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ABSTRACT  

Databases of allele frequency are extremely helpful for evaluating clinical variants of unknown 

significance; however, until now, genetic databases such as the Genome Aggregation Database 

(gnomAD) have ignored the mitochondrial genome (mtDNA). Here we present a pipeline to call mtDNA 

variants that addresses three technical challenges: (i) detecting homoplasmic and heteroplasmic variants, 

present respectively in all or a fraction of mtDNA molecules, (ii) circular mtDNA genome, and (iii) 

misalignment of nuclear sequences of mitochondrial origin (NUMTs).  We observed that mtDNA copy 

number per cell varied across gnomAD cohorts and influenced the fraction of NUMT-derived false-

positive variant calls, which can account for the majority of putative heteroplasmies. To avoid false 

positives, we excluded samples prone to NUMT misalignment (few mtDNA copies per cell), cell line 

artifacts (many mtDNA copies per cell), or with contamination and we reported variants with 

heteroplasmy greater than 10%. We applied this pipeline to 56,434 whole genome sequences in the 

gnomAD v3.1 database that includes individuals of European (58%), African (25%), Latino (10%), and 

Asian (5%) ancestry.  Our gnomAD v3.1 release contains population frequencies for 10,850 unique 

mtDNA variants at more than half of all mtDNA bases. Importantly, we report frequencies within each 

nuclear ancestral population and mitochondrial haplogroup. Homoplasmic variants account for most 

variant calls (98%) and unique variants (85%). We observed that 1/250 individuals carry a pathogenic 

mtDNA variant with heteroplasmy above 10%. These mitochondrial population allele frequencies are 

publicly available at gnomad.broadinstitute.org and will aid in diagnostic interpretation and research 

studies. 

 

 

INTRODUCTION 

The genetic material of human cells is contained in the nucleus and mitochondria. The mitochondrial 

genome (mtDNA) is a circular molecule of 16,569bp containing 37 genes that encode 13 proteins, 22 

tRNAs, and 2 rRNAs (Anderson et al. 1981), all essential to mitochondrial electron transport and energy 

homeostasis. Depending on the tissue, human cells contain hundreds to thousands of copies of mtDNA. 

Because the maternally-inherited mtDNA does not recombine and exhibits a ten times greater rate of 

polymorphism than nuclear DNA, it has been extremely useful in tracking human biogeography (Brown 

et al. 1979; Cann et al. 1987; Cavalli-Sforza 1998). 

Pathogenic variants in the mtDNA (Lott et al. 2013; Gorman et al. 2016) account for ~80% of adult-onset 

and ~20% of pediatric-onset mitochondrial disease (Gorman et al. 2015, 2016). Pathogenic mtDNA 

variants can cause disease at homoplasmy or when heteroplasmy rises to high levels (Craven et al. 2017). 
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These latter disorders are particularly challenging to diagnose since pathogenic variants can sometimes be 

observed at lower heteroplasmy levels and even absent in blood versus affected tissue and can decrease 

over time (Grady et al. 2018). For both homoplasmic and heteroplasmic variants, distinguishing those that 

are pathogenic from those that are benign is a challenge.  

Population frequency data are extremely helpful for the clinical interpretation of variants of uncertain 

significance (VUS) (McCormick et al. 2020). Until now, mtDNA variants have not been included in most 

large population databases of genomic variation such as the Exome Aggregation Consortium (ExAC) 

(Lek et al. 2016), the Genome Aggregation Database (gnomAD) (Karczewski et al. 2020), and the 

BRAVO server (https://bravo.sph.umich.edu). Instead, four specialized databases provide mtDNA 

population frequencies across humans: (i) MITOMAP (Lott et al. 2013) provides population frequencies 

from GenBank (which has heterogeneous data quality and is known to include individuals with disease); 

(ii) HmtDB provides population frequencies from GenBank and from mitochondrial disease patients 

(Clima et al. 2017); (iii) MSeqDR compiles population frequency data including MITOMAP, HmtDB, 

and GeneDx (Shen et al. 2018); (iv) HelixMTdb uses proprietary exome technology on saliva samples to 

report homoplasmic and heteroplasmic variants for nearly 200,000 individuals (mainly of European 

ancestry), despite relatively low (~180x) mean mtDNA coverage that can make it difficult to call 

heteroplasmic variants (Bolze et al. 2020). The first three mtDNA databases report only homoplasmic 

variants.  

The Genome Aggregation Database (gnomAD) is a widely-used resource of human genetic data 

developed by an international consortium who have aggregated whole genome sequence (WGS) data 

from large-scale sequencing projects including The Cancer Genome Atlas (TCGA), the Centers for 

Common Disease Genomics (CCDG), the Genotype-Tissue Expression project (GTEx), the Trans-Omics 

for Precision Medicine (TOPMed), and the National Heart, Lung, and Blood Institute (NHLBI). The data 

in gnomAD are analyzed jointly using the same pipeline, and are depleted for Mendelian or severe 

pediatric diseases as well as for cryptically related individuals, allowing for the computation of accurate 

and high-quality population allele frequencies. Summary gene and variant metrics are made public for a 

range of diverse ancestral groups, including individuals of African and African-American, Amish, Latino 

and admixed American, Ashkenazi Jewish, East Asian, Finnish, non-Finnish European, Middle Eastern, 

and South Asian descent. gnomAD v2 contains 125,748 exomes and 15,708 genomes aligned to the 

GRCh37 human reference. gnomAD v3 contains 76,156 WGS samples aligned to the GRCh38 human 

reference and includes cohorts derived from controls and biobanks (~16.5K), TOPMed (~35.7K), non-

pediatric neurological disease cohorts (~8.7K, including individuals with schizophrenia, Alzheimer’s 

disease, migraines, bipolar, and affective and psychotic disorders), and others. The resource has been 
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widely used for both basic and clinical research, with ubiquitous adoption in clinical genetic diagnostic 

pipelines worldwide, but analysis of the mtDNA has not been included until now. 

 

The main challenge for mtDNA variant calling from WGS data is to distinguish low heteroplasmy 

variants from sample contamination, sequencing errors, and misalignment. Specifically, misalignment 

from nuclear sequences of mitochondrial origin (NUMTs) is particularly problematic because the 

reference genome contains several hundred ancient NUMTs (Li et al. 2012) and hundreds of 

“polymorphic NUMTs” not present in the reference genome (Dayama et al. 2014), including rare 

instances of large, tandemly repeated mega-NUMTs (Lutz-Bonengel et al. 2021). In addition, the circular 

mtDNA molecule can present alignment challenges, and many alignment algorithms show a drop of 

coverage at the artificial ends of the linearized chrM chromosome. Since nuclear variant pipelines are not 

suitable for mtDNA variant calling, the mtDNA has not been routinely analyzed by many WGS projects. 

 

Multiple tools exist to call mtDNA variants. Tools such as mtDNA-Server (Weissensteiner et al. 2016a), 

MToolBox (Calabrese et al. 2014), and mity (Puttick et al. 2019) have been designed specifically to call 

heteroplasmic and homoplasmic variants. mtDNA-Server specifically identifies contamination, and 

MToolBox aims to avoid misalignment of NUMTs in the reference assembly but cannot avoid 

polymorphic NUMTs. Other tools not specifically designed for mtDNA can be adapted to call 

heteroplasmic variants, such as GATK Mutect2 (Benjamin et al. 2019), which was originally designed to 

identify sub-clonal variants in cancer. Many of these tools are easy to run; however, by themselves, they 

do not address issues such as contamination and false-positives from misalignment. 

