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Abstract Mitochondrial disease is one of the most

common groups of genetic diseases with a minimum

prevalence of greater than 1 in 5000 in adults. Whilst

multi-system involvement is often evident, neurological

manifestation is the principal presentation in most cases.

The multiple clinical phenotypes and the involvement of

both the mitochondrial and nuclear genome make mito-

chondrial disease particularly challenging for the clinician.

In this review article we cover mitochondrial genetics and

common neurological presentations associated with adult

mitochondrial disease. In addition, specific and supportive

treatments are discussed.

Keywords Mitochondrial disease � Mitochondrial DNA

(mtDNA) � Nuclear genes � Acute and chronic neurological

presentations � Treatment

Introduction

Mitochondrial disease is a collective term that encom-

passes the genetically and clinically heterogeneous group

of diseases due to defects in mitochondrial oxidative

phosphorylation. It is one of the most common groups of

genetic disease and can be caused by mutation in either

mitochondrial DNA or nuclear genes that directly or indi-

rectly interfere with the mitochondrial respiratory chain

function. To date, mitochondrial proteomics analysis

reveals that in addition to the 13 proteins encoded by the

mitochondrial genome, around 1500 proteins [50] are

linked to various mitochondrial functions and so far more

than 200 genes have been implicated in the development of

human disease [40].

A number of syndromes have been described in mito-

chondrial disease but often patients present with non-syn-

dromic presentation of which nervous system is most

commonly affected [49]. In addition to the diagnostic

challenge, clinicians also encounter difficulty in the man-

agement of mitochondrial disease due to lacking of effec-

tive disease-modifying therapy and, until recently, best

practice guidelines on various complications associated

with the disease [59].

In this review article, we discuss the genetics and epi-

demiology of mitochondrial disease, neurological presen-

tations and their management, genetic counselling and

reproductive options for patients.

Mitochondrial genetics

Mitochondria are cellular organelles found in all nucleated

human cells. A crucial function of mitochondria is to

generate energy in the form of ATP (adenosine triphos-

phate) via oxidative phosphorylation using predominantly

carbohydrates and fatty acids as fuel. The oxidative phos-

phorylation system (OXPHOS) is located in the inner

membrane and it consists of five multimeric protein com-

plexes: complex I-IV form the respiratory chain and com-

plex V (ATP synthase). In addition, there are two mobile

electron carriers (co-enzyme Q10 and cytochrome c).

Mitochondria are under dual genetic control of the

mitochondrial and nuclear genomes. The mitochondrial

genome consists of multiple copies of 16,569 bp, double
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stranded mitochondrial DNA (mtDNA) molecules and

located adjacent to the OXPHOS system in the matrix.

Only thirty-seven genes (22 transfer RNAs, 2 ribosomal

RNAs and 13 polypeptides that form structural subunits of

OXPHOS system) [86] are encoded by mtDNA. The

remaining mitochondrial proteins, including the majority of

respiratory chain subunits (79 out of 92), assembly factors

of the respiratory chain, those involved in maintenance and

expression of mtDNA, mtDNA transcription and transla-

tion, and control the mitochondrial dynamics are nuclear

encoded [16], synthesised in the cytosol and imported to

the mitochondria [51].

There are several unique properties associated with the

mitochondrial genome that are important in understanding

the primary mitochondrial DNA disease: (1) there are

multiple copies (up to thousands) of mtDNA in each cell;

(2) mtDNA is maternally inherited; (3) the phenomenon of

homoplasmy and heteroplasmy. Homoplasmy implies all

mtDNA are identical which could be all wild type or

mutated. Heteroplasmy is a mixture of mutated and wild

type mtDNA. In the presence of heteroplasmy there is a

threshold effect and clinical expression can vary between

different tissues and mtDNA mutations. In women with

heteroplasmic mtDNA mutations there is a bottleneck in

the female germline which means that the transmission of

heteroplasmy level from mother to offspring is often ran-

dom and unpredictable. This explains the heterogeneity in

heteroplasmy level, clinical phenotype and severity fre-

quently observed within the same pedigree.

