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Abstract

Mitochondria sense and respond to many stressors and can support either cell survival or death 

through energy production and signaling pathways. Mitochondrial responses depend on fusion-

fission dynamics that dilute and segregate damaged mitochondria. Mitochondrial motility and 

inter-organellar interactions, including with the endoplasmic reticulum, also function in cellular 

adaptation to stress. In this Review, we discuss how stressors influence these components, and how 

they contribute to the complex adaptive and pathological responses that lead to disease.

Cells maintain a dynamic balance of key intracellular parameters, which is constantly 

perturbed by internal and external “stressors”. The “stress response” is the process elicited 

by stressors to restore homeostasis. A critical aspect of all molecular and physiological 

stress response systems is their requirement for energy, in part provided by mitochondria 1. 

Mitochondria are unique organelles with their own genome, which sustain life via energy 

transformation and perform several biochemical functions implicated in intracellular 

signaling and dynamics. Mitochondrial stress responses are central to cell fate,,health and 

disease at the tissue and organismal level (Figure 1)2, 3. Mitochondrial dynamics are also 

critical to stress responses2. Understanding the types of mitochondrial stressors, their 

interplay with mitochondrial dynamics and the mechanisms that orchestrate how cells or 

organisms respond to them is critical to understanding the transition between health and 

disease. In the following sections we discuss the mechanisms underlying these facets of 

mitochondrial biology and their integration with other contributing factors in adaptation and 

maladaptation of cells, tissues and organisms.
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Mitochondrial stressors and cellular stress responses

Stressors can be chemical or physical, acute or chronic (Figure 1, left). Many stressors target 

non-mitochondrial cell constituents, but pathways often converge on the mitochondrion, 

reflecting its key role in energy production and signaling required for surviving and adapting 

to stressors1. Mitochondria are integral to programmed cell death required for removal of 

cells fatally damaged by stressors that exceed the cell’s adaptive capacity 2, 3. Other stressors 

directly target and interfere with mitochondrial functions, including oxidative 

phosphorylation, intermediate metabolism, cell death, calcium signaling or cell dynamics2.

Among stressors that directly target mitochondria are genetic alterations in mitochondrial 

and nuclear DNA genes (mtDNA and nDNA genes respectively) that encode >1,000 

mitochondrial proteins, including the mtDNA maintenance machinery3. Accumulation of 

mtDNA mutations or mtDNA depletion interferes with oxidative metabolism and disrupts 

electron transport chain (ETC) function, which impairs mitochondrial ATP production, one-

and two-carbon metabolism, and the transmembrane potential (ΔΨm) and proton motive 

force that drive multiple mitochondrial functions3. nDNA mutations may directly alter other 

mitochondrial functions, including their dynamics4.

Deprivation of mitochondrial fuel substrates or oversupply of nutrients, including glucose 

and fatty acids, are also mitochondrial stressors4. Disturbances of intracellular iron5 and 

calcium (Ca2+) homeostasis, such as prolonged stimulation by Ca2+-linked agonists, 

insufficient cytoplasmic Ca2+ clearance or decreased mitochondrial Ca2+ gatekeeping are 

also stressors6, 7. Various stressors induce increased reactive oxygen species (ROS) 

production by the respiratory chain, with mitochondria being a prominent source of ROS 

and subject to ROS-mediated injury8. Physiological ETC activity generates ROS that may 

support signaling mechanisms. However, ETC dysfunction leads to increased ROS 

production that is commonly pathogenic3, 8. Although mitochondrial ROS is an ETC stress 

response, mitochondria can also be the target of ROS produced by other organelles or of 

extracellular origin (e.g. generated by ultraviolet (UV) light), in which ROS is a 

mitochondrial stressor that can elicit changes in mtDNA (e.g. mutations or deletions), 

mitochondrial lipids and proteins8.

