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The mitochondrion is a complex organelle that serves es-
sential roles in energy transduction, ATP production, and
a myriad of cellular signaling events. A finely tuned regu-
latory network orchestrates the biogenesis, maintenance,
and turnover of mitochondria. The high-capacity mito-
chondrial system in the heart is regulated in a dynamic
way to generate and consume enormous amounts of
ATP in order to support the constant pumping function
in the context of changing energy demands. This review
describes the regulatory circuitry and downstream events
involved inmitochondrial biogenesis and its coordination
with mitochondrial dynamics in developing and diseased
hearts.

The adult human heart generates and consumes kilogram
quantities of ATP daily to support normal pump function.
Mitochondrial oxidative phosphorylation (OXPHOS) is
responsible for nearly all of the ATP production (>95%)
in adult mammalian hearts (Ashrafian et al. 2007). The
creatine phosphate shuttle system delivers the high-ener-
gy phosphate groups from the site of production in themi-
tochondria to myofibrils to regenerate ATP consumed
during contraction. As such, the heart requires an enor-
mous mitochondrial biogenic capacity to support the
high demand for ATP production. In fact, >40% of the cy-
toplasmic space (Hom and Sheu 2009) in adult cardiac
myocytes is occupied by mitochondria densely packed
between sarcomeres, around the nucleus, and in the sub-
sarcolemma. The development and maturation of this
specialized high-capacity mitochondrial system in the
heart occur largely during the perinatal and postnatal
developmental stages. The process begins with a major
surge in mitochondrial biogenesis at birth. Following
this biogenic surge, there is a period of maturation that
involves a dramatic increase in dynamics (mitophagy,
fusion, and fission), leading to redistribution and dense
packing of the specialized mature mitochondria along
myofibrils. This cellular architecture facilitates the trans-

fer of high-energy phosphates between the mitochondria
and the contractile apparatus. The resultant mature mito-
chondrial system is capable of high-capacity oxidation of
fuels such as fatty acid, the predominant fuel substrate
for the adult heart. This review focuses on current knowl-
edge of the regulatory circuitry and mechanisms involved
in the maturation and maintenance of this specialized
high-capacity mitochondrial system in developing and
adult mammalian hearts.

Mitochondrial biogenesis: circuitry and regulatory
mechanisms

Mitochondrial genomic and energy transduction
machinery

The mitochondrion is a double-membrane organelle with
an ion-permeable inner membrane and an outer mem-
brane permeable to factors <5 kDa (Balaban 1990). This
complex membrane structure enables ATP generation
via OXPHOS. An electrochemical gradient established
across the inner membrane drives OXPHOS and ATP syn-
thesis. This gradient involves electrons donated from
reduced forms of nicotinamide adenine dinucleotide
(NADH) and flavin adenine dinucleotide (FADH2) gener-
ated by oxidation of acetyl-CoA via the tricarboxylic
acid (TCA) cycle. The acetyl-CoA is generated by oxida-
tion of energy substrates, chiefly fatty acids and glucose–
pyruvate in normal adult hearts (Stanley et al. 2005).
The electrons are accepted and transferred across compo-
nents of the electron transport chain (ETC) in the inner
mitochondrial membrane. The transfer of electrons along
the ETC is coupled to the transport of protons across the
inner membrane, establishing the electrochemical gradi-
ent that drives ATP synthesis.
The mitochondrion is a unique organelle in that it con-

tains its own self-replicating genome. The mitochon-
drial DNA (mtDNA) encodes 13 essential components
of the ETC as well as all rRNAs and tRNAs necessary
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for translation of themtDNA-encoded proteins (Scarpulla
et al. 2012). However, the vast majority of mitochondrial
proteins (>1000) (Pagliarini et al. 2008; Lotz et al. 2014)
are encoded by the nuclear genome. Therefore, the biogen-
esis of mitochondria requires exquisite coordination of
both mitochondrial and nuclear genomes. The control
mechanisms for the orchestrated control ofmitochondrial
biogenesis are achieved largely through factors encoded
by the nuclear genome, as described below. Indeed, all of
the machinery needed for replication and transcription
of the mitochondrial genome is contained within the
>1000 nuclear-encoded mitochondrial proteins.

Biogenic machinery: transcriptional networks

A complex transcriptional network orchestrates nuclear
and mitochondrial genome transcription and replication
to conduct robust and dynamicmitochondrial biogenic re-
sponses in the heart. This system must coordinate both
genomes during development and in response to physio-
logical cueswhen there are changes in fuel substrate avail-
ability or energetic demands. A key breakthrough in our
understanding of the transcriptional control of mito-
chondrial biogenesis and maturation came with the iden-
tification of the transcriptional coregulator peroxisome
proliferator-activated receptor γ (PPARγ) coactivator 1α
(PGC-1α). PGC-1α was first identified in brown adipose
as a direct coactivator of PPARγ, a master regulator of adi-
pogenesis (Puigserver et al. 1998). PGC-1α is amember of a
family of transcriptional coregulators, including the close-
ly related PGC-1β and a more distant member, PGC-1-re-
lated coactivator (PRC) (Andersson and Scarpulla 2001;
Kressler et al. 2002; Lin et al. 2002). Gain- and loss-of-
function studies have revealed a critical role for the