  

Here, we aimed to accurately call mitochondrial variants in gnomAD WGS samples. To achieve highly 

accurate calls with few false positives and false negatives, we excluded samples we found to be 

particularly prone to NUMT misalignment (having few mtDNA copies per cell), samples likely to have 

cell line artifacts, and samples showing contamination from other samples. Next, we report only variants 

with heteroplasmy ≥ 10% because we observed a significant fraction of NUMT-derived false positives 

below this threshold. Thus gnomAD v3.1 conservatively reports variants above 10% heteroplasmy in 

56,434 samples.  

  

RESULTS 
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Figure 1. Coverage statistics for 70,375 gnomAD WGS samples. (A) Per-base mean depth of coverage 

across mtDNA, with coverage dips at positions 303-315 and 3107 due to homopolymeric tract and chrM 

reference deletion respectively. (B) For each cohort within gnomAD, scatter plot shows the mean nuclear 

(nDNA) and mtDNA coverage +/- standard deviation. Three example cohorts are shown in color: 1000 

Genomes and Human Genome Diversity Project cell lines (1KG/HGDP), NHLBI, and TOPMed Chronic 

Obstructive Pulmonary Disease (TOPMED COPD). (C) Histogram shows mean mtDNA coverage for all 

samples, and overlaid histograms show three selected cohorts (806 outliers with coverage 15000-97000 

excluded). We note mean and median (not shown) mtDNA coverage statistics are extremely similar. (D) 

Histogram shows median nDNA coverage for all samples, and overlaid histograms show three selected 

cohorts (84 outliers with coverage 60-94 excluded). (E) Histogram shows mtDNA copy number per cell 

(2*mean mtDNA coverage/ median nDNA coverage) for all samples, and overlaid histograms show three 

selected cohorts (223 outliers with mtCN 1250-7000 excluded). Only samples with mtCN 50-500 (dashed 

lines) were included in the released mtDNA call set (56,434/70,375).  
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mtDNA coverage varies across cohorts in gnomAD 

WGS provides even coverage across the mtDNA for all 70,375 gnomAD v3 samples available for 

analysis (Fig. 1A). However, we find that mtDNA coverage, as well as mtDNA copy number per cell 

(mtCN), vary widely across gnomAD cohorts, independent of nuclear coverage (Fig. 1B-E). This 

variation likely depends on source material (e.g. blood, buffy coat, cell line, tissue) and DNA extraction 

protocol; however, such annotations are available only for a subset of samples. A typical blood sample 

with 30x nuclear coverage shows ~2700x mtDNA coverage. The high mtDNA coverage in WGS enables 

detection of candidate heteroplasmic and homoplasmic variants. We estimate mtCN as 2m/n where m is 

mean mtDNA coverage and n is median nuclear coverage. As expected, mtCN varies by source material. 

Blood samples show two distinct peaks (median 40 for TOPMED COPD and 207 for NHLBI cohorts) 

possibly associated with DNA extraction kits or blood cell types collected (Fig. 1E). Cell lines typically 

have 500-1200 mtDNA copies per cell. A small number of samples with outlier mtCN > 2000 are derived 

from tissue samples such as heart, adrenal, and kidney.  
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Figure 2. mtDNA call set is designed to exclude NUMT-derived false positives (NUMT-FPs), cell 

line artifacts, and contaminants. (A) Schematic shows GATK pipeline for calling mtDNA variants in 

single WGS samples. The control region spans the artificial break in chromosome M sequence. (B) 

Reproducibility of GATK pipeline on 91 WGS replicate samples shows 99.3% concordance of calls 

(2533/2551), and density plot at top shows 87% variants are homoplasmic. (C) Accuracy of single-sample

pipeline in samples with mtCN > 500 based on “in silico” mixing data. (D) Barchart shows that the mean 

number of putative heteroplasmies per sample depends on mtDNA copy number (mtCN), as does the 

subset occurring at 25 validated NUMT-FP sites (red). (E) Scatterplot shows the observed VAF for a 

single NUMT-FP (m.16293A>C) across 6,945 samples versus the theoretical VAF if the NUMT were 

heterozygous and all reads misaligned to chrM. (F) Plot shows VAF levels for NUMT-FP sites decrease 

with mtCN (colored lines). Y-axis indicates the percent of detected variants that occur at 25 NUMT-FP 

 

le 
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sites. (G) Density plot shows mtCN for known cell lines and all other samples. (H) Barplot shows that 

known cell lines have increased number of heteroplasmic variants in all categories compared to samples 

with mtCN 50-500 (enrichment shown with *** indicating p-value < 1e-5 based on Fisher’s Exact test); 

pLOF indicates predicted loss-of-function. (I) Schematic shows steps for combining and filtering single-

sample variant calls into the gnomAD mtDNA call set, designed to exclude NUMT-derived false 

positives, cell line artifacts, and contaminants. (J) Number of unique variants that pass filters (bold black) 

versus those filtered out based on VAF (black) or not released (gray). The 19,167 variants are partitioned 

into mutually exclusive categories, e.g. VAF 0.10-0.95 excludes variants also detected VAF 0.95-1.00. 

(K) For each VAF level, barchart shows the fraction of variants at 25 NUMT-FP sites before sample 

filtering (red) or after filtering (orange, shown overlaid). (L) Histogram of VAF (after sample filtering) 

shows that below 10% VAF, there are a large number of variants and a substantial fraction present at 25 

validated NUMT-FP sites (red). X-axis label indicates upper bound of VAF bin.  

 

 

Pipeline for mtDNA variant calling in individual samples 

We developed a high-throughput GATK pipeline to call homoplasmic and heteroplasmic variants in 

mtDNA from whole genome sequence data (Fig. 2A). WGS was aligned to the reference genome using 

BWAmem (Li 2013). Only mate-pairs with both reads mapping to chromosome M were used for variant 

calling, after excluding duplicate pairs. Variants were called using the GATK Mutect2 variant caller 

(Benjamin et al. 2019), parameterized via a specific “mitochondria mode” designed to account for high 

coverage and potential low-heteroplasmy variants. To call variants in the control region that spans the 

artificial break in the circular genome (coordinates chrM:16024-16569 and chrM:1-576), we extracted all 

chrM reads and realigned them to a mtDNA reference that was shifted by 8,000 bases, called variants on 

this shifted alignment, and then converted coordinates back to their original positions. Variants showing 

weak evidence or strand bias were then filtered. Variant allele fraction (VAF) was calculated as the 

fraction of alternate reads to total reads for each variant and sample. We denote variants with VAF 0.95-

1.00 as homoplasmic or near homoplasmic, and variants with VAF < 0.95 as heteroplasmic. 

 

We assessed the reproducibility of our pipeline using 91 samples for which replicate WGS was available 

(Fig. 2B). We observed 99.3% concordance for all variants with VAF ≥ 0.01, where concordance is 

defined as the number of variants detected in both samples / number of variants detected in either sample. 

Some of the highly discordant calls were derived from cell lines, which may have accumulated mutations 

over the times sampled. 
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To assess sensitivity and precision at different heteroplasmy levels, we created in silico mixtures of 

samples (Fig. 2C) to model variants at specific VAF levels (0.01, 0.05, 0.50, 0.90, 0.99). We mixed truth 

data from cell line NA12878 with each of 22 African-haplogroup samples to increase the total number of 

variants (1,200 variants at 286 positions, including 8 indels). For VAF ≥ 0.05, we observed excellent 

sensitivity (99-100%) and precision (98.9-99.7%), where sensitivity indicates the percent of true variants 

that are detected, and precision indicates the percent of detected variants that are true positives. 

