofibers (Ha et al., 2016).
Further, in the ischemic microenvironment, endothelial and
skeletal muscle cells produce angiogenic factors, such as
vascular endothelial growth factor (VEGF) and angiopoietin-
1. In vitro data suggest that VEGF and angiopoietin-1 secreted
by skeletal muscle and endothelial cells in response to ischemia
may play a role in muscle remodeling (McClung et al.,
2015). In addition, rodents with hindlimb ischemia show
improved muscle regeneration when treated with angiogenic
and myogenic growth factors (Borselli et al., 2010). Hence,
targeting themulticellular skeletal muscle environmentmay be of
therapeutic value in the management of the myopathy associated
with PAD.

Summary and Future Directions
Collectively, current evidence from in vivo and in vitro
methodologies suggests reduced skeletal muscle oxidative
capacity in PAD. Diminished skeletal muscle oxidative
capacity appears to result from both impaired blood flow
and altered mitochondrial respiratory capacity and quality.
Although these findings are important, they are the product
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of a number of small and sometimes disparate exploratory
studies, which do not allow for firm conclusions to be drawn
regarding the role of mitochondrial function in PAD. The tight
coupling between the vasculature, oxygen delivery, and muscle
mitochondrial respiration constitutes a dynamic system of
complex interactions that may be best explored concurrently
with a combination of in vivo and in vitro methodologies.
In particular, we suggest future studies to aim to: (i) be
sufficiently-powered; (ii) use appropriate controls to draw
comparisons to by matching PAD and control groups on
potential confounders, such as age, gender, weight, smoking
status, coronary artery disease, diabetes, dyslipidemia, and
hypertension; (iii) stratify PAD based on severity/clinical
manifestations (ie., asymptomatic, claudication, atypical, critical
limb ischemia); (iv) integrate a combination of methodologies
in order to assess oxidative capacity in vivo, determine intrinsic
mitochondrial respiratory capacity, and coupling control
ratios (mitochondrial quality), and muscle mitochondrial
volume density in muscle biopsies of the same patients; (v)
determine the relationships between mitochondrial function,
clinical PAD parameters, and functional limitations which
was not feasible in the majority of prior studies due to being
relatively underpowered. Inclusion of patients with unilateral
PAD and assessments on both limbs would also be highly
informative. Moreover, analysis of mitochondrial function
in biopsies collected from different regions of the affected
muscle in the same patient will provide additional important
information on the nature of mitochondrial dysfunction in
muscle from PAD patients. Furthermore, data on the long-
term effects of revascularization procedures on mitochondrial
function is currently lacking. Finally, transcriptome-wide
analysis of muscle from patients with PAD would be useful
and may identify new therapeutic targets worthy of further
investigations.

CONCLUSION

The lack of a clear understanding of the role of mitochondrial
dysfunction in PAD represents a significant roadblock in the
development of novel strategies to restore muscle function,
ameliorate limb symptoms, and improve functional capacity in
PAD patients. Therefore, generation of new data concerning the
role of bioenergetics in PAD may contribute to the development
of novel therapies aimed at reducing morbidity in patients
living with PAD. Considering the rising prevalence of PAD, the
persistence of PAD-associated myopathy after revascularization,
its functional and economic impact, and the limited therapeutic
options that currently exist, further research in this field is
warranted.
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