PGC-1 coactivators in driving mitochondrial biogenesis
and function in the heart and othermitochondrial-rich or-
gans such as brown adipose tissue and skeletal muscle.
Cardiac-specific transgenic overexpression of PGC-1α in
mice results in an exuberant mitochondrial biogenic re-
sponse during the postnatal period together with in-
creased expression of nuclear-encoded mitochondrial
genes (Lehman et al. 2000). Genetic deletion of either
PGC-1α or PGC-1β in mice does not lead to overt abnor-
malities in mitochondrial function or biogenesis under
basal conditions, indicating functional redundancy. How-
ever, loss of PGC-1α or PGC-1β accelerates cardiac dys-
function following the stress of pressure overload (Arany
et al. 2006). Germline deletion of both PGC-1α and
PGC-1β evokes perinatal lethal heart failure caused by a
complete lack of cardiac mitochondrial biogenesis (Fig.
1; Lai et al. 2008). Mice lacking PRC exhibit an embryon-
ic-lethal phenotype, dying shortly after implantation.
These latter results support a critical and novel role for
PRC in embryonic development (He et al. 2012). Taken to-
gether, these results indicate that PGC-1 signaling is both
sufficient and necessary for cardiacmitochondrial biogen-
esis at birth and that PGC-1α and PGC-1β have overlap-
ping functions.

The mouse phenotypes resulting from developmental
stage-specific targeting of PGC-1β on a generalized PGC-
1α-deficient background in mice has provided important
insight into the roles of the coregulators in postnatal and
adult mammalian hearts. Targeting of the PGC-1 coacti-
vators after the perinatal biogenic response results in a
progressive postnatal cardiomyopathy associated with
dramatic mitochondrial morphological derangements
indicative of derangements in mitochondrial fusion and
fission (Fig. 1; Martin et al. 2014). These latter results

Figure 1. Cardiac mitochondrial pheno-
types of developmental stage-specific
PGC-1 knockout mice. Electron micro-
graphs illustrate the altered mitochondrial
ultrastructure and biogenic response re-
sultant from developmental stage- and
cardiac-specific PGC-1α/β gene targeting
“knockouts” (α/β−/−) (bottom row) com-
pared with wild-type or PGC-1α−/− (adult)
age-matched controls (top row). (Bottom,
left) Germline disruption of PGC-1α/β
genes results in a perinatal arrest of bio-
genesis with a profound reduction in mito-
chondrial content, as characterized by
small numbers of immature mitochondria
on day 1 following birth. (Bottom, middle)
Deletion of cardiac PGC-1α/β genes in the
postnatal period (using a muscle creatine
kinase-driven Cre recombinase) impairs
mitochondrial fusion and fission, as reflect-
ed by fragmented, elongated, and “donut”-
shaped mitochondria. The micrographs
were taken of cardiac ventricles at postna-

tal day 28. (Bottom, right) Inducible deletion of PGC-1 in adult hearts (12 wk of age) does not significantly affect mitochondrial density
but results in a subset of abnormal mitochondria with collapsed cristae (white arrow), reminiscent of the phospholipid abnormalities
seen with human Barth syndrome. Bars: germline micrographs, 0.5 μm; postnatal and adult micrographs, 1.0 μm. (FAO) Fatty acid
oxidation.
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demonstrate the importance of PGC-1 signaling for post-
natal mitochondrial maturation, including a critical role
for mitochondrial dynamics during growth of postnatal
hearts. As described below, mitophagy is also required
for this maturation process and is therefore included as a
component of the process of mitochondrial dynamics.
Surprisingly, and in contrast to the germline and post-

natal knockout phenotypes, inducible deletion of PGC-1
in adult hearts in mice does not compromise normal car-
diac function or result in overt abnormalities of mito-
chondrial structure. However, adult PGC-1α/β-deficient
mice exhibit global down-regulation of transcripts encod-
ing components of the fatty acid oxidation (FAO), TCA,
and ETC/OXPHOS pathways together with decreased
respiratory capacity (Martin et al. 2014). These findings
as well as observations by others (Chen et al. 2011) indi-
cate that rates of mitochondrial fission and fusion (and
mitochondrial turnover) are much lower in normal adult
hearts compared with during postnatal developmental
stages. Interestingly, a subset of mitochondria in adult
PGC-1 double-knockout mice displayed ultrastructural
mitochondrial cristae abnormalities similar to what is
observed in Barth syndrome, a congenital disease caused
by altered cardiolipin biosynthesis (Lai et al. 2014b).
These latter results implicate PGC-1 in mitochondrial
membrane lipid biosynthesis. Taken together with the
results of the perinatal and postnatal PGC-1-deficient phe-
notypes, these studies have identified developmental
stage-specific roles for the PGC-1 coactivators in the heart
(Fig. 1).
The PGC-1 coactivators exert their function through di-