Numerous cell permeable toxins also target mitochondria. Rotenone and Antimycin A 

inhibit complex I and III, respectively, to enhance ROS, whereas the proton ionophores 

FCCP and DNP depolarize mitochondria to uncouple ETC from ATP production9. Alcohol 

is metabolized in the mitochondria to give rise to toxic products10. Staurosporine targets 

apoptosis-related proteins located at or translocated to mitochondria, including BAX and 

BAK11. Pro-apoptotic chemicals are commonly used research reagents, whereas inhibitors 

of anti-apoptotic BCL-2 family proteins have been developed for anti-tumor therapy11. 

Infectious agents such as bacteria and viruses also commonly target mitochondrial function 

and structure, and elicit immune responses involving mitochondria.
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Mitochondrial dynamics

Mitochondrial function and response to stimuli is defined by their complex structure and 

dynamics. Mitochondria contain outer and inner mitochondrial membranes (OMM and 

IMM), which border the intermembrane space (IMS) and the matrix. The IMM associates 

with the OMM at contact points and forms extensive inward folding to form cristae. Each of 

these compartments has discrete functions in oxidative metabolism, biosynthetic pathways 

and signaling12. Mitochondrial dynamics involve reshaping, rebuilding and recycling events 

that support mitochondrial stability, abundance, distribution and quality and allow 

compensatory changes when cells are challenged (Figure 2AB).

Reshaping mechanisms do not affect total mitochondrial mass and commonly represent 

reversible changes at the individual organelle level. By contrast, rebuilding and recycling 

alter mitochondrial mass and include unidirectional processes such as de novo synthesis of 

mitochondrial building blocks by mitochondrial biogenesis13, and recycling via 

mitochondrial derived vesicles (MDVs) or mitophagy, in which mitochondria are selectively 

targeted to autophagosomes for degradation14. Large-scale OMM or IMM permeabilization 

triggers cells to die, allowing replacement by surviving cells carrying healthy organelles. 

Whereas recycling has been covered by recent reviews2, emerging evidence links stress to 

reshaping, and is the main subject of this Review. Reshaping, rebuilding and recycling 

mechanisms are complexly interrelated, for example with respect to metabolic adaptation to 

changes in substrate availability after birth15.

Mitochondrial reshaping mechanisms and responses to stressors

Mitochondrial Motility

Mitochondrial trafficking and localization throughout the cytoplasm depends on interactions 

with the cytoskeleton and molecular motors16. MIRO1/2 are OMM-localized small GTPase-

like proteins17 that anchor mitochondria to either kinesin or dynein (Figure 2A), motors for 

anterograde or retrograde displacement along microtubules, respectively, via TRAK1/2 

adaptors16. Myosin motors can also facilitate mitochondrial positioning18 and short-distance 

movement along actin filaments19. Stable mitochondrial localization in axons is supported 

by syntaphilin, an OMM protein directly linking mitochondria to microtubules20.

Asymmetry and compartmentalization of cellular behavior require mitochondrial transport 

to different cellular regions. Motility is central to partitioning mitochondria for cell 

division21, 22. Mitochondrial transport along axons and dendrites and accumulation in the 

regions of high energy demand are required to maintain neural activity23, 24. Movements of 

energy-producing organelles may redistribute the spatial pattern of ATP production and Ca2+ 

buffering25. Mitochondrial movements also support fusion-fission26 and organelle 

recycling27. Impairment of axonal mitochondrial transport is linked to neurological 

phenotypes in mouse models targeting MIRO23, 28, 29 or MFN230, 31 (Table1).

Mitochondrial motility is controlled by cytoplasmic [Ca2+] ([Ca2+]c)
25. Physiological 

[Ca2+]c transients suppress mitochondrial movements through MIRO1/2 EF-hand Ca2+ 

sensing domains32 and may involve other Ca2+ sensors23. The dynamic interplay between 
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Ca2+ release, mitochondrial motility and mitochondrial Ca2+ uptake forms the basis for a 

homeostatic mechanism in mitochondrial distribution and calcium signaling25, 33. ROS also 

suppress mitochondrial motility in Ca2+-dependent and independent manners34, 35. 

Furthermore, extracellular glucose elevation leads to mitochondrial motility inhibition by 

activating O-GlcNAc transferase to target TRAK36.

