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Mitochondrial DNA Polymorphism in Three Antillean

Island Populations of the Fruit Bat, Artibeus jamaicensis'

Dorothy E. Purno,* Everett Z. Goldin,* Beth Elliot,*
Carleton J. Phillips,* and Hugh H. Genowayst

*Department of Biology, Hofstra University; and tThe University State Museum, the
University of Nebraska at Lincoln

The Neotropical fruit bat, Artibeus jamaicensis, occurs throughout Latin America

and on many islands in the Caribbean. Populations from Jamaica (in the Greater

Antilles) to Barbados (in the Lesser Antilles) have been classified as a subspecies
(A. j. jamaicensisi separate from that on the Lesser Antillean island of St. Vincent
(A. j. schwartzi). Mitochondrial DNA (mtDNA) was isolated from 54 individuals

collected on these islands, analyzed by digestion with restriction endonucleases,

and the restriction sites were mapped. Three different mtDNA genotypes (16,000
± 200 bp) were identified: J-1 (16 animals from Jamaica, one from St. Vincent, 15

from Barbados), J-2 (two animals from Jamaica), and SV-1 (18 animals from St.

Vincent, two from Barbados). The J-1 and J-2 genotypes were estimated to differ
from each other by only 0.4%, but the SV-1 genotype differed from J-1 and J-2 by

8.1%-10.5%. The estimated sequence divergence between SV-1 and J-1 is unusually

large for mammals that are regarded as conspecific. Restriction mapping showed
that the differencesamong the genotypes (presenceor absence of particular restriction

sites)were located throughout the genome. The presence of the J-1 mtDNA genotype

on Jamaica and on St. Vincent and Barbados (1,400 km away) demonstrates that

maternal lineages in these bats are not necessarily confined to single islands or

limited geographic regions. The presence of the J-1 mtDNA genotype within the
A. j. schwartzi population on St. Vincent and the presence of the SV-1 genotype

in two specimens of A. j. jamaicensis from Barbados document genetic exchange

between subspecific populations on these islands, which are separated by 180 km
of open water.

Introduction

The Antillean islands of the Caribbean, extending in an arc from the Yucatan
Peninsula toward the northeastern coast of South America, interest biogeographers

because the fauna and flora have North-, Central-, and South-American affinities .
(Darlington 1963).Among the native mammals, bats are the best represented in terms
of the numbers of species (Koopman 1968, 1976; Jones and Phillips 1970; Baker and
Genoways 1978). However, the overall distributional patterns of particular species
and the presence of endemic genera and species suggestthat (1) bats are not necessarily
successfulat colonizing every island and (2) speciescan become geographicallyisolated,
even though they are capable of extended flight.

1. Key words: mitochondrial DNA, bats, zoogeography, Caribbean, Artibeus.
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80 Pumo, Goldin, Elliot, Phillips, and Genoways

Elucidation ofthe relationships among island populations and the possible main

land sources of species that have colonized the islands has mostly been based upon

the interpretation of phenotypic data typical of conventional taxonomic studies of

bats (size, coat color, and skull and dental characteristics). Although such data fre

quently have revealed noteworthy interisland differences and geographic trends

(Koopman 1968; Jones and Phillips 1970, 1976), they are, nevertheless, limited. Other

approaches, such as chromosomal analysis, protein comparisons, and ultrastructure

ofgene products (Straney et aI. 1979; Baker et aI. 1982; Koop and Baker 1983; Tandler

et aI. 1986), have been used successfully in chiropteran systematics, but none seems

particularly well suited to the study of conspecific, island populations. One solution

is to use the relatively new techniques for analyzing mitochondrial DNA (mtDNA).