Multiple mtDNA deletions and mtDNA depletion (re-

duced copy number of mtDNA) are secondary changes in

mtDNA due to mutations in the mtDNA replication and/or

maintenance genes such as POLG, PEO1, ANT1, DGUOK,

TYMP [72]. Mitochondrial depletion syndrome is associ-

ated with infantile/early childhood onset, multi-system

disease with fatal outcome and multiple deletions generally

result in later onset (child- or adulthood) and milder disease

burden.

The emergence of next generation sequencing is lead-

ing to rapid discovery of new nuclear genes linked to

mitochondrial disease and the classification of nuclear

gene related mitochondrial disease is summarised in

Table 1. There is also increased recognition of mito-

chondrial dysfunction and genetic mutation in various

other genetic neurological disorders, for examples SPG7

gene in hereditary spastic paraplegia [58] and ataxia [61]

and GDAP1 gene in Charcot-Marie-Tooth disease type 4A

[56, 96].

The inheritance pattern of mitochondrial disease is

dependent on the genetic mutations. Point mutations in the

primary mitochondrial DNA such as m.3243A[G, three

common LHON mutations, m.8344A[G, m.8993T[G/C,

m.1555A[G and others are maternally inherited but

sporadic mutations exist [53]. Single, large deletions in

mtDNA are a common cause mitochondrial disease and

they occur sporadically with rare exceptions [15]. The

inheritance patterns of mutations in nuclear genes causing

mitochondrial disease include autosomal recessive, domi-

nant or X-linked. Both recessive and dominant forms exist

in several mtDNA maintenance genes, for examples

POLG, PEO1 and RRM2B genes.

Epidemiology of mitochondrial disease

The overall prevalence of mitochondrial disease is com-

parable to other neurogenetic diseases such as Charcot-

Marie-Tooth (CMT) disease, myotonic dystrophy and

muscular dystrophy. The prevalence of adult mitochondrial

disease, both affected patients and those at risk, has

recently been reported to be approximately 1 in 4300 in

North East England [28]. Primary mutations in the mtDNA

are more prevalent in the adult patients compared to

mutations in the nuclear genes, and vice versa in the pae-

diatric population where there is a much higher incidence

of autosomal recessive disease particularly in consan-

guineous families. Although several hundreds of mutations

have been reported in mtDNA since 1988, a handful of

mutations are far more common than the others, for

examples m.1555A[G (associated with aminoglycoside

induced deafness), m.3243A[G (associated with MELAS

syndrome and MIDD), m.3460G[A and m.11778A[G

(associated with LHON), have an estimated prevalence of

0.19, 0.14, 0.11 and 0.11 %, respectively, in the population

[11, 21]. However, individuals with these common muta-

tions may remain clinically asymptomatic throughout their

life if not exposed to relevant toxin or if they have a low

mutation load.

Clinical diagnosis

Mitochondria are ubiquitous and therefore mitochondrial

disease can affect any organ, although organs with high

energy demand such as brain, skeletal muscle and heart, are

more commonly affected than the others. The clinical

features are heterogeneous and often can mimic many

neurological or other systemic diseases. Multi-system

involvement is often evident with detailed clinical exami-

nation and investigations in most cases although there are

exceptions such as Leber hereditary optic neuropathy

(LHON). Paediatric onset disease is associated with more

severe multi-systemic involvement, relentless progression

and poorer prognosis, however, there are rare exceptions

such as reversible respiratory chain deficiency caused by

the m.14674T[C mutation [33].
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Many classic syndromes have been described over the

last few decades. The examples of clinical syndromes

associated with adolescence and adulthood include mito-

chondrial encephalomyopathy, lactic acidosis with stroke-

like episode (MELAS), myoclonic epilepsy with ragged

red fibres (MERRF), mitochondrial neuro-gastrointestinal

involvement and encephalopathy (MNGIE), neuropathy,

ataxia and retinitis pigmentosa (NARP), chronic progres-

sive external ophthalmoplegia (CPEO). In contrast, syn-

dromes with neonatal and childhood onset include Alpers

disease, Pearson syndrome, Leigh disease, Sengers syn-

drome and Kearns-Sayre syndrome.