rect interactions with target transcription factor effectors,
allowing coordinate control of the various pathways in-
volved in building new mitochondria (Fig. 2; Vega et al.
2015). Most of the work defining such interactions has
focused on PGC-1α. PGC-1α enhances transcription by in-
teracting directly with members of the nuclear receptor
superfamily via specific LXXLL recognition domains, re-
cruiting molecules that mediate chromatin remodeling
via histone acetylation, and interacting with the TRAP/
DRIP complex to recruit RNA polymerase II (Ge et al.
2002). Effector transcription factors within this cascade

include members of the PPAR, estrogen-related receptor
(ERR), and nuclear respiratory factor-1 (NRF-1) transcrip-
tion factor families. As shown in Figure 2, these transcrip-
tion factors control and regulate distinct, but at times
overlapping, aspects ofmitochondrial energymetabolism,
respiration, and biogenesis.
NRF-1 and NRF-2 (GABP) regulate expression of virtu-

ally every complex in the ETC (Scarpulla 2008; Satoh
et al. 2013). In addition, the PGC-1/NRF-1 interaction ac-
tivates downstream factors involved in mtDNA replica-
tion. Specifically, NRF-1 activates transcription of genes
encoding factors that mediate replication and transcrip-
tion of the mitochondrial genome, including TFAM and
TFB2M (Gleyzer et al. 2005). Consistent with these roles,
genetic loss of either NRF-1 or NRF-2 results in embryon-
ic lethality with reduced mtDNA content and ETC activ-
ity, underscoring the necessary role for each of these
factors (Huo and Scarpulla 2001; Ristevski et al. 2004).
The ERR family of nuclear receptors serves a central

function in the PGC-1 regulatory circuitry (Fig. 2).
ERRα, ERRβ, and ERRγ have significant homology with
classic estrogen receptors in the ligand-binding domain
but do not bind estrogen or any known endogenous ligand
(“orphan” nuclear receptors). The first evidence support-
ing a role for ERRα in the regulation of mitochondrial me-
tabolism was the discovery that it regulates transcription
of the gene encoding medium chain acyl-CoA dehydroge-
nase (MCAD), an enzyme that catalyzes the first step in
mitochondrial FAO (Sladek et al. 1997; Vega and Kelly
1997). Broader links to PGC-1 and mitochondrial biogen-
esis were made when it was shown that PGC-1α interacts
with ERRα via the results of a yeast two-hybrid screen
(Huss et al. 2002; Schreiber et al. 2004). In cooperation
with PGC-1α, ERRα has since been shown to regulate
genes in virtually every pathway of mitochondrial energy
transduction and ATP synthesis, including FAO, the TCA
cycle, and ETC/OXPHOS (Huss et al. 2004). Genome-
wide chromatin immunoprecipitation (ChIP) surveys
confirmed direct binding of ERRα and ERRγ to the pro-
moter regions of many nuclear-encoded mitochondrial
genes (Dufour et al. 2007). Generalized ERRα knockout
mice are fertile and viable but are susceptible to cardiac

Figure 2. The PGC-1α transcriptional regulatory cas-
cade: upstream inputs and downstream targets. PGC-
1α expression and activity are modulated by various
upstream signaling pathways responsive to physiolog-
ic andmetabolic stimuli to controlmitochondrial bio-
genesis and function. As shown, PGC-1α interacts
directly with and coactivates multiple DNA-binding
transcription factors to control virtually all aspects
of biogenesis, dynamics, and maintenance of mito-
chondrial protein levels. (CREB) cAMP response
element-binding protein, (CaMK) calmodulin-depen-
dent kinase, (CN) calcineurin, (AMPK) AMP-activat-
ed kinase, (SIRT1) sirtuin 1, (Perm1) PGC-1 and ERR
regulator in muscle 1, (RXR) retinoid X receptor.
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dysfunction in response to pressure overload and have re-
duced ATP synthesis rates following ischemic insult
(Huss et al. 2007). ERRγ knockout mice die shortly after
birth of heart failure with an inability to shift to oxidative
metabolism (Alaynick et al. 2007). These latter results
point to a critical role by ERRγ in the postnatal energy
metabolic maturation of developing hearts. Recently, it
has been shown that combined cardiac-specific deletion
of ERRα/ERRγ displays premature lethality with reduced
expression of genes critical for mitochondrial energy pro-
duction (Wang et al. 2015). The role of the third member
of the family, ERRβ, in cardiac mitochondrial function
and energy production is not known. Notably, ERRα and
ERRγ have also been shown to regulate contractile and
calcium-handling gene expression in the heart and skele-
tal muscle, suggesting functions in coordinate control of
mitochondrial energy production and contractile function
in striated muscle (Dufour et al. 2007; Gan et al. 2013).