The mitochondrial genome in mammals is small ("" 16,000 bp) in comparison

with the nuclear genome and also differs by being maternally inherited and by evolving

at a faster rate (Brown 1980; Lansman et aI. 1983; Vawter and Brown 1986). Com

parisons of mtDNA isolated from conspecific individuals can be used to investigate

maternal lineages, relationships among closely related but geographically separated

populations, and individual variation within populations. Restriction-endonuclease

analysis of mtDNA thus is a promising way to explore intra- and interisland popu

lations.

The Neotropical fruit bat, Artibeus jamaicensis, occurs from Mexico into South

America and has been reported on many of the Antillean islands (Jones and Phillips

1970; Koopman 1976). Populations from Jamaica in the Greater Antilles to Barbados

and St. Lucia in the Lesser Antilles have been named A. j. jamaicensis. They are

thought to have been derived from ancestral stock in Mexico or Central America,

whereas populations from Grenada, Trinidad, and Tobago are thought to have arrived

in the Antilles from South America (Koopman 1968). The population ofA. jamaicensis

living on the Lesser Antillean island of St. Vincent has been described and named as

an endemic subspecies, A. j. schwartzi (Jones and Phillips 1970; Jones 1978).

For the present investigation we used restriction-endonuclease analysis ofmtDNA

to (I) compare three island populations of A. jamaicensis, (2) determine whether

populations on each island could be traced to separate female founders, (3) determine

whether mtDNA lineages were confined to individual islands, and (4) test for possible

genetic exchange between A. j. jamaicensis and A. j. schwartzi on Barbados and St.

Vincent, respectively. The data reported here are part of a larger analysis of the dis

tribution and evolution of Artibeus in the Caribbean (Phillips et aI., accepted).

Material and Methods

Specimens

Fifty-four specimens of Artibeus jamaicensis from Jamaica (18 individuals), St.

Vincent (19 individuals), and Barbados (17 individuals) were used in this study (table

I). Seven of the animals from Jamaica were collected in a cave roost in St. Ann's

Parish; the others were netted in a fruit plantation 24 km east of the cave. All of the

St. Vincent animals were captured in mist nets set in or near fruit plantations separated

by 3-6 km and by a ridge 300 m in elevation. The bats from Barbados were collected

in a cave roost near Bridgetown. All of the Jamaican and Barbados animals were

classified as A. j. jamaicensis, and the animals from St. Vincent were classified as

A. j. schwartzi on the basis of conventional taxonomy (Jones 1978). The specimens

were either killed the day after capture or were transported alive (under CDC permit
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to C. J. P.) to our laboratory. The liver, kidney, heart, and pectoral muscle were
removed from specimens sacrificed in the field and immediately placed in cryotubes

and stored in liquid nitrogen. Voucher specimens were deposited in the collections of

the Carnegie Museum of Natural History and The Museum, Texas Tech University.

Preparation of mtDNA

Livers, and sometimes kidneys, were used for the isolation of mtDNA. The pro

cedure was a modification of that ofWright et al. (1983). To briefly summarize, tissue

was minced and homogenized in a buffer containing Tris, ethylenediaminetetraacetate
(EDTA), and sucrose. Nuclei and other cellular debris were removed by differential
centrifugation. The mitochondrial pellet was obtained by additional differential cen
trifugation and lysed by the addition of sodium dodecyl sulfate and incubation at

room temperature. Further incubation in the presence of cesium chloride encourages
the precipitation of cellular proteins and large DNA fragments while the smaller DNA
fragments (including mtDNA) remain in solution. The mtDNA was purified by cen

trifugation on a cesium chloride density gradient. To maximize the yield of mtDNA,
only one purification gradient was used. After centrifugation, mtDNA bands in the

gradient were visualized with 300-nm light and removed by puncturing the side wall
ofthe tube and allowing the band to drip into a collecting tube. The DNA was dialyzed
to remove the ultraviolet dyes and precipitated with ethanol. Purified mtDNA was
redissolved in TE (10 mM Tris, pH 7.5, 1 mM EDTA) and stored frozen.