However, clinicians are more commonly confronted by

the non-specific constellation of clinical features. Many

symptoms associated with mitochondrial disease such as

deafness, diabetes, myopathy, gastrointestinal symptoms

and others are also common on their own in the population

but the ‘unusual’ combination of these symptoms in the

same individual should alert the clinicians about the pos-

sibility of mitochondrial disease. Detailed system-based

examination coupled with extended investigations is nec-

essary to identify other system involvement such as short

stature, sensori-neural deafness, pigmentary retinopathy,

optic atrophy, diabetes mellitus and/or other endocrine

dysfunction, cardiac involvement, renal tubulopathy and

others. This systemic involvement may be subtle and

asymptomatic in the early phase of disease. Disease rating

scales have been utilised to document the extent of system

involvement, disease burden and progression in paediatric

and adult patients [62, 69].

Family history can be informative and often reveals

what appear to be seemingly unrelated diseases among the

maternal family members in primary mtDNA disease and

the m.3243A[G mutation is a prime example [54]. It is

important to ascertain history of consanguinity when

recessive disease is suspected. Late adulthood presentation

and/or lacking of apparent family history should not deter

testing for mitochondrial disease because sporadic muta-

tions or late presenting autosomal dominant diseases are

not uncommon.

Acute neurological presentations

Stroke-like episodes and acute symptomatic seizure

MELAS syndrome is a severe, multi-system disease char-

acterised by recurrent metabolic strokes with typical onset

of below 40 years [31] although patients at the older age

have been reported [6, 92]. Headache and prominent visual

disturbance (both positive and negative symptoms) are

often the prodrome of acute stroke-like episodes and can

occur days or weeks before the development of focalT
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neurological deficit or motor seizure. These visual symp-

toms can masquerade as migranous visual aura but in fact

is the onset of occipital seizure [24, 35]. The severity of

neurological deficits are related to the extent of parietal,

temporal and occipital lobe involvement such as dysphasia,

dyspraxia, heminanopia, cortical blindness, mild hemi-

paresis and psychosis. Epilepsia partialis continua and less

commonly generalised status epilepticus occur during the

stroke-like episodes in some patients.

The key imaging findings are cortical and subcortical

lesions that cross the vascular territories of middle cerebral

artery and posterior cerebral arteries and bilateral, asym-

metrical changes are not infrequent (Fig. 1). The most

common cause of MELAS phenotype is m.3243A[G

mutation which accounts for 80 % of cases but mutations

in the nuclear gene POLG, encoding for the catalytic

subunit of DNA polymerase c (pol c), can cause similar

stroke-like lesions [14, 19]. However, the POLG-related

disease often has more aggressive disease course with

explosive onset of focal seizure and status epilepticus that

is highly refractory to pharmacological treatments in chil-

dren and young adults and the outcome is very poor.

Administration of sodium valproate is recognised to trigger

fulminant hepatic failure among patients with POLG dis-

ease [73, 80]. In contrast, patients who have stroke-like

episodes associated with the m.3243A[G mutation tend to

have pre-existing, and often subtle, multi-system involve-

ment and they often make good recovery in conjunction

with the partial or complete resolution of imaging changes

within few weeks or months at the early course of disease if

appropriately managed (refer to Treatment section). Nev-

ertheless, recurrence of stroke-like episodes leads to

cumulative neuronal loss and results in severe cognitive

impairment.

Given the high prevalence of m.3243A[G mutation and

common carrier status of several pathogenic variants in

POLG gene (p. A467T, p. W748S and p. G848S) in pop-

ulations of European descent [29], clinicians should pri-

oritise mitochondrial disease as a main differential

diagnosis to atypical, evolving posterior circulation stroke,

recurrent ‘encephalitis/encephalopathy’ with negative

infective screen, auto-antibodies and ‘atypical/recurrent’

posterior reversible encephalopathy syndrome (PRES).

Securing the diagnosis of mitochondrial disease early can

Fig. 1 Axial FLAIR (a, b) and
DWI (c, d) sequences of MRI

head. a and c were performed

on admission whilst b and

d were performed 8 days later.