The PPAR family of nuclear receptor transcription fac-
tors can also serve as effectors of the PGC-1 coactivators.
The PPARs (PPARα, PPARδ [also known as PPARβ], and
PPARγ) were originally identified as regulators of peroxi-
somal β-oxidation (Issemann and Green 1990). PPARs
are now known to regulate genes involved in mitochon-
drial FAO and many other cellular lipid metabolic path-
ways (van der Meer et al. 2010; Scarpulla et al. 2012;
Kersten 2014; McMullen et al. 2014). Given that fatty ac-
ids are the preferred fuel substrate in normal adult hearts,
accounting for 60%–90% of ATP production, the PPARs
serve a critical role in the biogenesis of mitochondria spe-
cialized for high-capacity FAO in the heart. Target genes
for PPARα in the heart include enzymes and proteins
involved in fatty acid transport, activation, andmitochon-
drial FAO (Gulick et al. 1994; Brandt et al. 1998; Mascaro
et al. 1998). The function of PPARs as regulators of cardiac
myocyte fatty acid metabolism has been validated in vivo
by PPARα loss of function and transgenic overexpression
in mice (Aoyama et al. 1998; Djouadi et al. 1999; Leone
et al. 1999;Watanabe et al. 2000; Finck et al. 2002). PPARs
have large, hydrophobic ligand-binding domains that ac-
commodate a variety of endogenous fatty acids and eicos-
anoids as activating ligands. In this way, PPARs serve as
metabolic sensors to match fuel substrate availability
and delivery with high FAO capacity. Although all PPARs
bind as heterodimers to their cognate DNA elementswith
the retinoid X receptor (RXR), they may also interact with
other transcription factors. For instance, recent work has
shown that the Kruppel-like factor 15 (KLF15) interacts
directly with PPARα in the heart to regulate genes in-
volved in FAO (Prosdocimo et al. 2014, 2015).

In addition to the PGC-1 regulatory circuit, several oth-
er transcription factors have been shown to contribute to
mitochondrial biogenesis. Such factors likely function
independently of the PGC-1 coactivators in distinct phys-
iologic or pathophysiologic contexts. The c-Myc tran-
scription factor has been shown to induce mitochondrial
function and activate NRF-1 and TFAM (Li et al. 2005;
Kim et al. 2008). In the heart, interestingly, c-Myc triggers
increased reliance on glucose and decreased FAO during
times of growth or ischemia, a possible adaptive response

to stress (Ahuja et al. 2010). In support of this latter role, c-
Myc expression increases with pressure overload and im-
proves recovery following an ischemic insult (Ahuja et al.
2010). These results suggest that c-Myc plays a unique
role in the control of mitochondrial biogenesis and func-
tion when canonical pathways (PGC-1/ERR and PGC-1/
PPAR) are not active, such as occurs during fetal periods
or hypertrophic growth when the heart relies to a greater
extent on glucose as a fuel substrate.

Regulatory inputs into mitochondrial biogenesis
via regulation of PGC-1 coactivators

PGC-1α receives inputs from multiple pathways to con-
trol its expression and activity in diverse developmental
and physiological contexts. As shown in Figure 2, PGC-
1α expression is highly induced by exposure to cold and
exercise, mediated largely through β-adrenergic stimula-
tion and cAMP/CREB (cAMP response element-binding
protein) signaling (Wu et al. 1999; Baar et al. 2002; Terada
et al. 2002). In skeletal muscle, p38MAPK also stimulates
PGC-1α gene expression following a single bout of exer-
cise mediated through the ATF2 transcription factor (Aki-
moto et al. 2005). Activation of AMPK (AMP-activated
kinase) following acute exercise may also increase PGC-
1α expression in skeletal muscle (Little et al. 2010).
Activation of the calmodulin-dependent kinase and calci-
neurin by calcium signaling provides an additional mech-
anism to increase PGC-1α expression (Czubryt et al. 2003;
Schaeffer et al. 2004). Finally, in the heart, the proviral in-
tegration site for Moloney murine leukemia virus (PIM)
kinases has been shown to regulate PGC-1 expression
and capacity for mitochondrial energy production. Inter-
estingly, genetic deletion of all three Pim kinases (Pim-
1, Pim-2, and Pim-3) results in a cardiac senescence phe-
notype with marked reduction of PGC-1α and PGC-1β
concomitant with mitochondrial defects and decreased
ATP levels (Din et al. 2014).

PGC-1α activity is also regulated by post-translational
modifications, including phosphorylation and acetylation
(Fig. 2). There is some evidence that phosphorylation by
AMP kinase activates PGC-1α, providing a link between
cellular energy status and mitochondrial biogenesis (Jager
et al. 2007). PGC-1α has been shown to be acetylated at
multiple lysine residues and is a substrate for the NAD+-
dependent deacetylase sirtuin 1 (SIRT1) (Gerhart-Hines
et al. 2007; Coste et al. 2008; Canto et al. 2009). As
NAD+ levels are also regulated by AMPK, activation of
PGC-1α through deacetylation by SIRT1 potentially cre-
ates a link between energy status, redox state, and mito-
chondrial function (Canto et al. 2009).