Restriction-Endonuclease Analysis of mtDNA

Restriction enzymes (Bgi II, BamHI, PvuII, Pst!, HindIII, EcoRI, Sail, XhoI,

Hinf l, TaqI, and MhoI) were obtained from New England Biolabs. Digestions were
performed in the buffers recommended by either the supplier or Maniatis et al. (1982).
Digestions were performed for 1-2 h or overnight with excess enzyme to verify the

digestion pattern obtained.
Following enzymatic digestion, DNA fragments were end-labeled. The following

labeling mixture was used to label 15 samples: 137 ul deionized, distilled water; 16 Jil
buffer (6 mM KCI, 10 mM Tris HCI, 10 mM MgCh, 7 mM ~-mercaptoethanol); 5
Jil DNA polymerase I; Klenow fragment (BRL); and 2 ul [a-32P]-dXTP mixture (lCN).

Ten microliters of the mixture was added to the digested sample, and the mixture was
then incubated for 25-35 min on ice. Yeast tRNA carrier was added to the samples,
and then they were ethanol precipitated. Samples were then subjected to either 0.5%
1.25% agarose or 3.5% polyacrylamide-gel electrophoresis (Brown 1980; Maniatis et

al. 1982) to determine fragment sizes. A l-kb ladder (BRL) was included on every gel
for use as a molecular-weight standard.

Determination of mtDNA Sequence Divergence

Restriction mapping was accomplished with the aid of the RZMAP program sup

plied by W. W. Ralph (Fitch et al. 1983). Estimation of sequence divergence, on the
basis ofanalysis with the eight restriction enzymes that recognize 6-bp sequences, was
undertaken only after the genotypes were mapped (fig. 1). These maps were used to

determine fragment homologies because we found that in some instances (with HindIII

in particular) fragments of approximately the same size (±1%) were actually located

in different regions of the genome and were not homologous (fig. 2). The maps them

selves are tentative to the extent that the order of two of the HindIII fragments in each
genotype could not be confirmed on the basis of double or triple digestions with the
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enzymes that we used. Sequence divergence for 6-bp cutters was estimated in two

ways. Equation (9) in Nei and Tajima (1983) is a conservative estimate of divergence

that does not require an estimate of an a value. Also, the use of this equation allows

the determination of the variance by means ofNei and Tajima's (1983) equation (11).

In addition, we also used Nei and Li's (1979) equation (16) and a = 2 to calculate

sequence divergence. This equation is commonly used for analysis of vertebrate

mtDNA and allows comparison with other data. Estimation of divergence, on the

basis of data from the three enzymes that recognize 4-bp sequences, was undertaken

separately (using the formula of Upholt [1977]) because, since these sites were not

mapped, we could only assume that fragments of the same size were in fact shared.

Results

The mitochondrial genome in Artibeus jamaicensis is 16,000 ± 200 bp. Three

different mtDNA genotypes were found in 54 animals, and these were designated

J-l, J-2, and SV-l (table 1). The restriction fragments obtained from each of the

genotypes are presented in tables 2 and 3, and restriction maps are presented in fig
ure 1.

Digestion with BamHI produced two fragments in all three genotypes (table 2);

double and triple digestions with other enzymes verified that all of the animals shared

the same BamHI restriction sites (fig. 1). BglII produced three fragments in all of our

specimens, but these fragments differed in size (table 2). With restriction mapping it

was found that each specimen shared one BgIII site (fig. 1). Pvull cleaved the SV-l

mtDNA into two fragments, of 11,849 and 4,106 bp. In the J animals the genome

was cleaved into three fragments (table 2). However, with restriction mapping it was

found that only a single site was conserved and that two similar-sized fragments actually

were from different regions of the mtDNA genome (fig. 1).PstI and EcoRI each cleaved

the genomes in one place (fig. 1). Sail cleaved the SV-l genotype in a single place (fig.