The stroke-like lesion ‘spread’

from the right occipital lobe to

the right temporal lobe and

thalamus
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avert the patients having invasive diagnostic procedure

such as brain biopsy or potentially harmful treatment such

as immune-suppressants.

Subacute visual loss

The classic presentation of LHON is subacute, evolving

painless visual loss in young adults with male predomi-

nance (4:1) [43]. Majority of the cases have the con-

tralateral eye affected within a year and visual loss is often

irreversible. Although there is a conventional belief that

LHON mutations only affect eyes, other neurological fea-

tures such as dystonia [48], myoclonus [41], sensori-neural

deafness [66] may occur which broaden the spectrum of the

clinical phenotype in these mutations [48]. It is clear that

therefore LHON should be considered as a differential

diagnosis to the ‘atypical’ optical neuritis that shows no

recovery and Susac’s syndrome [97]. A link between

LHON mutations and multiple sclerosis was speculated for

a long time and a recent study has suggested that such

association may occur by chance even though mechanistic

interaction is possible [57].

Dominant optic neuropathy is caused by mutations in

the nuclear gene such as OPA1 and the irreversible visual

loss often occurs in the childhood [95] although late-onset

optic neuropathy after 4th decade [2] and adult-onset

CPEO and parkinsonism with subclinical optic neuropathy

have recently been described [12].

Chronic neurological presentations

Chronic progressive external ophthalmoplegia

and ptosis

More than half of adult patients have external ophthalmo-

plegia and/or ptosis in our large cohort of patients (un-

published). Ptosis and ophthamoplegia can be

asymmetrical at the outset but most cases become sym-

metrical with time. CPEO is one of the main presenting

features in adult patients with mitochondrial disease [77]

and ptosis often imposes more functional limitation than

the restricted eye movement because the extra-ocular

paresis occurs insidiously allowing cerebral adaptation and

symptomatic diplopia is less common. Some patients with

CPEO phenotype are occasionally misdiagnosed as other

conditions such as seronegative myasthenia gravis.

Myopathy

Many adult patients experience fatigue, exercise intoler-

ance and muscle weakness. The degree of proximal

myopathy is often mild on clinical testing and it progresses

slowly. Early loss of ambulation due to muscle weakness is

not a typical feature of adult mitochondrial disease with a

few exceptions such as patients with Kearns–Sayre syn-

drome caused by single deletion in mtDNA and TK2

mutation [4]. There is a risk of aspiration when facial and

oropharyngeal weakness is present in addition to the res-

piratory muscle weakness. Some patients may have normal

muscle strength and EMG study but complain of limited

exercise capacity with recurrent nausea and/or vomiting on

exertion due to lactic acidosis.

Ataxia

Cerebellar ataxia is often subtle at the onset and typically

progress with time and becomes debilitating in many

genotypes. Cerebellar atrophy is a common imaging find-

ing. Sensory ataxia due to dorsal root ganglionopathy is

one of the defining features in SANDO phenotype (sensory

ataxia, neuropathy, dysarthria and ophthalmoplegia) caused

by POLG mutations [42].

Neuropathy

Diminished or absent long tendon reflexes are a common

clinical finding and axonal neuropathy is the most common

finding in nerve conduction studies in adult patients with

mitochondrial disease with a few exceptions such as

demyelinating neuropathy described in patients with MNGIE

[25].A recent study showed that neuropathy is a useful feature

toguidemolecular diagnosis in adult patientswithCPEO[32].

Diagnostic approach

Comprehensive diagnostic criteria and guidelines have

been published to provide a framework for clinicians when

investigating patients with suspected mitochondrial disease

[8, 85, 86]. Patients who present with classic syndromes

such as MELAS, MERRF, LHON and Alpers disease can

be diagnosed by direct sequencing of mitochondrial genes

or POLG gene in blood. It is important to consider that

blood heteroplasmy (leucocytes) declines with age in

m.3243A[G [65] and ‘false negative result’ is possible in

older adults therefore concomitant testing of additional

tissue such as urinary epithelium is recommended. Some

nuclear gene mutations have been found to have associa-

tion with distinctive radiological appearances which can

expedite the candidate gene sequencing, these include

leukoencephalopathy with brainstem and spinal cord

involvement and lactate elevation (LBSL) caused by

DARS2 mutations [89] and leukoencephalopathy with

thalamus and brainstem involvement and high lactate

(LTBL) caused by EARS2 mutations [78].
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However, many mitochondrial diseases do not have

pathognomonic features that point towards a particular

genetic diagnosis and muscle biopsy remains important in

current clinical practice. The findings of muscle biopsy that

are supportive of mitochondrial disease include: ragged red

fibres (RRF), COX-negative fibres, individual complex or

multiple respiratory chain deficiency, qualitative (multiple

deletions) and quantitative (depletion) abnormalities in

mtDNA.