Whereas Ca2+ signaling transients, ROS and glucose fluctuations are physiological 

regulators of mitochondrial motility, larger and more prolonged changes in the same factors 

can pathologically alter movement dynamics (Figure 2C) 7, 8. Ca2+ and ROS mutually 

strengthen each other and can generate cycles impairing motility35, 37. In skeletal myoblasts, 

H2O2 inhibits mitochondrial motility and prompts fragmentation38. In neurons and other cell 

types, ROS induces Ca2+ transients and activates mitogen-activated protein kinases 

(MAPKs) (JNK, p38) to cause mitochondrial motility inhibition35, 37. Starvation also 

activates p38 MAPK phosphorylation of ubiquitin ligase Gp78, interfering with 

mitochondrial motility and disrupting ER–mitochondrial contacts39. In injured axon zones, 

mitochondrial density increases to support axon regeneration by local energy production40, 

highlighting an adaptive response to acute injury. Mitochondrial density might increase 

because mitochondria are retained by stabilized syntaphilin41. Yet, in cortical neurons after 

mild, reversible mitochondrial stress induced by Antimycin A, mitochondria carrying 

syntaphilin are recycled by retrograde trafficking and fusion with late endosomes and 

lysosomes42. In cancer cells, hypoxia and ROS target alternatively spliced syntaphilin, 

enhancing mitochondrial trafficking associated with tumor cell migration and invasion43.

Mitochondrial transport in axons is suppressed by deletion or expression of disease mutants 

of the fusion protein mitofusin 2 (MFN2) that interacts with MIRO30. The mitochondrial 

motility machinery is also targeted by degradative pathways upon stress. Dissipation of 

ΔΨm leads to PINK1 stabilization, inducing Parkin to mark MIRO for proteasome 

degradation and halting mitochondrial movement, possibly to prevent spreading of 

dysfunctional organelles along neurons44. In cortical neurons, mitochondrial damage 

triggers PINK1/Parkin to induce MIRO1 ubiquitination on Lys27, arresting mitochondria for 

degradation45. Oxidative stress activates the OMM-associated PGAM5-KEAP1-Nrf2 

pathway leading to MIRO2 proteasomal degradation, causing mitochondrial retrograde 

trafficking and perinuclear localisation46. Perinuclear mitochondrial clustering creates an 

oxidant-rich nuclear domain required for hypoxia-induced transcription47. Oxidative stress 

and starvation are also sensed by Myo19, an actin-linked motor that retains mitochondria in 

areas of low ATP/ADP ratio48. Upon mechanical injury to neurons, axon regeneration 

depends on ARMCX1 expression localized to mitochondria, which enhances mitochondrial 

transport49. Mitochondrial stress responses involve the mitochondrial motility machinery, 

allowing mitochondrial redistribution to areas where bioenergetic needs are increased, or by 

recycling damaged organelles25.

Mitochondrial fusion and fission dynamics

Mitochondrial movements along cellular tracks facilitate encounters between two distant 

organelles, permitting fusion 26, 32 involving successive mixing of compartments: i) OMM 

merging mediated by the mitofusin 1 (MFN1) and MFN2 GTPases, ii) IMS mixing, iii) 
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IMM fusion mediated by OPA1 GTPase, and iv) matrix complementation50, 51. The fusion 

product can remain an individual organelle or undergo division upon cytoplasmic DRP1 

GTPase recruitment to the OMM by MFF52 mediated by MID49/5153. Transient actin 

polymerization at the OMM constriction site54 and cytoplasmic Dynamin 2 facilitate fission 

completion55. Mitochondria fission can also be facilitated by motors of opposing 

directions26 (Figure 2A).