1) but did not cleave the J mtDNA genotype. Finally, XhoI did not cut the mtDNA

of the SV-1 lineage.

The most complex data were obtained from digestion with HindIII (table 2; fig.

2). The J genotype was subdivided into J-l and J-2 because two individuals from

Jamaica lacked a single restriction site present in the J-l's (fig. 1, arrow). HindIII

produced either nine or 10 fragments in each of the three genotypes (fig. 2), including

Table 1
Numbers of Specimens Examined, Geographical Localities, and Percent Occurrences of Each

of the Three mtDNA Genotypes Found in Two Subspecies of Artibeus jamaicensis

mtDNA GENOTYPE

SUBSPECIES AND

LocALITY J-I J-2 SV-I TOTAL

A. j. jamaicensis:

Jamaica ............ 16 2 0 18

Barbados ........... .li Q 1 !I
Total ............. 31 (88.6%) 2 (5.7%) 2 (5.7%) 35

A. j. schwartzi:

St. Vincent .......... 1 Q .lli 12
Total ............. I (5.3%) 0 18 (94.7%) 19
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Table 2
Sizes of Restriction Fragments Produced by Eight

Hexanucleotide Sequence Enzymes

GENOTYPE

ENZYME SV-I J-I J-2

BamHI ....... 11,151a 11,151a 11,151a

4,791 a 4,791 a 4,791 a

BglII ......... 6,937 8,200 b 8,200b

5,573 5,428 b 5,428 b

3,465 2,329b 2,329 b

Pvull ......... 11,849 9,596b 9,596b

4,106 4,078 b 4,078 b

2,315 b 2,315 b

Pstl .......... 15,975c 15,975c NO

EcoRI ........ 15,975c 15,975c NO

Sail . . . . . . . . . . 15,975 NF NO

Xhol ......... NF NO NO

HindIII . . . . . . . 4,280 3,650b 3,650b

2,460 2,440b 3,135

2,435 c 2,435 c 2,440b

1,740 1,740b 1,740b

1,700a 1,70oa 1,700a

1,050 1,100b 1,100b

958 970b 970b

750c 750c 650a

650a 650a 600b

600b

NOTE.-Data are given in base pairs. NF = no restriction

fragments produced; ND = no data.

a Shared by all three morphs.

b Shared by J-I and J-2.

C Shared by SV-I and J-1.

two pairs of fragments (2,460-2,435 and 1,740-1,700 bp in SV and 2,440-2,435 and
1,740-1,700 bp in J; table 2) that were so close in size that they comigrated and
appeared as a single dark band on agarose gels. They were separated using polyacryl
amide gels. Although it appeared that all three genotypes shared most of the H indIII

fragments, digestion of the mtDNA with HindIII in combination with one or two of
BamHI, PvuII, and BglII (as double or triple combinations) revealed that many of
the similar-sized fragments were not homologous (figs. 1, 2). Mapping showed that
the SV-l and J-l genotypes shared six HindIII sites but that J-l had three sites not

found in SV-l and that SV-l had two sites not found in J-l (fig. 2).

We also tested three restriction endonucleases that recognize 4-bp sequences. We
compared 18 examples of the SV-l genotype and 17 samples of the J-l genotype, but
there was insufficient mtDNA to test the J-2 genotype or to undertake combination

digestions necessary for mapping. The considerable amount of divergence between
the SV-l and J-l mtDNA was clearly evident (table 3). A maximum of 47% of the
fragments are shared between the two genotypes if it is assumed, in the absence of a

restriction map, that similar-sized (±1%) fragments are homologous.

Sequence divergence, estimated on the basis of the restriction-site maps, showed

http://mbe.oxfordjournals.org/
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Table 3

Minimum Restriction Fragments Produced by Three Tetranucleotide Sequence Enzymes

SV-l

MboI

2,150 .

1,70oa .
1,600 .
1,070 .

1,030 .
1,000 .

750 .