PGC-1 coactivators have been shown to cooperate with
other factors to promote mitochondrial biogenesis and
function (Fig. 2). The PGC-1 and ERR regulator in muscle
1 (Perm1) was recently shown to be required for PGC-1-
induced mitochondrial biogenesis (Cho et al. 2013).
Perm1 expression is enriched in skeletal muscle, heart,
and brown adipose and regulates the expression of certain
PGC-1 and ERR target genes. Perm1 itself is activated
by ERR/PGC-1, providing a feed-forward mechanism to
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promote mitochondrial biogenesis. A similar type of
regulatory loop is active in melanocytes, where PGC-1α
activates expression of the microphthalmia-associated
transcription factor (MITF) to promote the tanning re-
sponse (Shoag et al. 2013). MITF also directly activates
PGC-1α expression to increase oxidative capacity to com-
plete this feed-forward regulatory loop (Haq et al. 2013).
This regulatory loop has been described in a subset of mel-
anomas (Vazquez et al. 2013). Finally, interactions be-
tween PGC-1 and the phosphatidate phosphatase lipin 1
have been shown to modulate PGC-1 activity. Lipins
were first discovered as enzymes that catalyze the forma-
tion of diacylglycerol in the glycerolipid biosynthesis
pathway (Csaki and Reue 2010). However, lipin 1 also
has a nuclear function by which it physically interacts
with PGC-1α and PPARα to activate FAO gene expression
(Finck et al. 2006). In the heart, lipin 1 expression is acti-
vated by ERR/PGC-1α forming a feed-forward loop to
modulate cardiac metabolism (Mitra et al. 2011).

Mitophagy

It seems evident that homeostasis in mitochondrial mass
and tissue energetic demands requires biogenic synthesis
of newmitochondrial components to be spatiotemporally
matched with the removal of old or damaged mitochon-
dria. Themost completely understoodmechanism for tar-
geted removal of damaged mitochondria is through the
PINK1 (PTEN-induced kinase 1)–Parkin mitophagy path-
way (Fig. 3). As its name suggests, mitophagy describes
consumption of whole or fragmented mitochondria by
an autophagosome and transfer of the mitochondrial car-
go to degradative lysosomes. Details of how PINK1 and
Parkin interact were initially defined in studies using cul-

tured cells and Drosophila skeletal muscle and have re-
cently been reviewed in detail (Durcan and Fon 2015;
Shirihai et al. 2015). Briefly, the nuclear-encoded kinase
PINK1 is actively imported into mitochondria and, under
normal conditions, undergoes rapid proteolytic degrada-
tion. Thus, PINK1 mRNA levels tend to be high, but
protein levels are low; this is the case in normal mouse
hearts (Song et al. 2015a). Mitochondrial dysfunction,
measured experimentally as dissipation of the normal in-
ner membrane electrochemical gradient (depolarization)
or induction of the mitochondrial unfolded protein re-
sponse (mtUPR), disrupts normal PINK1 proteolysis.
Thus, PINK1 accumulates specifically in damaged mito-
chondria, where it phosphorylates a number of substrates
that directly and indirectly attract Parkin to the organelle.
Parkin is an E3 ubiquitin ligase that ubiquitinates at least
100 different mitochondrial outer membrane proteins
upon PINK1-mediated mitochondrial translocation, thus
targeting the organelle for docking to and engulfment by
an autophagosome (Fig. 3).
Numerous loss-of-function PINK1 and Parkin muta-

tions have been linked to autosomal recessive Parkinson’s
disease (Pickrell and Youle 2015), and it has been widely
accepted that degeneration of dopaminergic neurons in
Parkinson’s disease is the consequence of interrupted
mitophagy; i.e., a primary problem of mitochondrial qual-
ity control. The seminal observation underlying this path-
ogenic concept was that Parkin overexpression rescued
mitochondrial defects in Drosophila PINK1 mutants
(Clark et al. 2006; Park et al. 2006). However, PINK1
may not be necessary for Parkin translocation during
mitophagy in mouse cardiac myocytes (Kubli et al.
2015), suggesting either that poorly described mitophagic
mechanisms distinct from the canonical PINK1–Parkin