Sensitivity dropped to 32% for variants at 0.01 VAF. Compared to the mtDNA-Server algorithm, GATK 

Mutect2 had higher precision at all heteroplasmies, similar sensitivity for VAF 0.05-0.99, but reduced 

sensitivity for VAF 0.01 variants (Fig. S1).  

 

We note that this in silico approach uses cell lines and does not account for possible NUMT-

misalignment, which we show is very problematic for samples with low mtDNA copy number.  

 

NUMT-derived false positives anti-correlate with sample mtDNA copy number and VAF 

When we applied this variant calling pipeline to 70,375 available whole genomes in gnomAD v3.1, we 

observed the number of candidate heteroplasmies per sample was highly dependent on the sample mtCN 

(Fig. 2D). This observation was consistent with false positives derived from NUMT-misalignment. 

Theoretically, a misaligned heterozygous NUMT will have VAF approximately 0.5n/(0.5n+m) or 

1/(1+mtCN) where n is nuclear coverage and m is mtDNA coverage and mtCN=2m/n. We observed 

several dozen common variants whose VAF correlated with 1/(1+mtCN) (e.g. m.16293A>C, Fig. 2E), 

and were often linked in cis to each other (Table S1). We hypothesized that these were derived from 

polymorphic NUMTs, i.e., NUMTs present in some individuals but not in the reference genome 

assembly. We validated two polymorphic NUMTs using long-read PacBio data: numtA (871bp insertion 

from chrM:12361-13227 into chr21:9676568), and numtB (536bp insertion from chrM:16093-chrM:59 

into chr11:49862017). When misaligned to the reference mitochondrial genome, these two NUMTs 

together yielded 25 common false positive calls that we term NUMT-FP (Fig. S2, Table S1). Some of the 

false positives were properly filtered out by strand bias, but others passed our variant filters. Using 

unfiltered variant calls, we estimate numtA and numtB are each present in ~40% of individuals in our 

data set (Table S1, Fig. S2).  

 

Next, we aimed to estimate the extent of NUMT-misalignment and how it relates to sample mtCN and 

VAF. As a lower bound we can assess the percent of variants at each VAF level located at these 25 

NUMT-FP sites (requiring each NUMT to be supported by at least two NUMT-FP per sample). As 

expected, the 25 NUMT-FPs were more problematic for samples with low mtCN, and for variants with 
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low VAF (Fig. 2F). Samples with extremely low mtCN (< 50) showed substantial NUMT-FP exceeding 

0.15 VAF. For mtCN 50-75, there were detectable NUMT-FP variants up to 0.10 VAF. For samples with 

mtCN 75-100, there were substantial NUMT-FP up to 0.05 VAF. For samples with mtCN > 500, there 

were almost no NUMT-FP with VAF ≥ 0.01. As expected, shorter WGS insert sizes also cause greater 

misalignment (Fig. S3). The true extent of NUMT-derived false positives is likely to be much higher, 

since this analysis considers only two common NUMTs, whereas there are hundreds of known 

polymorphic NUMTs (Dayama et al. 2014) and hundreds of NUMTs yet to be identified.  

 

Given these large numbers of false positive calls for variants with VAF < 0.10, for the initial release we 

chose to exclude samples with mtCN < 50 and to report only variants with VAF ≥ 0.10 as we have greater 

confidence that such variants represent genuine heteroplasmies and not NUMT-derived false positives 

(Fig. 2F). 

 

We note that misalignment due to NUMTs not only causes false positive calls at low VAF, but also can 

cause truly homoplasmic variants to appear heteroplasmic, with the reference alleles derived from the 

misalignment of a NUMT. Because of this, we term all variants with VAF 0.95-1.00 as “homoplasmic” or 

“near-homoplasmic.” 

 

Cell lines show excess deleterious heteroplasmies 

While not all samples have annotations of source material, the 3,436 known cell lines account for the 

majority of the 5,633 samples with mtCN > 500 (Fig. 1E, 2G). Samples annotated to be cell lines show 

significantly elevated numbers of heteroplasmies (VAF 0.10-0.95), with a particular excess of potentially 

deleterious variants (loss of function, missense, tRNA, and rRNA) compared to synonymous and non-

coding variants (Fig. 2H). These data show that cell lines accumulate mutations and suggest that 

deleterious mtDNA variants may be tolerated in cell culture.  

 

Filtering gnomAD samples and variants 

We performed stringent filtering of samples to create a high-quality mtDNA variant call set (Fig. 2I). 

Specifically we excluded: (1) 6,505 samples with mtCN < 50 to avoid excessive misalignment due to 

NUMTs; (2) 5,633 samples with mtCN > 500 since these were primarily cell lines and enriched with what 

appear to be cell culture derived variants; (3) 1,803 samples with contamination exceeding 2% based on 

estimates from the nuclear DNA or mitochondrial DNA, since samples with low nuclear contamination 

can still have substantial mtDNA contamination. No data from these excluded samples are provided in the 

release. 
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In the remaining 56,434 samples, we conservatively report only mtDNA variants with VAF ≥ 0.10 (Table 

S2). 10,850 unique variants pass our thresholds whereas the remainder (including variants VAF 0.01-

0.10, Fig. 2J) are available as filtered variants in download files and on the web portal but are plagued 

with false positives (Fig. 2K). Using just two validated NUMTs, we calculate a lower bound for NUMT-

misalignment, which accounts for 42% of all variant calls VAF 0.01-0.05, 1% of all variants VAF 0.05-

0.10, and virtually 0% of variants in other heteroplasmy bins (Fig. 2L). Variants enriched for false 

positives are annotated and highlighted in the web browser, e.g. using the “common_low_heteroplasmy” 

flag (variants detected at VAF 0.001-0.50 in > 56 individuals), “artifact_prone_site” filter, “indel_stack” 

filter, or “no pass genotype” filter (see Methods, Table S2).  Since variants with VAF 0.10-0.95 have few 

false positives, we refer to these as heteroplasmies.  

 

 

Figure 3: gnomAD mtDNA variant statistics. (A) Pie charts summarize statistics on mtDNA bases with 

variants, unique variants, and total variant calls. (B) Bar plot shows the proportion of unique mtDNA 

variants detected at different population allele frequencies in gnomAD v3.1. (C) Bar chart shows the 
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proportion of variants that are observed only at 10-95% heteroplasmy (gray) or observed at homoplasmy 

(blue) including those that are known haplogroup markers in Phylotree (dark blue). (D) Histogram shows 

number of heteroplasmies per sample. (E) Stacked bar charts show the distribution of variant annotations 

in the entire mtDNA and for unique variants that are homoplasmic or only observed at heteroplasmy.  

 

mtDNA variants across 56,434 gnomAD samples 

We release high confidence mtDNA variants for 56,434 samples that pass our quality control filters. 

These samples exhibited median 2,700x mtDNA coverage and 184 mtCN (Fig. S4). Overall, 8,793 of the 

16,569 mtDNA nucleotides had a variant (53%) (Fig. 3A). We observed 10,850 unique variants, 

including 10,434 SNVs (96%) and 416 indels (4%), with SNVs being predominantly transitions rather 

than transversions (Fig. 3A). Of the 1.9M total variant calls, 98% were homoplasmic or near-

homoplasmic and 2% were heteroplasmic (40,706 variant calls 10-95% heteroplasmy) (Fig. 3A, Fig. 