Next generation sequencing is a new and high-

throughput technique that allows sequencing of multiple

candidate genes simultaneously leading to a more rapid

diagnosis and increase the diagnostic yield [88] especially

in the well-phenotyped cohort of patients [84]. Clinical

exome sequencing is likely to become part of standard

clinical care for undiagnosed patients.

Treatment and long term management

Specific treatment in mitochondrial disease

Currently, there remains no effective and specific treatment

for vast majority of patients with mitochondrial disease.

Various treatments (mostly nutritional supplements) such

as co-enzyme Q10, carnitine, creatine, dichloroacetate and

vitamin ‘cocktails’ have been widely used based upon

anecdotal data and individual case reports, however,

Cochrane systemic review of treatments that were tested in

randomised-control trials concluded that none of these

treatment showed meaningful clinical efficacy [59]. Since

then, another randomised, controlled trial using idebenone

in LHON mutations found no significant result in the pri-

mary end point defined as the best recovery in visual acuity

but post hoc interaction analysis suggested benefits in those

with discordant visual acuities [38]. EPI-743, a novel anti-

oxidant has been reported to show clinical improvement in

small number of patients with Leigh syndrome [47] and

LHON [67] in the open-label clinical trials and phase 2B

randomized-control trial is currently in progress.

Although there is no formal clinical trial, supplement of

high dose co-enzyme Q10 (up to 2400 mg in three divided

doses in adults; 30 mg/kg in paediatric cases) in primary

co-enzyme Q10 biosynthetic defect has been reported to

show variable clinical improvement across different phe-

notypes [23].

L-arginine has been reported to be effective in treating

acute stroke-like episodes associated with m.3243A[G

mutation [39]. However, this result is yet to be replicated

by other research groups.

Allogenic haematopoietic stem cell transplant has

emerged as a promising therapeutics to restore the enzy-

matic function in patients with MNGIE caused by TYMP

mutations but this treatment is associated with high mor-

bidity and mortality [25, 75].

Supportive treatment and surveillance

for complications

Symptomatic treatment and screening for associated com-

plications remain fundamental to the management of

mitochondrial disease.

Acute seizure and stroke-like episodes

Early recognition and prompt, aggressive seizure man-

agement are crucial to mitigate the cellular metabolic crisis

perpetuated by the ictal activities [10]. The seizure man-

agement should follow the guidelines on status epilepticus

except sodium valproate is absolutely contra-indicated in

POLG mutations. Phenytoin was implicated in causing

paralytic ileus in a patient with stroke-like episodes [17],

however, this is likely to be a co-incidental finding as

pseudo-obstruction is a common complication associated

with MELAS syndrome [74] and we use this drug regularly

to control seizures. Anecdotal evidence on the use of

magnesium infusion [91], ketamine [64], ketogenic diet

[34, 46, 79], folinic acid supplement [30] in termination of

status epilepticus associated with POLG and m.3243A[G

has been reported.

Pseudo-obstruction

Several genetic mutations (TYMP, m.3243A[G and

POLG) have been associated with intestinal pseudo-ob-

struction [9, 63, 83, 90] involving small and/or large

intestine. Distinguishing this from mechanical obstruction

is of paramount importance as they tend to resolve with

conservative management alone and surgery has little role

and could exacerbate the metabolic crisis. Serum lactate is

not a reliable marker for tissue ischaemia in patients with

mitochondrial disease because some patients have persis-

tently raised lactate even when they are well. Aggressive

medical management of acute episodes is important as is

prevention by using regular laxatives.