Fusion-mediated mitochondrial component sharing supports multiple elements of 

mitochondrial biology: mtDNA integrity56, mitochondrial respiration57, ΔΨm 

equilibration58, apoptosis51 and signaling events such as [Ca2+]c oscillations59. Fission can 

facilitate motility and is required for segregation of damaged mitochondria for mitophagy58, 

mtDNA replication60 and mitochondrial redistribution during cell division61. Thus, 

mitochondrial fusion/fission dynamics is central to organelle quality control and a variety of 

cellular functions. To test the physiological relevance of fusion-fission proteins, and the 

pathophysiology associated with their perturbation, genetic models have been created for 

MFNs, OPA1 and DRP1 in mouse (Table 1). Whole body knockouts for each interfere with 

early development and are embryonic lethal62–65. Organ-specific knockouts are either lethal 

or cause severe dysfunction of the affected organ:, as observed in the nervous 

system23, 66–69, heart70–74 and skeletal muscle75–77. Mice expressing human disease-causing 

mutations of MFN2 or OPA1 display the symptoms of Charcot-Marie-Tooth type 2A disease 

(CMT2A) or Autosomal Dominant Optical Atrophy (ADOA), respectively63, 67, 78–8283 

(Table 1).

Mitochondrial fusion-fission balance is regulated transcriptionally and post-transcriptionally. 

MFN2 expression is enhanced by PGC-1α (peroxisome proliferator gamma coactivator 1 

alpha)84. MFN1/2 and OPA1 levels and activity are affected by phosphorylation85, redox 

modifications86, acetylation87 and ubiquitination88, 89. OPA1 is proteolytically processed by 

the AAA proteases OMA1 and YME1L, which are regulated by ΔΨm90 and OXPHOS 

activity91, respectively. OPA1 function is regulated by cardiolipin in the IMM to prompt 

fusion92. DRP1 recruitment to the OMM and fission are controlled by Ca2+-and cAMP-

stimulated phosphoregulatory events93.

Through a combination of the mechanisms described above, stressors can cause a hyper-

elongated mitochondrial network by stimulation of fusion and/or inhibition of fission; or 

fragmented mitochondria by stimulation of fission and/or inhibition of fusion. Hyper-

elongation and fragmentation can occur sequentially within minutes to hours35 (Figure 2C). 

A given stressor can induce distinct mitochondrial fusion-fission phenotypes in different 

cells and tissues, and different stressors can induce opposing phenotypes in the same cell 

type. Although incompletely understood, specific mitochondrial responses to a given 

stressor are likely determined by a combination of interacting factors, including fusion-

fission factor basal expression, biochemical and metabolic cell state, chronic stressors, and 

other unknown factors. Thus, a complex relationship exists between stressors and dynamic 

fusion-fission phenotypes.

In terms of mechanisms affecting fusion, several stressors converge on OMA1 and YMEL1 

proteases, which control OPA1 fusogenic activity94. Increased OXPHOS activity in cells 
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grown on ketogenic carbon sources promotes YME1L-mediated OPA1 processing, 

increasing fusion91. Mitochondrial poisons causing oxidative stress and ATP depletion 

suppress YME1L activity via degradation94. Mouse embryonic fibroblasts (MEFs) and cell 

line exposure to UV-irradiation, serum deprivation or protein synthesis inhibitors leads to 

mitochondrial hyperfusion, dependent on MFN1 and OPA1 and an IMM scaffold protein, 

SLP295. SLP2 restricts OMA1-mediated OPA1 processing to support hyperfusion96. 

Downstream of hyperfusion and engagement of the mitochondrial E3 ubiquitin ligase/

SUMOylase MULAN/MAPL, NFkB is activated, likely as an adaptive mechanism to 

promote anti-apoptotic protein expression97. Pathological cardiac stress leads to 

mitochondrial fusion inhibition through OPA1 hyperacetylation, normally prevented by the 

mitochondrial matrix deacetylase, SIRT387. Conversely, pressure overload challenge in the 

heart activates TNFα receptor type 2, OPA1 expression and fusion dependent on STAT3 and 

NFkB activation98.

As to fission mechanisms and regulation, starvation induces hyperfused mitochondria by 

inhibiting fission, protecting the organelle from autophagic degradation93, 99. High glucose 

causes mitochondrial fission to mediate apoptosis in pancreatic beta-cells100. Similarly, high 

glucose exposure of cardiac cells leads to elevated ROS and mitochondrial fission101, 

whereas acute intracellular ROS elevation leads to DRP1-mediated mitochondrial fission102. 