S4D). The 9,209 unique homoplasmic variants include known haplogroup markers (46%) as well a large 

number of rare variants. Homoplasmic variants showed a range of population frequencies (Fig. 3B-C).  

 

The majority of samples had no heteroplasmies (Fig. 3D). Moreover, the majority of heteroplasmies 

(32,386/40,706=80%) were variants that were detected at homoplasmy in other samples. Specifically, 

5,205 (48%) unique variants were observed only at homoplasmy, 4,004 (37%) were observed both as 

homoplasmic and heteroplasmic, and 1,641 (15%) were observed only at heteroplasmy (Fig. 3A). Most 

unique variants observed only at heteroplasmy were found in only one or two samples (Fig. 3B-C). 

Variants observed only at heteroplasmy showed increased non-synonymous and RNA gene changes, 

whereas variants observed at homoplasmy showed higher prevalence of synonymous and non-coding 

variants (Fig. 3E). 
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Figure 4: gnomAD v3.1 samples by mtDNA haplogroup and nuclear ancestry. 

(A) The number of samples is shown by mtDNA top-level haplogroup. Color indicates mtDNA 

haplogroups phylogenetically associated with African (red), Asian (green), or European (blue) origin 

(Lott et al. 2013). (B) For each haplogroup, box plots show the number of homoplasmic SNVs per sample 

compared to the GRCh38 reference genome (haplogroup H) with median shown in color. (C) For each 

haplogroup, stacked barcharts show nuclear ancestry from nuclear genome analysis, with colors as in 

panel E. (D) For each haplogroup, the percentage of samples from each inferred nuclear ancestry is shown

in a heatmap. Dash indicates 0 samples, while 0 indicates a percentage between 0-1. (E) The number of 

samples is shown by inferred nuclear ancestry. (F) For each inferred nuclear ancestry shown in panel D, 

stacked barchart shows mtDNA haplogroups phylogenetically associated with African (red), Asian 

(green), or European (blue) origin (Lott et al. 2013).  
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Haplogroups vs nuclear ancestry 

Since mtDNA does not recombine and is inherited maternally, closely related mtDNA sequences have 

historically been grouped together in “haplogroups”. There are 5,184 haplogroups from diverse 

populations available in the Phylotree database (van Oven and Kayser 2009) and broadly associated with 

African, Asian, and European ancestry (Lott et al. 2013). Samples in gnomAD v3.1 spanned 61% of the 

haplogroups defined by Phylotree, and provide representation from 29/33 of the top-level haplogroups 

(missing L6, Q, O, S) (Fig. 4A). 46% of gnomAD v3.1 homoplasmic unique variants were known 

haplogroup markers, and 4250/4571 (93%) of all haplogroup markers were observed in the dataset, 

emphasizing the haplogroup and population diversity of the samples included in the current release. The 

mtDNA reference sequence in hg38, also known as the revised Cambridge Reference Sequence (rCRS), 

belongs to the European top-level haplogroup H (Andrews et al. 1999). Accordingly, the number of 

homoplasmic mtDNA variants per person in gnomAD increased as distance from the reference 

haplogroup in the phylogenetic tree increased, where individuals of European haplogroups typically had 

0-50 variants, Asian haplogroups typically had 25-50 variants, and African haplogroups typically had 50-

100 variants (Fig. 4B). By contrast, the number of heteroplasmic variants was similar across haplogroups 

(Fig. S5).  

 

GnomAD annotates sample ancestry based on principal components analysis of the nuclear genome 

(Karczewski et al. 2020) (Fig. 4C-E). The 56,434 samples were predominantly of European (58%) and 

African (25%) ancestry with lower representation from Latino and admixed American (10%), East Asian 

(3%), and South Asian (3%) ancestral populations (Fig. 4E). The mtDNA haplogroups were largely 

concordant with nuclear ancestry (Fig. 4C, F).  

 

Patterns of variation in mtDNA genes 

Unlike the nuclear genome, approximately 90% of the mtDNA encodes protein or RNA genes, and only 

10% is intergenic. The proportion of possible SNVs observed was consistent with selection against non-

synonymous and RNA variation. Specifically, 55% of all possible synonymous variants were observed, 

but only 10% of possible missense and RNA variants, and 1% of possible stop gain variants were 

observed (Fig. 5A). We also observed fewer possible SNVs in the non-coding control region compared to 

synonymous variants (Fig. 5A), and this held true within the hypervariable region and when limiting to 

transitions (Fig. S6A). The proportion of variants observed at homoplasmy and the median maximum 

heteroplasmy of heteroplasmic variants decreased as the predicted severity of the variant type increased 

(Fig. 5B and Fig. S6B-D). SNV and indel variants in the RNA genes showed a similar pattern of 
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heteroplasmy to each other. Only two predicted loss-of-function variants were homoplasmic in gnomAD 

(1 stop gain and 1 frameshift). However, manual inspection revealed neither is likely a true loss-of-

function, as the frameshift can result in a protein of the same length, and the stop gain is rescued by a 

multi-nucleotide variant in the same codon (Table S3). 

 

Transitions predominate over transversions across the mtDNA, where T>C and G>A mutations are 

associated with the highest mutability (Ju et al. 2014). Approximately 95% of possible synonymous T>C 

and G>A variants were observed at homoplasmy (Fig. 5C), suggesting that the size of this dataset is near 

saturation for this highly mutable, weakly negatively selected variant type. Interestingly, nearly all of the 

possible G>A synonymous variants not seen at homoplasmy were within AUG codons that were either a 

start codon (c.3G>A) or the third codon of a gene with an AUA start codon (Table S4). In the 

mitochondria, AUG and AUA both code for methionine, although modification of the mitochondrial 

tRNAMet is required to pair with AUA (Van Haute et al. 2017). In the nine genes with AUG start codons, 

a c.3G>A variant was never observed at homoplasmy in gnomAD, nor in HelixMTdb, and was absent or 

seen once in MITOMAP (Table S4) (Lott et al. 2013; Bolze et al. 2020). Collectively, these observations 

suggest selection against AUA at AUG start codons.  

 

To provide insight into gene-level tolerance of variation, we assessed the proportion of non-synonymous 

codon changes in protein-coding genes and base changes in RNA genes. Among protein-coding genes, 

the proportion of codons with a non-synonymous variant ranged from 30-90%, suggesting that some 

proteins are more tolerant of variation (Fig. 5D). For example, complex V genes MT-ATP8 and MT-ATP6 

showed the highest proportion of codons with non-synonymous variation, while complex I genes had the 

lowest proportion. Among the RNA genes, the proportion of bases with a variant ranged from 20-85%, 

indicating that specific RNAs may be more tolerant of variation, especially MT-TT (Fig. 5E-F).  
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Figure 5: Patterns of variation in the mtDNA in gnomAD. (A) The barchart shows the proportion of 

possible SNVs observed, partitioned into those observed at homoplasmy (black), only at 10-95% 

heteroplasmy (gray), or not observed (white). (B) The boxplot shows the maximum heteroplasmy of 

variants observed only at heteroplasmy. Protein indels include frameshift and in-frame variants. ‘Control 

reg.’ represents the non-coding control region m.16024-576 in (A) and (B). (C) The barchart shows the 

proportion of possible synonymous variants observed in gnomAD for transversions (Tv) and all possible 

transitions (A>G, C>T, G>A, T>C) on the reference strand. (D) The barchart shows the proportion of 

codons in protein-coding genes with non-synonymous SNVs observed. (E) and (F) show the proportion 

of bases in tRNA and rRNA genes with SNVs. (C-F) follow the color legend in (A).  