Cardiac involvement

Cardiac involvement is often part of the multi-system

manifestation in adult mitochondrial DNA disease [7]

although isolated cardiomyopathy has been reported in rare

mtDNA mutations [26]. Cohort studies have shown that

hypertrophic cardiomyopathy and pre-excitation syndrome

are prevalent in m.3243A[G [37, 45] and m.8344A[G [13,

44] mutations, whereas conduction defect necessitating

pacemaker is associated with single, large scale deletion

186 J Neurol (2016) 263:179–191

123



particularly among those who have Kearns-Sayre syn-

drome. Currently, there is limited longitudinal data study-

ing the prevalence of cardiac involvement in various

nuclear genes in adults [60]. Baseline cardiac assessment

with electrocardiogram (ECG) and echocardiogram should

be performed in all patients and cardiac magnetic reso-

nance in selected cases. Subsequent cardiac surveillance

should be tailored according to the initial findings but the

recommended interval is every 12 to 24 months [22, 55].

Diabetes mellitus

Diabetes mellitus is common in patients with m.3243A[G

and single, large scale mtDNA deletions [70]. Metformin is

best avoided because of the theoretical risk of lactic aci-

dosis. Treatment of mitochondrial diabetes is otherwise

similar to the usual form of diabetes although it appears

that it is associated with a more rapid progression to insulin

therapy [93].

Ptosis

A proportion of patients with CPEO develop significant

ptosis that obscures visual field. Corrective ptosis surgery

such as frontalis sling operation improves the functional

and cosmetic outcome in selected patients [3].

Deafness

Young onset, bilateral sensori-neural deafness is prevalent

in mitochondrial disease. The quality of life of many

patients can simply be improved with digital hearing aid

and cochlear implant can be reserved for those with severe

hearing loss [36, 81].

Genetic counselling and reproductive options

Similarly to other genetic disorders, screening for family

members at risk and offering genetic counselling is

essential in mitochondrial disease. For patients with

nuclear gene disorders, genetic counselling and reproduc-

tive options are identical to other nuclear defects. For

women with mtDNA mutations genetic counselling is a

challenging area. Patients should be reassured if they har-

bour sporadic mutation, such as single, large scale mtDNA

deletion, because risks of transmission are low. For

mtDNA point mutations, accurate elucidation of the risk of

transmission and prediction of disease status is extremely

challenging due to the genetic bottleneck effect and uneven

tissue segregation associated with some point mutations. It

is estimated that there are approximately 152 births per

year in the UK of children who carry potentially

pathogenic mitochondrial DNA mutations [27]. In view of

the complexity of mtDNA genetics, referral of child-

bearing age female patients to specialist centres for dis-

cussion of reproductive options is recommended. The

available options are chorionic villous sampling (CVS),

amniocentesis [52] and preimplantation genetic diagnosis

(PGD) [68, 87]. CVS and amniocentensis are performed at

different stages of pregnancy, 10–12 and 14–20 weeks,

respectively. PGD is an IVF procedure that involves

embryo biopsy and the selection of embryos with the

lowest mutation load. However, PGD will not benefit

carriers with homoplasmic mtDNA mutation.

Mitochondrial donation, either pronuclear transfer [18]

or metaphase II spindle transfer [82], is emerging as a

potential reproductive option to prevent the transmission of

mtDNA mutations. In the UK after many years of debate

and scientific scrutiny, Mitochondrial Donation Regula-

tions, were passed by both Houses of Parliament, making

mitochondrial donation legal for the first time in the UK.

The Human Fertilisation and Embryology Authority will

now develop a licencing framework through which appli-

cations can be considered on a case by case basis.

Conclusions

Over recent years there have been important advances in

mitochondrial disease, particularly in terms of diagnosis

and reproductive options available. The role of the clini-

cian remains crucial since a high index of clinical suspicion

and prompt recognition of complications remain essential

to make an earlier diagnosis and instigate a better man-

agement. Currently, the management of mitochondrial

disease is largely supportive; however, with the improved

understanding of disease mechanisms, ongoing treatment

trials and discovery of new therapeutic agents should give

hope for patients with mitochondrial disease.
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