ETC inhibition by rotenone or antimycin A recruits DRP1, promoting fission to support 

autophagic removal of damaged organelles via AMPK activation mediated by MFF 

phosphorylation103. AMPK likely senses an AMP/ATP ratio increase to phosphorylate MFF 

but other factors may function in this process, as glucose starvation-related increase in 

AMP/ATP ratio is associated with inhibited fission. An oxidative stress-response pathway, 

Keap1-NRF2 is a key regulator of DRP1 levels, leading to hyperelongated mitochondria and 

cell survival104. Mitochondrial depolarization combined with sustained [Ca2+]c elevation 

activates the cytoplasmic phosphatase calcineurin that dephosphorylates DRP1 Ser637 to 

stimulate mitochondrial fission105. In skeletal muscle, metabolic oversupply during 

sustained contractile inactivity also causes DRP1 Ser616 phosphorylation associated with 

mitochondrial fragmentation106. Conversely, upon high fat diet, calcineurin inhibition 

prevents DRP1 Ser637 dephosphorylation leading to hyperelongated mitochondria and 

improved metabolic performance in skeletal muscle107. Mechanical stress induced by 

bacterial infection also leads to mitochondrial fission108. DRP1 activation has been linked to 

apoptosis mediated by BCL-2 family proteins2. However, most of the above results suggest 

that long mitochondria provide protection against stressors. Whereas shorter mitochondria 

are thought to be maladaptive, this is not always the case, as mitochondrial shortening by 

fission supports lymphocyte migration109 and effector T cell activation110.

Fusion-fission perturbation by stressors gives rise to complex mitochondrial shapes. 

Hypoxia-reoxygenation and other stressors can cause donut-shaped mitochondria via 

autofusion between the two ends of tubular mitochondria111. In H9c2 cells, this is preceded 

by matrix expansion dependent on PTP or K+ channel opening and ensuing partial 

detachment from the microtubular track111. Donut formation is a stress response and may 

protect against swelling-induced structural damage111.
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Nanotunnels

Even when physically separated by several microns, mitochondria can form connections 

through 60–200 nm wide double membrane tubules called mitochondrial nanotunnels112. 

Nanotunnels have been observed in cardiac113 and skeletal muscle59, and can be generated 

in a cell-free system by kinesin (Kif5b) in a microtubule-and ATP-dependent manner114. 

Protein exchange along nanotunnels115 suggests that mitochondrial nanotunnels may serve 

functional but possibly not genetic complementation between non-adjacent mitochondria, in 

tissues with restricted mitochondrial motility112. In mice carrying a ryanodine receptor 

(RyR) 2 mutation (A4860G) associated with human catecholaminergic polymorphic 

ventricular tachycardia due to aberrant Ca2+ homeostasis, mitochondria display increased 

nanotunnel communication116. Mitochondrial nanotunnels are frequent in skeletal muscle of 

mitochondrial myopathy patients carrying mtDNA deletions or mutations, suggesting that 

nanotunnels support mitochondrial adaptation to genetic stressors117.

Homotypic mitochondrial contacts

Mitochondria can exhibit trans-mitochondrial coordination in muscle tissues. When joined 

by molecularly undefined electron-dense intermitochondrial junctions (IMJs), two adjacent 

mitochondria can exhibit aligned cristae118. IMJs are molecularly independent from MFNs 

but are induced within 30 minutes by physically tethering mitochondria through inter-

organellar linkers in vitro118. Increased energetic demand during muscle contraction119, and 

decreased energetic demand during inactivity106, increase and decrease IMJ number, 

respectively. MitoNEET, an OMM iron-sulphur cluster forming protein, functions in IMJs 

and has been linked to H2O2-induced mitochondrial fragmentation120.

Heterotypic inter-organelle communication

Mitochondria dynamically form close contacts with various intracellular organelles 

(<100nm gap width), which represent a small fraction of the total organellar surface and 

allow effective local communication without altering the global milieu (Figure 2A)121, 122. 