 

Prevalence of known pathogenic mtDNA variants in gnomAD  

We calculated the carrier frequency of the 94 variants listed as “confirmed” pathogenic in MITOMAP, 

including 56 reported to cause disease at heteroplasmy (typically > 60% heteroplasmy) and 38 reported to 

cause disease at homoplasmy or both at homoplasmy and heteroplasmy (Lott et al. 2013; Craven et al. 
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2017). In gnomAD, we observe 26 pathogenic variants in 231/56,434 individuals, equating to a total 

carrier frequency of ~1 in 250 individuals (Fig. 6). Fewer variants associated with disease only at 

heteroplasmy were observed in gnomAD relative to those associated with disease at homoplasmy (16% vs 

45%), consistent with the expectation that the latter group includes milder mutations (Fig. S7A) (Craven 

et al. 2017). Eleven pathogenic variants were observed at homoplasmy, most of which are reported to be 

incompletely penetrant and/or associated with adult-onset disease when homoplasmic (including 

nonsyndromic hearing loss, aminoglycoside-induced hearing loss, Leber Hereditary Optic Neuropathy 

(LHON), or reversible myopathy). One of these variants seen at homoplasmy in gnomAD was not 

associated with disease at homoplasmy in MITOMAP (m.8993T>C); however, it has recently been 

described in adult-onset cases at homoplasmy (Stendel et al. 2020). Across all pathogenic variants, 

m.1555A>G had the highest carrier frequency (1 in ~750; Fig. 6), while m.3243A>G and m.8344A>G 

variants had the highest carrier frequency among those only observed at heteroplasmy (~1 in 10,000; Fig. 

6).  

 

Mitochondrial DNA specifications of the American College of Medical Genetics and Association of 

Molecular Pathology (ACMG/AMP) guidelines for sequence variant interpretation state that allele 

frequency in population databases < 0.00002 or > 0.005 can provide evidence of pathogenicity or benign 

impact respectively, where analysis of homoplasmic databases was used to determine these thresholds 

(McCormick et al. 2020). Consistent with this guideline, none of the pathogenic mtDNA variants in 

gnomAD had a homoplasmic allele frequency (AF_hom) that satisfied benign variant frequency criteria 

(AF_hom > 0.005 for benign strong BS1, or AF_hom > 0.01 for benign stand-alone BA1). Approximately 

90% of the 94 known pathogenic variants had AF_hom < 0.00002, satisfying the pathogenic supporting 

criteria PM2_supporting for variant frequency; this included all of the variants only associated with 

disease at heteroplasmy (Fig. S7B). All pathogenic variants also had AF_hom < 0.005 within haplogroups 

and populations (Fig. S7B). Analysis of the heteroplasmic allele frequency (AF_het) of pathogenic 

variants showed that all were < 0.005, and that ~85% were < 0.00002 (Fig. S7B). Consistent with recent 

observations in the UK Biobank and HelixMTdb, the AF_hom of m.14484T>C was greater than the 

maximum credible population AF reported by Bolze et al (0.00053 vs 0.00023), lending support to the 

suggestion that this variant alone may not cause LHON (Bolze et al. 2020). 
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Figure 6: Known pathogenic variants in gnomAD. Shown are the 26 pathogenic variants observed in 

gnomAD along with their heteroplasmy levels, haplogroup distribution, carrier frequency, MITOMAP-

curated disease phenotypes, and indicator showing whether disease occurs at homoplasmy (Hom. 

reported; note this includes variants only associated with disease at homoplasmy, or at both homoplasmy 

and heteroplasmy). The carrier frequency is calculated as the high-quality allele count divided by the 

number of individuals with high quality sequence at the position. The dark grey line at 95% heteroplasmy 

level represents the threshold used to define homoplasmic variant calls. Haplogroups are ordered by their 

position in the phylogenetic tree, and colored by their association with African (red), Asian (green), or 

European (blue) ancestry. AMDF: Ataxia, Myoclonus and Deafness; COX: Cytochrome c Oxidase; 

DEAF: Maternally inherited deafness or aminoglycoside-induced deafness; EXIT: Exercise Intolerance; 

LHON: Leber Hereditary Optic Neuropathy; LS: Leigh syndrome; MELAS: Mitochondrial 

Encephalomyopathy, Lactic Acidosis, and Stroke-like episodes; MERRF: Myoclonic Epilepsy and 

Ragged Red Muscle Fibers; MLASA: Mitochondrial Myopathy, lactic acidosis and sideroblastic anemia; 

MM: Mitochondrial Myopathy; NARP: Neurogenic muscle weakness, Ataxia, and Retinitis Pigmentosa; 

SNHL: Sensorineural Hearing Loss; other: other phenotypes listed for this variant in MITOMAP. 

 

DISCUSSION 

  

Here we present a pipeline for calling homoplasmic and heteroplasmic mtDNA variants and its 

application to gnomAD v3.1. To our knowledge, this represents the first database of mtDNA variants 

 

y 
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from WGS data and the only database with heteroplasmic variants aside from HelixMTdb. We present a 

conservative set of variants based on WGS from 56,434 individuals, after stringent filtering of samples 

with low mtDNA copy number, samples derived from cell lines, and samples with high contamination. 

Moreover, we have chosen to report heteroplasmic variants that are occurring at a level of 10% or greater. 

As expected, the vast majority of variant calls were homoplasmic, including nearly all known haplogroup 

markers and thousands of additional rare homoplasmic variants. Most heteroplasmies occurred at variants 

that were observed at homoplasmy in at least one individual. The gnomAD dataset and web browser 

provides detailed information for each variant, including predicted functional consequence, distribution of 

heteroplasmy levels, maximum observed heteroplasmy, and population allele frequencies (including 

aggregated per haplogroup and per nuclear ancestry population).  

 

Our analyses show that misalignment of polymorphic NUMTs contributes to alarmingly high false 

positive mtDNA variant calls in WGS, particularly for variants with low putative heteroplasmy and for 

samples with low mtDNA copy number (mtCN) (Fig. 2D,K). Using two polymorphic NUMTs not in the 

reference human genome assembly that we validated using PacBio sequencing, we estimate a lower 

bound for NUMT-derived false positives (NUMT-FPs). In samples with mtCN < 50, NUMT-FPs account 

for the majority of putative heteroplasmies VAF 0.01-0.10 (Fig. 2F). Conversely, in samples with mtCN 

> 500 (e.g., tissues and cell lines), NUMT-FPs show putative heteroplasmy substantially less than 0.01, 

and thus are typically not a problem. Even after excluding samples with mtCN < 50 and mtCN > 500, we 

observe that 50% of variants with VAF 0.01 are NUMT-FPs (Fig. 2K). These NUMT-FPs are also called 

by tools such as mToolBox that exclude reads mapping to both mitochondrial and nuclear genomes, since 

such approaches cannot account for polymorphic NUMTs. Our data suggest that for Illumina WGS data, 

with insert sizes ~375bp, the NUMTs in the reference genome do not cause substantial false positives 

whereas reads from NUMTs that are not found in the reference genome will misalign to the mtDNA 

genome. To our knowledge, there are no estimates of NUMT-FPs from HelixMTdb or WGS studies 

focusing on heteroplasmies (Wei et al. 2019).  