Figure 3. Coordinate control ofmitophagy andmitochondrial biogenesis.Mitophagy and biogenesis are coordinately regulated to replace
damaged mitochondria during periods of high mitochondrial turnover such as in the developing heart. Parkin is an E3 ubiquitin ligase
recruited to the mitochondria through interaction with phosphorylated mitofusin 2 (Mfn2). Ubiquitination of outer mitochondrial mem-
brane proteins by Parkin triggers partial or total engulfment by the autophagosome. Among Parkin’s substrates is PARIS (Parkin-interact-
ing substrate), amolecule that also serves as a transcriptional repressor of PGC-1α andmay serve to coordinatemitophagywith biogenesis.
Ubiquitination of PARIS and subsequent degradation serve to activate PGC-1α expression and the biogenic response. (IRS) Insulin re-
sponse sequence.
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pathway compensate for the absence of PINK1 or that
mitophagy is not the only process that is rescued by over-
expressing Parkin in PINK1-null flies. In other words, a
rigorous interpretation of the fly data strongly suggests
that Parkin can play central roles in biological processes
other than and in addition to mitophagy. Indeed, there is
little direct evidence that the PINK1–Parkin interaction
mediates targeted mitophagy of damaged mitochondria
in the dopaminergic neurons that are affected in Parkin-
son’s disease (Scarffe et al. 2014), and germline Parkin
knockout mice do not develop characteristic pathological
features of Parkinson’s disease (Lee et al. 2012b).

It has been speculated that Parkin and mitophagy
play different roles in mitotic cells, such as the cultured
fibroblasts that provided the foundation for our mech-
anistic understanding of mitophagy signaling, compared
with nonmitotic terminally differentiated neurons
(Scarffe et al. 2014). Like neurons, adult cardiomyocytes
are post-mitotic and terminally differentiated, and nei-
ther germline nor cardiomyocyte-specific Parkin deletion
significantly impacts unstressed adult hearts (Kubli et al.
2013b; Song et al. 2015a). Indeed, Parkin is present at
such low abundance in normal adult mouse hearts as to
be almost undetectable at both the mRNA and protein
levels (Song et al. 2015a). Finally, there is direct evidence
for the existence of Parkin-independent mitophagymech-
anisms in neonatal and adult mouse hearts (Kageyama
et al. 2014; Song et al. 2014). Thus, it is possible that non-
mitophagic effects of Parkin, such as regulatingmitochon-
drial biogenesis, represent more important housekeeping
functions in normally functioning post-mitotic tissues
such as the heart and brain than does mitochondrial qual-
ity control.

Orchestration of mitochondrial biogenesis
and dynamics

In adult hearts, the rate of mitochondrial turnover is
only approximately one-third of that of mitochondria in
livers; i.e., approximately every 2 wk (Chen et al. 2011;
Lau et al. 2015). Because measuring mitochondrial turn-
over as the absolute rate of component biosynthesis and
mitochondrial removal is difficult in vivo, changes in
mitochondrial biogenesis are often inferred from modula-
tion of the characteristic PGC-1-directed cardiac gene ex-
pression program (Lai et al. 2008; Vega et al. 2015). By this
metric, cardiomyocyte-specific Parkin deficiency (Parkin-
specific RNAi) provoked a marked reduction in mtDNA
content in Drosophila heart tubes, associated with in-
creased RNA abundance of the mitochondrial transcrip-
tion factor Tfam. Together, these findings suggest that
cardiac Parkin deficiency interrupts fly heart tube mito-
chondrial biogenesis (Bhandari et al. 2014), which is in
agreement with the previously postulated role for Parkin
as a positive regulator of both mitochondrial biogenesis
and mitophagy in Drosophila skeletal muscle (Vincow
et al. 2013) and cultured cells (Kuroda et al. 2006; Rothfuss
et al. 2009).

In mammalian hearts, the evidence for functional co-
operation between mitochondrial biogenesis and Parkin

signaling is largely indirect and derived from genetic per-
turbation of mitochondrial dynamics factors. Compared
with the cultured cells in which the fundamentals of mi-
tochondrial dynamismwere originally described (Koshiba
et al. 2004), adult cardiac myocytes are globally impaired
inmitochondrial dynamics; fusion and fission occur so in-
frequently as to not be observable using normal live-cell
techniques, and subcellular trafficking has been inferred
from biochemical and functional distinctiveness observed
in interfibrillar and subsarcolemmal cardiac mitochon-
dria (Hollander et al. 2014; Song and Dorn 2015). Never-
theless, hearts with cardiomyocyte-specific defects in
outer mitochondrial membrane fusion (combinedmitofu-
sin 1 [Mfn1] and Mfn2 ablation) or fission (Drp1 ablation)
exhibit dysfunction of both mitochondrial biogenesis
signaling and mitophagy. In a side-by-side comparative
study, cardiac-specific abrogation of either mitochondrial
fusion or fission in adult mouse hearts provoked lethal
cardiomyopathies over ∼6 wk, but the underlying pheno-
types were quite different (Song et al. 2015b). As expected,
interrupting mitochondrial fission produced elongated
mitochondria, whereas interrupting mitochondrial fusion
produced abnormally small, fragmented mitochondria.
Mitochondrial biogenesis (Tfam, PGC-1α, and PGC1-β
gene expression) was similarly impaired in both fusion-
and fission-deficient hearts, but mitophagy was dysreg-
ulated in opposite directions; mitophagy (measured as
an increase in the autophagy proteins p62/SQSTM1 and
LC3 in mitochondria-enriched myocardial protein frac-
tions) was greater in fission-defective Drp1-null hearts
but not in fusion-defectiveMfn1/Mfn2-double-null hearts
(Song et al. 2015b). A central role for Parkin in the mito-
phagy induced by conditionally interrupting mitochon-
drial fission (cardiac Drp1 knockout) was subsequently
demonstrated through concomitant cardiomyocyte-spe-
cific deletion of Parkin and Drp1, which prevented the
characteristic hypermitophagy and delayed the dilated
cardiomyopathy typically induced by Drp1 ablation
(Song et al. 2015a). Together, these findings point to a lev-
el of interdependence between mitochondrial biogenesis
and Parkin-mediated mitophagy that was not evident
from previous investigations.