700a

650a
510a

506a

410a

360 .

340 .
335 .
330 .

296 .
240 .
225 .

215 .
158 , .
150 .
140 .

135a
.

120 .

90a ..

70 .
50a .

r-i

1,70oa

1,625
1,450
1,200

1,150
1,140

900

900
700a

650a

510a

506a

480

475
410a

385
305
290
205

135a

90a

75

60
50a

SV-l

HinfI

1,900 .
1,400a .

1,370a .
1,25oa .

850 .
700 .
660 .

650 .

640 .
550 .
520 .
515 .

505a

soo-
460a

450a
430 .

395 .
355a .

350a .
320 .
31sa .
215 .
175a

150a

140a

100a

J-l

2,900

1,700
1,400a

1,370a

1,250a

900

740

735
513
505a

500a

460a

450a

410

398
355a

350a
315a

285

235
180
175a

150a

140a

lOoa

SV-l

TaqI

4,60oa

2,200 .
1,700 .

970a
950a .
900a .

700 .

600 .
540 .
520a .
515 .
508a .

430a .
410 .

235a
.

140 .
110a

80a .

J-l

4,60oa

3,054
1,020

970a
950a
900a

710

675
520a
508a

430a

365
235a

195
110a

105

80a

NOTE.-Data are given in base pairs.

a Shared by SV-I and J-I.

that the J-l and J-2 mtDNA genotypes differed by only 0.4% (SD = 0.4%) (eq. [9] of

Nei and Tajima [1983] or eq, [16] ofNei and Li [1979]). The SV-l genotype differed

from J-l and J-2 by 9.2% and 10.5%, respectively (eq. [16] ofNei and Li [1979]) or

by 8.1% (SD = 2.5%) and 9.1% (SD = 2.8%), respectively (eqq. [9] and [11] ofNei

and Tajima [1983]). Sequence divergence estimated by means of Upholt's (1977)

method and using the fragment data obtained with the unmapped 4-bp cutters showed

that SV-l differed from J-l by ~6.5970.

Discussion

Restriction-endonuclease analysis revealed three mtDNA genotypes in 54 spec

imens of Artibeus jamaicensis from Jamaica, St. Vincent, and Barbados. The J-l

genotype was the most common (59.2% of the bats) and most widespread (all three

islands; table 1), the SV-l genotype was intermediate (33.3%, two islands), and the

J-2 genotype was the least common (3.7%)and geographically most restricted (Jamaica).

The J-l and J-2 mtDNA genotypes differed only in a single HindIII site, whereas the

http://mbe.oxfordjournals.org/
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FIG. 1 .-Restriction maps for the SV- 1 and J mtDNA genotypes. Restriction sites thought to be conserved 

(within 200 bp in either direction) are marked with a black dot. The J-2 genotype differs from the J-l in 

lacking the Hind111 site marked with an arrow. The Hind111 site marked with an asterisk is the arbitrary 

starting point for the linear map in fig. 2; the linear map continues clockwise from this site. Symbols for 

restriction enzymes are as follows: H = HindIll; Bm = BumHI; Bg = Sg/II; EC = EcoRI; Pv = PvuII; Ps 

= PstI; and Sa = SalI. 

SV- 1 genotype differed from the J genotypes in 15 or 16 of 27 restriction sites (figs. 

1,2). The differences among the three genotypes did not appear to be localized in any 

specific region of the mitochondrial genomes (fig. 1). 

The sequence divergence among the mtDNA genotypes was estimated in three 

ways. Two methods, using mapped data, estimate the divergence between J-l and 

J-2 to be 0.4%. This is small and corresponds to the divergence seen within vertebrate 

species. In contrast, when the mapped SV-1 genotype is compared with the J genotypes, 

the numbers are much larger, ranging from 8.1% to 10.5% depending on the equation 

used and whether J-l or J-2 is being compared. The SDS are small enough (2.5%- 

2.8%) to indicate that these large divergence values are significant. The 6.5% divergence 

obtained between SV-1 and J-l by the third method (Upholt 1977) is based on un- 

mapped fragment data and can only be considered a minimum estimate of divergence. 