 

Given these findings, and to avoid NUMT-FPs, we employ stringent sample filtering and release only 

variants with heteroplasmy ≥ 10%. Future releases may develop more sophisticated approaches to define 

a sample-specific heteroplasmy threshold to exclude NUMT-derived artifacts or may reduce the threshold 

to 5%. Ultimately, long-read sequencing technologies will be required to fully address the NUMT 

misalignment problem. 
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Our data show that known cell lines harbor excess heteroplasmies, including excess deleterious variants 

(Fig. 2H). These findings likely result from relaxed selection pressures in high-glucose cell culture 

conditions that are tolerant to ordinarily deleterious mtDNA variants. We note that this finding is of 

particular importance given emerging technologies that culture patient-derived cells ex vivo before 

transplantation into the individuals (e.g. CAR-T and stem cell therapies), and may warrant further study 

(Perales-Clemente et al. 2016). 

 

Our pipeline has several limitations. The pipeline is available and easy to run within a scalable cloud-

based framework but may be difficult to implement on local compute resources. However, the Mutect2 

“mitochondrial-mode” variant caller is easy to run and provides comparable results to other stand-alone 

tools such as mtDNA-Server and mToolBox. These tools show different trade-offs; e.g. mtDNA-Server 

shows higher sensitivity for variants with 1% heteroplasmy at the cost of reduced precision. For analysis 

of other cohorts, less stringent sample and heteroplasmy filtering may be more appropriate depending on 

mtCN observed in the cohorts. 

 

Analyses of variants in gnomAD are broadly consistent with previous studies of human mtDNA variation. 

We observed a carrier frequency of ~1 in 250 individuals (VAF 0.10-1.00), consistent with estimates 

from other studies (Elliott et al. 2008; Wei et al. 2019). Our observed patterns of variation suggest 

negative selection against variants which impair gene function, as reported by others (Stewart et al. 2008; 

Wei et al. 2019; Bolze et al. 2020). Missense, tRNA, and rRNA variants showed similar occurrence and 

heteroplasmy distributions, suggesting they may be removed from the population at a similar rate by 

negative selection. We observed less variation within the non-coding control region compared to 

synonymous variants at transition variants (but not at transversion variants; Fig. S6A); however, this may 

be explained by the higher prevalence of the most mutable tri-nucleotides at synonymous sites (Zhou et 

al. 2014). To our knowledge, our analyses are the first to reveal a lack of putative synonymous variants at 

start codons, changing AUG>AUA, implying such mutations may impair mitochondrial function and 

fitness. Studies in bacteria and yeast mitochondria have shown that AUG is a more efficient initiation 

codon than AUA (Romero and García 1991; Mulero and Fox 1994). The identification of a c.3G>A 

variant in an individual with mitochondrial disease may thus warrant further investigation.  

 

We anticipate that gnomAD mtDNA variants will be of broad use in the clinical interpretation of variants; 

however, we want to emphasize key limitations for interpretation of heteroplasmic variants detected in 

patients. The mitochondrial specifications of the ACMG/AMP guidelines provides clear methods for 

variant interpretation based on homoplasmic allele frequency (AF_hom): specifically, AF_hom > 0.005 
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provides evidence for benign classification whereas AF_hom < 0.00002 is supporting evidence for 

pathogenicity (McCormick et al. 2020). However, for variants never detected at homoplasmy, no such 

guidelines for heteroplasmic allele frequency (AF_het) have yet been developed. In the default browser 

setting, we have chosen to only include variants that we observe at heteroplasmy ≥ 10%, because below 

this threshold we observed thousands of variants that are enriched for NUMT-derived false positives and 

sequencing errors. It is important to note that if clinical sequencing of a patient detects a low 

heteroplasmy variant (e.g., heteroplasmy less than 10-15%) that is apparently absent from gnomAD based 

on the browser view, we caution against using the absence to support pathogenicity, and urge gnomAD 

users to select the “Include unfiltered variants” option to view these artifact-prone sites and other 

excluded variants. These filtered variants are also included in downloadable gnomAD data files with the 

relevant flags. This scenario applies specifically to low heteroplasmy variants -- which are prone to 

sequencing errors and NUMT-misalignment that are not typically problematic for high heteroplasmy 

mtDNA variants or nuclear variants.   

 

Given the challenge and extent of NUMT-derived false positives, we urge confirmatory studies of 

putative low level heteroplasmy variants detected by clinical diagnostics. We note that many clinical 

sequencing methods (appropriately) aim to avoid NUMT-derived artifacts, using specialized methods to 

enrich for circular DNA or long-range PCR that selectively amplifies intact mtDNA. However, even such 

specialized methods may inadvertently report NUMT-derived false positives, as may be the case in the 

controversial report of paternally inherited mtDNA (Luo et al. 2018; Lutz-Bonengel and Parson 2019; 

Lutz-Bonengel et al. 2021).  

 

GnomAD’s diverse population representation, exclusion of individuals known to have severe pediatric 

disease, and capture of homoplasmic and heteroplasmic variation offer value for mtDNA variant 

interpretation. As the first large-scale mtDNA database built from WGS data via a publicly available 

pipeline, this study has provided both open-source tools and data that will support mtDNA analysis as 

part of clinical WGS testing. 

  

METHODS  

 

Mitochondrial variant calling pipeline in single samples 

Whole genome sequence data were aligned to reference genome GRCh38, which includes chrM (identical 

to the revised Cambridge Reference Sequence, GenBank NC_012920.1) using BWAmem version 0.7.15-

r1140 (parameters -K 100000000 -p -v 3 -t 2 -Y). For each sample CRAM, Terra MitochondrialPipeline 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 23, 2021. ; https://doi.org/10.1101/2021.07.23.453510doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.23.453510


22 
 

version 25 was run 

(https://portal.firecloud.org/?return=terra#methods/mitochondria/MitochondriaPipeline/25). Briefly, 

GATK version 4.1.2.0 (McKenna et al. 2010) tools were used to estimate the median nuclear genome 

coverage (Picard CollectWgsMetrics), to exclude duplicates (Picard MarkDuplicates), to pull reads from 

chrM (GATK PrintReads --read-filter MateOnSameContigOrNoMappedMateReadFilter --read-filter 

MateUnmappedAndUnmappedReadFilter), and to call variants (GATK Mutect2 --mitochondria-mode --

annotation StrandBiasBySample --max-reads-per-alignment-start 75 --max-mnp-distance 0). For calling 

variants in the control region (coordinates chrM:16024-16569 and chrM:1-576), reads originally aligning 

to chrM were realigned to a chrM reference genome shifted by 8000 nucleotides, and then variants called 

on the shifted reference were mapped back to standard coordinates (Picard LiftOver) and combined with 

variants from the non-control region. Mutect2 variants were then filtered (GATK FilterMutectCalls --stats 

raw_vcf_stats --max-alt-allele-count 4 --mitochondria-mode --autosomal_coverage 

nDNA_MEDIAN_COV --min_allele_fraction 0.01); multi-allelic sites were split into different variants 

(LeftAlignAndTrimVariants --split-multi-allelics --dont-trim-alleles --keep-original-ac); and 

HaploGrep/HaploCheck (v1.0.5) was run to assign haplogroup (Weissensteiner et al. 2016b) and estimate 

mtDNA contamination (Weissensteiner et al. 2021). The min_vaf_threshold was set to 0.01 and calls 

below 0.01 VAF were later set to homoplasmic reference. For each input sample, a VCF with mtDNA 

variants was produced. We note that GATK left-aligns all indel calls, unlike calls from mtDNA-Server 

and variants in the Phylotree database. 