A plausible mechanism linking mitophagy to mito-
chondrial biogenesis involves Parkin-interacting sub-
strate (PARIS), which is chronically removed by PINK1-
independent Parkin-mediated ubiquitination and there-
fore accumulates under conditions of Parkin insufficiency
(Shin et al. 2011). PARIS regulates mitochondrial bio-
genesis by transcriptionally repressing PGC-1α, likely
through binding of the insulin response sequence (IRS)
of the PGC-1α promoter region (Shin et al. 2011). PARIS
suppression ameliorated the Parkinson’s disease-like pa-
thology provoked by stereotaxic injection of adenoviral-
Cre into the nigrostriatal area of Parkin floxed allele
mouse brains. Thus, accumulation of PARIS after abroga-
tion of its normal Parkin-mediated removal mechanism
caused degeneration of dopaminergic neurons. Further-
more, transgenic overexpression of PARIS is sufficient to
induce dopaminergic neuron degeneration, and PGC-1α
overexpression can rescue this (Shin et al. 2011). Together,
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these findings mechanistically link amitophagy-indepen-
dent action of Parkin on its substrate, PARIS, to modulate
PGC-1α-directed mitochondrial biogenesis (Fig. 3). More-
over, the presence ofNRF-1- andNRF-2-occupied promot-
er elements within the genes encoding mitophagy factors
Parkin and PINK1 suggests the existence of additional
functional interactions between mitochondrial biogenic
regulators and mitophagy (Satoh et al. 2013).
A paradox is posed by the observed interruption of

mitophagy after combined cardiac Mfn1 and Mfn2 abla-
tion, in which mitochondrial dysfunction and depolari-
zation that normally stimulate mitophagic signaling are
both increased (Chen et al. 2011; Song et al. 2015b). It
is likely that interruption of mitophagy is not a func-
tion of decreased mitochondrial fusion but is the conse-
quence of a lack of Mfn2 that, after its phosphorylation
by PINK1, can function as a mitochondrial binding part-
ner (i.e., receptor) for Parkin (Fig. 3; Chen and Dorn
2013). The seminal observations suggesting a role for
Mfn2–Parkin interactions in mitophagy were that Parkin
does not localize to depolarized mitochondria in cardio-
myocytes of cardiac-specific Mfn2-null mice (Chen and
Dorn 2013) or neurons in neuron-specific Mfn2-null
mice (Lee et al. 2012a). Subsequent mutation studies re-
vealed that PINK1-mediated phosphorylation of two spe-
cific amino acids, Mfn2 T111 and S442, was essential for
the Parkin–Mfn2-binding interaction (Chen and Dorn
2013). However, PINK1 phosphorylated Mfn2 cannot be
the only mitochondrial Parkin receptor, as Parkin will
translocate to depolarizedmitochondria ofmurine embry-
onic fibroblasts derived from mice with germline Mfn2
deficiency. The identities of other Parkin receptors and
the relative role of the PINK1–Mfn2–Parkin signaling
axis comparedwith possible alternative Parkin-dependent
and Parkin-independent mitophagy pathways in hearts
and other organs remain to be determined.
The findings described above indicate that mitochon-

drial dynamics affect biogenesis. There is also evidence
that the biogenesis circuitry exerts regulation upon dy-
namics via effects on fusion and fission. As described
above, targeted disruption of PGC-1β genes immediately
after birth in a generalized PGC-1α-deficient background
results in a progressive and lethal cardiomyopathy with
severely altered mitochondrial morphology, including
fragmentation and elongation, suggestive of defects in
proper mitochondrial dynamics (Martin et al. 2014). The
levels of several proteins critical for mitochondrial fusion
and fission were down-regulated in the postnatal PGC-1α/
β-deficientmice, includingMfn1,Mfn2, andOpa1 (Martin
et al. 2014). Mfn1 and Mfn2 have both been shown to be
direct ERRα/PGC-1α gene targets (Soriano et al. 2006;
Martin et al. 2014). These results demonstrate one mech-
anism for the coordination of mitochondrial biogenesis,
dynamics, and maturation in postnatal hearts.
In summary, recent data have implicated cross-regula-

tory circuits that coordinate mitophagy, mitochondrial
dynamics, and mitochondrial biogenesis (Fig. 3). PGC-
1α, through coactivation of ERR, PPAR, and other tran-
scription factors, not only controls biogenesis but also
regulates components of mitophagy and dynamics. In-