How does the divergence in mtDNA genotypes in A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjamaicensis compare with 

intraspecific or congeneric variation in other mammals? Estimates of mtDNA diver- 

gence within a species of deer mice, Peromyscus, and in a species of gopher, Geomys, 

have ranged from 2% to 4%, when Upholt’s method is used (Avise et al. 1979, 1983). 

Recently most authors have used Nei and Li’s ( 1979) equations ( 10) and ( 16) with a 

= 2 to estimate divergence from mapped restriction-site data. With this method, breeds 

of domestic horses were estimated to differ by 0.55%, whereas the Mongolian wild 

horse (Equus przewalski) and zebra (E. zebra hartmannae) differ by 7.5% (George 

and Ryder 1986). West Texas and South Carolina white-tailed deer (Odocoileus vir- 

ginianus) differ by 1.3%, whereas California black-tailed deer (0. hemionus) and South 

Carolina white-tails differ by 6.9% (Carr et al. 1986). Finally, humans vary by -0.32% 

(Brown 1980; Cann et al. 1987). The estimated amount of sequence divergence between 

the SV and J mtDNA genotypes in A. jamaicensis thus is considerably greater than 

that reported for other species of mammals when the same methods are u
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<'0 >.., .., en

FIG . 2.- lI indIll digestion of mtDN A from each of three materna l lineages (J·l , J·2, and SV-l) of the

fruit bat, Artibeus jamaicensis. Open arrowheads adjacent to the gels denote bands consisting of two comi

grating fragments; the middle scale is in base pairs. Relative positions of the HindIII recognition sites and

fragment sizes are given for each of the lineages.

Brown (1980) calculated that mtDNA sequences in primates evolve at the rate
of - I%{Myr. A similar rate appears to hold for deer (Carr et al. 1986). We presently
have no means ofindependently calibrat ing the evolutionary rate in Artibeus mtDNA,
but if we tentatively apply Brown's rate for primates, we estimate that the SV-I and
J genotypes in A. jamaicensis diverged > 4 Myr before the present (Mybp) , whereas
the J- I and J-2 lineages on Jam aica last shared a commo n female ancestor - 0.2
Mybp, It is possible that the rate in Artibeus is greater than those in other studied
mammals. On the other hand, A . jamaicensis could be a very old species. Straney et
al. (1979) previously applied Sarich's albumin data to their allozyme data for phyl

lostom id bats and concluded that the family diversified some 40 Mybp. Eventually it
might be possible to calibra te the rate for bats; such data would be valuable for studies
of Caribbean zoogeography because the islands have und ergone dramatic changes
during the past 7 Myr (Sykes et al. 1982). The Pleistocene is particularly interesting
because changes in water level in the Caribbea n may have made interisland movement
of bats easier tha n at present and because numerous extinctions of bats and other
mammals are documented in the fossil record (Morgan and Woods 1986).

The mtDNA data can be considered in terms of the roosting behavior of bats.
Other investigators (Turner 1975; Straney et al. 1979) have speculated about the genetics
of roosting groups ofphyllostomid bats, and some data (including allozyme data) show
that in some species roosts are temporary aggregations, whereas in other species roosts

might consist of closely related individuals (see, e.g., McCracken and Bradbury 1981;
Kunz 1982). On Jamaica we collected animals from two maternal lineages (J-I and
J-2) within a large cave roost on the north shore of the island. These same lineages

http://mbe.oxfordjournals.org/
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also were represented by bats caught at night in a fruit plantation -24 km to the east. 