 

We developed Mutect2 “mitochondria mode,” which, in contrast to its original use in calling somatic 

mutations in cancer, sets parameters and filters specialized for calling low VAF variants in high coverage 

mtDNA. Mutect2 performs local read realignment (using the same realignment algorithm as GATK’s 

HaplotypeCaller), performs a local assembly of haplotypes, prunes these haplotypes, and then calls SNVs 

and short insertions/deletions via a Bayesian somatic genotyping model. To increase sensitivity, Mutect2 

“mitochondria mode” lowers the threshold for ActiveRegions (regions to be considered by the variant 

caller) and the threshold for emitting variants based on quality. Additionally, “mitochondria mode” 

implements a specialized adaptive approach to prune paths from the assembly graph, which is necessary 

due to extremely high mtDNA coverage. Adaptive pruning uses both the local coverage and observed 

sequencing error rate to determine appropriate paths to prune from the graph to reduce false positive calls. 

Finally, "mitochondria mode" removes several standard Mutect2 filters (including clustered events, 

filtered haplotypes, and multiallelic) that operate with the assumption that variants do not typically occur 

near each other, which does not apply to mtDNA.  
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A predefined list of artifact-prone sites (positions 301, 302, 310, 316, 3107, 16182) was provided as input 

into this pipeline, and any variant overlapping these sites was filtered (“artifact_prone_site”), similar to 

other tools (Weissensteiner et al. 2016a; Wei et al. 2019). Sequence context at these specific artifact-

prone sites makes it difficult to distinguish true variants from technical artifacts. The homopolymer tracts 

at location chrM:300-317 (AAACCCCCCCTCCCCCGC) cause Illumina sequencing errors in all samples 

and cause (i) a large coverage dip in this region, (ii) reads with many apparent indels near position 

chrM:310T, and (iii) apparent substitutions of chrM:301A>C, chrM:302A>C, chrM:310T>C, and 

chrM:316G>C. Similarly, homopolymer tracts at location chrM:16180-16193 (AAAACCCCCTCCCC) 

cause errors and apparent indels at position chrM:16182-16183. The reference genome contains “N” at 

position chrM:3107, which causes misalignment of many reads. We note that this artifact-prone site filter 

was re-implemented at the cohort level after variants were combined across samples (see below).  

    

Reproducibility 

Duplicates were determined as described in Karczewski et al (2020). For Mutect2, we ran version 25 of 

the Terra MitochondrialPipeline, filtered artifact-prone sites, and set any filtered genotypes to 

homoplasmic reference. To measure how similar variant calls were between duplicate samples for each 

tool, we calculated the jaccard index for all variants as well as only variants with VAF > 0.10, 0.50, and 

0.90. We output the results of this comparison for both SNVs and indels, but note that mtDNA-Server is 

focused on calling SNVs and that their method for calling indels is in beta testing. 

 

Assessing accuracy on truth datasets 

Sample NA12878 and 22 samples from diverse L haplogroups were selected for in silico mixing 

experiments to create a large truth dataset compared to the reference chrM (totalling 1,200 variants at 286 

positions, including 8 indels). For each L-haplogroup sample, the number of mtDNA reads per sample 

was counted (samtools v1.8 idxstats), and then downsampling was performed (samtools v1.8) to create 

five BAM files containing a predefined ratio of reads from the L-haplogroup sample and NA12878 (0%, 

1%, 5%, 90%, 99%, 100%). For each mixture, total coverage was set to the L-haplogroup sample’s 

original coverage. GATK's HaplotypeCaller version 4.0.3.0 was used to call homoplasmic variants on the 

original BAMs before downsampling, with the ploidy argument set to 100. For each L haplogroup 

sample, a truth set was defined as variants present in the L haplogroup sample (allele count > 94/100) but 

absent in NA12878 (based on manual review using over-lapping read pair data, with padding of 1bp 

around each NA12878 variant). For each L-haplogroup sample mixture, true and false positive calls were 

calculated against the sample-specific truth set, and then summed across all 22 L-haplogroup samples to 

create sensitivity and precision metrics.  
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mtDNA-Server comparison 

We used Hail’s Batch service (Hail Team) to run mtDNA-Server on sample mixtures and sample 

duplicates. We ran mutserve v1.3.4 using “analyse-local” with the heteroplasmy level threshold set to 

0.01 and parameters outputting deletions and insertions. Consecutive deletion calls were merged (if VAF 

differed < 0.10) and summarized with mean depth and heteroplasmy. Output was reformatted to match 

Mutect2 calls. Bcftools (v1.10.2) (Li 2011) was used to left-align and normalize the variants. 

 

NUMT-derived false positives 

We identified candidate NUMT-FPs (Table S1) as follows: we identified 122 common heteroplasmic 

mtDNA variants (unfiltered variants with VAF 0-0.50 in ≥ 1000 samples), of which 67 had heteroplasmy 

levels that correlated with 1/(1+mtCN) (Spearman correlation > 0.45), of which over half co-occurred 

with another common heteroplasmy in the same samples (Pearson correlation > 0.45). For each candidate 

NUMT-FP, we generated a 20mer sequence centered on the variant, then searched the derived 20mer (and 

its reverse complement) against PacBio SAM files corresponding to three cell lines (NA12891, NA19239, 

NA19238), with read lengths ~10Kb. PacBio reads that contained the 20mers were aligned to GRCh38 

via Blat (Kent 2002). For two NUMTs, exact NUMT sequence and break points were identified that give 

rise to 25 validated NUMT-FPs (Table S1). We defined “linked NUMT-FPs” as those where at least two 

of the 25 NUMT-FPs derived from the same NUMT were present in the same sample with heteroplasmy 

levels within 0.05 (unfiltered variants, VAF 0-0.50). For Fig. 2F, all PASS variants were binned by VAF 

(e.g. 0.01-0.02); all samples were binned by sample mtCN (e.g. 25-50); and then the fraction of all 

variants in those bins that were “linked NUMT-FPs” was calculated and plotted.  

 

PacBio sequencing and data processing 

We performed long read sequencing using the Pacific Biosciences (PacBio) circular consensus 

sequencing (CCS) protocol. Briefly, for library preparation, we obtained 5 μg of high molecular weight 

genomic DNA (> 50% of fragments ≥ 40 kb) and sheared fragments to ~10 kb using the Megaruptor 3 

(B06010003; Diagenode), followed by DNA repair and ligation of PacBio adapters using the SMRTbell 

Template Prep Kit v1.0 (100-991-900). Each library was subsequently size selected for 10 kb ± 20% 

using the SageELF with 0.75% agarose cassettes (Sage Science). Libraries were quantified with the Qubit 

dsDNA High Sensitivity Assay Kit (Q32854; Thermo Fisher Scientific), subsequently diluted to 50 pM 

per single molecule, real-time (SMRT) cell, hybridized with PacBio v2 sequencing primer, and bound 

with SMRT sequencing polymerase using Sequel II Binding Kit 1.0 (101-731-100). Sequencing was 

performed in CCS mode on the Sequel II instrument using 8M SMRT Cells (101-389-001) and Sequel II 
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Sequencing 1.0 Kit (101-717-200), with a 2-hour pre-extension time and 30-hour movie time per SMRT 

cell. Initial quality filtering, base calling, and adapter marking were performed automatically on-board the 

Sequel II to generate an initial raw “subreads.bam” file. CCS reads were generated using CCS software 

v.3.4.1 from PacBio (https://github.com/PacificBiosciences/ccs) with parameters “--minPasses 3 --

minPredictedAccuracy 0.99 --maxLength 21000.” CCS reads were mapped to the “GRCh38_noalt” 

reference sequence (GRCh38 without decoy sequences, HLA sequences, and alternative loci 

representations) using minimap2 (version 2.17-r941 with parameters “-ayYL --MD --eqx -x map-pb”).  