triguingly, mitophagy signals also communicate with
the biogenic machinery, likely via regulation of PGC-1α
by factors such as PARIS. It is possible, if not likely, that
other signals exist to coordinately regulatemitophagy, dy-
namics, and biogenesis. Finally, this circuitry is critical
for postnatal maturation of the cardiac mitochondrial sys-
tem. Akin to the switch from fetal to adult contractile
gene expression, it is tempting to speculate that coordina-
tion of mitophagy and biogenesis occurs in adult hearts as
a quality control mechanism relevant to aging or physio-
logical/pathophysiological stressors. It should be noted
that the primary driver of the biogenesis–mitophagy axis
during postnatal development remains unknown. Is it
triggered by mitophagy, PGC-1-mediated biogenesis, or
independent signals? Another important question relates
to the nature of relevant upstream signals that initiate this
process. Such questions pave theway for important future
research endeavors.

Mitochondrial remodeling in disease states

Fuel shifts and energetic remodeling in hypertrophied
and failing hearts

Pathological cardiac hypertrophy and heart failure are
characterized by an increase in the expression of many
contractile and structural genes that are normally ex-
pressed in fetal hearts along with decreased expression
of normal adult genes. This reactivation of the so-called
“fetal gene program” also applies to energy metabolism
in heart failure. For instance, expression of PGC-1/
PPAR-driven FAO genes is down-regulated during cardiac
hypertrophy even prior to overt cardiac dysfunction (Sack
et al. 1996; Lai et al. 2014a). Consistent with this, FAO
rates and the contribution of β-oxidation-generated ace-
tyl-CoA into the TCA cycle are reduced in pressure over-
load-induced cardiac hypertrophy and in failing hearts
(Akki et al. 2008; Kolwicz et al. 2012; Zhang et al. 2013).
In humans, cardiac hypertrophy has also been shown to
be associated with reduced myocardial fatty acid utiliza-
tion (de las Fuentes et al. 2006). These observations indi-
cate that mitochondria are remodeled to a phenotype
with reduced capacity for FAO during the development
of cardiac hypertrophy and heart failure.
PGC-1/ERR signaling is also decreased in failing hearts

in preclinical animalmodels and humans. Transcriptomic
profiling has demonstrated down-regulation of these fac-
tors and many of the downstream targets in end-stage
failinghumanheart samples (Gupte et al. 2014).Metabolo-
mic signatures of failing human hearts provide evidence of
metabolic dysfunction and a decline in oxidative metabo-
lism with decreased short and medium chain acylcarni-
tines as well as TCA cycle intermediates (Gupte et al.
2014). Interestingly, similar profiling in earlier stages of
heart failure in mice, while demonstrating the expected
down-regulation of FAO enzyme gene expression (altered
PPAR activity), revealed only minimal evidence for
down-regulation of ETC and OXPHOS gene expression
(Lai et al. 2014a). Taken together, these results imply
progressive, pathologic remodeling and dysregulation of
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mitochondrial energy production during the development
of heart failure. It is likely that deactivation of PPARα and
subsequentdecreasedFAOareearlyevents thatcontribute
to a switch to other fuel substrates, such as glucose and ke-
tones. However, as the disease progresses, expression of
ERR and PGC-1 is also down-regulated, resulting in a
greater reduction ofmitochondrial oxidative capacity. Ad-
ditionally, the results suggest that post-translationalmod-
ifications likely contribute to themetabolic derangements
during the development of heart failure (Lai et al. 2014a).

Pathologic cardiac remodeling, biogenesis,
and mitophagy

Given the known links between mitophagy and mito-
chondrial biogenesis, what role does mitophagy play dur-
ing pathologic cardiac remodeling relevant to heart
failure? Much less is known about this area, but interest
is emerging. As stated above, although unstressed Par-
kin-deficient mice have normal cardiac function, they ac-
cumulate abnormal mitochondria with age (Kubli et al.
2013a). In addition, deletion of Parkin and impaired
mitophagy result in sensitization to ischemic injury, as
Parkin knockout mice have larger infarcts and pathologic
remodeling following myocardial infarction (Kubli et al.
2013a). Parkin levels and mitophagy are also rapidly in-
creased in the border zone following infarct. There is
also evidence that increased mitophagy provides a mech-
anism for protective ischemic preconditioning (Huang
et al. 2011). Ischemic preconditioning stimulates Parkin
translocation to the mitochondria and is attenuated in
Parkin knockout mice (Huang et al. 2011). Given these
results, it is tempting to speculate that pathologic remod-
eling in the heart involves waves ofmitochondrial biogen-
esis and mitophagy. It is also possible that physiological
stressors such as exercise or pregnancy could activate
rounds of adaptive mitophagy and biogenesis. Answers
to these questions may lead to insights into targeting
these pathways for therapeutic benefit in the setting of
heart failure.
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