The estimated amount of difference (0.4%) between these genotypes is relatively small; 

the single difference detected in our sampling was the absence of a particular Hind111 

site in J-2 (fig. 1). mtDNA in individuals roosting together in a large limestone cave 

on Barbados came from more divergent sources (SV-1 and J-l), illustrating that bats 

in this roost are a genetic composite with mitochondrial genes traceable to two distantly 

related females. 

The zoogeography of bats is a complex problem because, despite their ability to 

fly, their distribution on islands is far from uniform. To judge on the basis of commonly 

used phenotypic characters, it appears that they frequently become isolated to the 

extent that geographic variation in size and morphology are evident (Phillips 1968; 

Jones and Phillips 1970; Baker and Genoways 1978). Artibeus jamaicensis is interesting 

in this regard because it is a widely spread species with four named subspecies in the 

Antilles. Artibeus j. jamaicensis, which was named for Jamaica, occurs from the Greater 

Antilles to St. Lucia and Barbados in the Lesser Antilles. Another subspecies, A. j. 

schwartzi, occurs on the island of St. Vincent (Jones 1978); and a third subspecies 

occurs on Cuba, and a fourth on Trinidad and Grenada (Koopman 1968; Jones and 

Phillips 1970). The distinguishing taxonomic features for these subspecies are size 

(especially forearm length), color (variable), and the presence or absence (or incidence) 

of the upper third molars (Jones and Phillips 1970; Jones 1978). 

In the present study we were particularly interested in the relationship between 

A. j. jamaicensis and A, j. schwartzi. The latter subspecies appears to be indigenous 

to St. Vincent and differs from A. j. jamaicensis by being larger and darker in color 

and in exhibiting variation in the presence or absence of third molars (Jones and 

Phillips 1970; Jones 1978). Most (88.6%) of the specimens of A. j. jamaicensis that 

we examined carried the J-l mtDNA genotype, whereas most (94.7%) of the 

A. j. schwartzi carried the SV- 1 mtDNA genotype (table 1). However, two of 17 spec- 

imens of A. j. jamaicensis from Barbados carried the SV- 1 genotype and one of 19 

specimens of A. j. schwartzi from St. Vincent carried the J-l genotype (table 1). The 

presence of the J-l genotype on St. Vincent and of the SV- 1 on Barbados illustrates 

that exchange of mitochondrial genes has occurred between A. j. schwartzi and A. j. 

jamaicensis. This finding is interesting in view of the morphological distinctness of 

the St. Vincent subspecies (Jones 1978) and is the first time that hybridization between 

island subspecies of bats has been documented by genetic data. Moreover, the lack of 

intralineage, inter-island variation in the assayed restriction sites in either the J-l or 

the SV- 1 mtDNA genotype suggests to us that this genetic exchange between St. Vincent 

and Barbados has occurred relatively recently. Although these islands are separated 

by 180 km of open water, female bats clearly have dispersed successfully between 

them. The flying capabilities of A. jamaicensis are still undefined, but available data 

on their foraging habits have documented 4%min flights in search of ripe fruit and 

distances of 8 + 2 km between day roosts and fruit trees (Fleming 1982). Movement 

between St. Vincent and Barbados was probably not much easier during the Pleistocene 

glaciers because Barbados is situated on a ridge separated from St. Vincent by the 

deep Tobago Basin. Even at minimum sea level the distance between the two would 

only have been reduced by 10 km. We are thus left with the conclusion that A. ja- 

maicensis is capable of crossing a considerable water gap. 

In addition to demonstrating genetic exchange between island subspecies, our 

data also document that mtDNA lineages are not restricted to individual islands and 

that “new” genetic material can be successfully
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at least on an occasional basis. As shown by all of the foregoing data, it is clear that 

mtDNA analysis is a valuable zoogeographic tool because, on at least some occasions, 

it enables us to trace patterns of genetic exchange between islands. Future investigations 

of other islands and of mainland areas might reveal the geographic sources of Antillean 

Island bat populations as well as the dispersal history of these Neotropical bats. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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