 

Cell line analyses 

Selected gnomAD cohorts were annotated as cell lines including samples from 1000 Genomes Project and 

the Human Genome Diversity Project (n=3,277), and Osaka University (n=246). Variant subtypes for 

known cell lines and samples with mtCN50-500 were annotated via the Variant Effect Predictor (VEP) 

and categorized as pLOF (if VEP consequence=stop_gained|frameshift_variant), missense (VEP 

consequence=missense_variant), synonymous (VEP impact=LOW), or rRNA/tRNA (VEP 

biotype=Mt_tRNA|Mt_rRNA); otherwise they were categorized as non-coding. 

 

gnomAD sample and variant filtering 

gnomAD v3.1 contains 76,156 samples passing filters, of which 70,375 had read data available for 

analysis. For mtDNA analysis we analyzed 56,434 samples after excluding 6,505 samples with mtCN < 

50, 5633 samples with mtCN > 500, and 1803 samples with contamination > 2% based on nuclear 

contamination (VerifyBamID v1, v2) (Jun et al. 2012; Zhang et al. 2020), mtDNA contamination 

(Haplocheck v1.0.5) (Weissensteiner et al. 2021), or an internal algorithm (mt-high-hets). Mt-high-hets 

utilizes the PASS haplogroup-defining variants which should be homoplasmic (VAF=1.00), but in 

contaminated samples show multiple alleles with VAF 0.85-0.998. Mt-high-hets calculates contamination 

= 1-mean(VAF 0.85-0.998) if 3 such variants are present; otherwise contamination = 1-mean(VAF 0.85-

1.00).  

To distinguish between missing calls and homoplasmic reference sites after combining the samples, we 

set the genotype of a sample that lacked a call at a site to homoplasmic reference if the depth of coverage 

at the respective site was greater than 100x. The genotype was otherwise set to missing. 

Problematic variants were filtered or flagged as follows. Flag “common_low_heteroplasmy” was applied 

to variants found with PASS genotypes in > 56 individuals (allele frequency > 0.001) at VAF 0-0.50. 

(Note this includes PASS variants 0-0.01 VAF, which are subsequently filtered.) Filter “indel_stack” was 

applied to any indel allele where all samples with a variant call had at least 2 different heteroplasmic 
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indels called at that position. The Hail pipeline re-implemented the “artifact_prone_sites” filter and any 

variant overlapping positions 301, 302, 310, 316, 3107, or 16182 was filtered. The original single-sample 

pipeline assigned filters “possible_numt” and “mt_many_low_hets” which were found to be unreliable 

and were ignored in the gnomAD release. Filter “npg” (no pass genotype) was applied to variants which 

had no passing genotype across all samples.  

gnomAD annotations 

All variant annotations were implemented in Hail. Annotations from VEP (v101) (McLaren et al. 2016) 

were added using the same pipeline which was used for gnomAD v3.1 nuclear annotations, with the 

modification of changing the distance parameter to 0 to avoid “upstream” and “downstream” annotations. 

We obtained rsIDs from dbSNP (b154) and added in silico prediction annotations for tRNA variants from 

PON-mt-tRNA (download date 2020-08-27) (Niroula and Vihinen 2016), MitoTIP (download date 2020-

08-27) (Sonney et al. 2017), and HmtVar (Preste et al. 2019). We define heteroplasmic variants as 

variants with VAF 0.10-0.95 and homoplasmic variants as variants with VAF 0.95-1.00. We generated 

allele frequency information for both heteroplasmic and heteroplasmic variants and also provided this 

information for each top-level haplogroup and population. 

 

Multi-nucleotide variants (MNVs) 

Homoplasmic MNVs that were found adjacent in at least 90% of samples were flagged on the web portal. 

Specifically, homoplasmic MNVs were defined as variants where AC_hom_MNV/AC_hom > 0.90, 

where AC_hom_MNV indicates the number of samples where this homoplasmic variant was adjacent to 

any other homoplasmic variant, and AC_hom indicates the number of samples with this homoplasmic 

variant. For example, adjacent variants chrM:5185G>A (homoplasmic in 1 sample) and chrM:5186A>T 

(homoplasmic in 80 samples) were observed together in 1 sample and thus the former was flagged MNV 

(AC_hom_MNV/AC_hom = 1/1) whereas the latter was not (AC_hom_MNV/AC_hom = 1/80).  

 

Haplogroups 

Haplogroups were downloaded from the rCRS-orientated version of PhyloTree Build 17 (van Oven and 

Kayser 2009), and variants were extracted using custom Python scripts. As Phylotree represents a right-

alignment of indels, we manually inspected haplogroup indel variants and inferred the equivalent left-

alignment that would be expected in gnomAD, with the exception of haplogroup insertions of unknown 

length (denoted by ‘.X’). 

 

Inferred nuclear ancestry 
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Each sample was assigned to a predefined set of ancestries (Fig. 4E), based on principal component 

analysis of nuclear SNVs (Karczewski et al. 2020) 

 

Proportion possible observed 

A ‘synthetic’ VCF with all possible mtDNA SNVs was generated using an in-house script, and annotated 

by VEP (v97). This was used to calculate the proportion of possible SNVs observed in gnomAD. For 

variants within two genes (with two consequences), both consequences were included in the possible 

variant counts. The proportion of codons in each protein-coding gene with homoplasmic or only 

heteroplasmic non-synonymous SNVs (all SNVs except those with consequence “synonymous_variant”), 

and the proportion of bases in each RNA gene with homoplasmic or only heteroplasmic SNVs in 

gnomAD were calculated using a custom script. 

 

Pathogenic variants and other variant annotations  

Pathogenic variants with a ‘Confirmed’ status were downloaded from the MITOMAP database (download 

date 2021-02-22) (Lott et al. 2013); indel variants were manually inspected and the equivalent left-

alignment that would be expected in gnomAD was inferred. APOGEE in silico predictions were 

downloaded from MitImpact (v3.0.6) (Castellana et al. 2017). HmtVar in silico predictions were retrieved 

from the HmtVar database (download date 2020-11-18) (Preste et al. 2019). Maximum heteroplasmy data 

from HelixMTdb was downloaded from Helix.com (version dated 03/27/2020) (Bolze et al. 2020). 

 

 

DATA ACCESS 

Variants and population frequencies are available in gnomAD v3.1 (gnomad.broadinstitute.org). A user-

friendly website provides variant annotations, including distributions across heteroplasmy levels, 

populations, and haplogroups. Data are available for download in multiple formats, including VCF, Hail 

Table, and simple tab-delimited files (https://gnomad.broadinstitute.org/downloads#v3-mitochondrial-

dna). The Mutect2 pipeline is available through GATK at 

https://github.com/broadinstitute/gatk/blob/master/scripts/mitochondria_m2_wdl/MitochondriaPipeline.w

dl (the data available in gnomAD v3.1 was generated using 

https://portal.firecloud.org/?return=terra#methods/mitochondria/MitochondriaPipeline/25), and the Hail 

scripts used for combining the VCFs, filtering samples and variants, adding annotations, and performing 

analyses can be found at https://github.com/broadinstitute/gnomad-mitochondria.  
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