The most frequent mitochondrial companion is the endoplasmic reticulum (ER). ER-

mitochondrial membrane contacts are reorganized to meet local needs123 and are supported 

by physical protein-based tethers124. Over 60 proteins have been implicated in tethering and 

many support specific functions122. MFN2 can cause diverse contact phenotypes in different 

paradigms, which may be determined by other tethering proteins122. These contacts function 

in phospholipid biosynthesis, Ca2+ transfer between ER and mitochondria, ROS signaling, 

mitochondrial fission, autophagy and mtDNA synthesis121, 122. Thus, ER-mitochondrial 

contacts represent a dynamic aspect of mitochondrial behavior impacted by stressors and 

relevant to other mitochondrial functions.

Contact dynamics are controlled by physical tether formation and destruction. This can be 

induced by physiological changes in tethering protein abundance, membrane phospholipids 

and [Ca2+]121. The ER may stop other organelles in their vicinity by emitting Ca2+ signals 

favoring contact formation25. Serum starvation or ER-specific stressors such as tunicamycin 

cause ER-mitochondrial contact tightening to promote cell death124, 125. Stressors 

converging on ROS/redox dysregulation have also been linked to changes in ER-

mitochondrial contact architecture: hypoxia widens contacts in a Nogo-dependent 
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manner126, whereas cardiac ischemia/reperfusion causes tighter contacts via PTPIP51127. 

Virus infections including CMV128, chronic hepatitis C or acute RNA virus129 enhance ER-

mitochondrial contacts. Thus, a variety of stressors promote closer contacts that might 

facilitate local communication between interacting organelles (Figure 2C).

Stressors also alter the distribution of specific proteins relative to organelle contacts, 

influencing contact function. Palmitoylation affects calnexin distribution130 and a shift to a 

hypoxic/reducing environment influences ERO1α to leave ER-mitochondrial contacts131. 

Stressors affect Ca2+ and ROS signaling pathways at the ER-mitochondrial interface via 

several mechanisms. The IP3 receptor (IP3R), which mediates local Ca2+ transfer in the ER, 

and the RYR in the sarcoplasmic reticulum, are targets of redox regulation132, 133. Moreover, 

alteration of ER-mitochondrial Ca2+ communication affects other aspects of mitochondrial 

dynamics including fragmentation134 and autophagy135.

Several signaling pathways of BCL-2 family proteins that reside and exert pro-survival or 

pro-death functions in the ER and OMM have been linked to the ER-mitochondrial 

contacts136, 137. Sphingolipid metabolism and ceramide production at ER-mitochondrial 

contacts is central to Bak/Bax-mediated OMM permeabilization and ensuing cell death138. 

In addition to the ER, mitochondria form dynamic contacts with other organelles, including 

lysosomes, peroxisomes and lipid droplets, which may function during stress, such as in 

fatty acid shuttling from lipid droplets to mitochondria during starvation139.

Intra-mitochondrial dynamics to shape cristae and adjust matrix volume

A distinctive feature of mitochondrial ultrastructure is IMM folding into cristae12 that allows 

ETC component organization into supercomplexes to enhance bioenergetic efficiency140. 

Mitochondrial cristae display dynamic changes with different metabolic states141. Cristae 

shape is supported by F1F0 ATPase localization at the IMM bending regions142. Cristae 

junctions are secured by the mitochondrial contact site protein complex (MICOS) that helps 

shape cristae and organize the ETC complexes143, 144. MIC60, a MICOS component critical 

to IMM bending to support cristae formation145, interacts with OPA184. Oligomeric OPA1 is 

needed to keep cristae junctions closed146.

As a physiological adaptation to increased metabolic demands, cristae remodeling with 

increased density occurs in exercised skeletal muscle147. During starvation, OPA1 

oligomerization is enhanced to keep cristae narrow, which is required to promote F1F0 

ATPase assembly and maintain ATP-linked respiration. Mutant OPA1(Q297V) that 

undergoes oligomerization but is defective in fusion can support survival during 

starvation148. Apoptosis-promoting stressors through the BH3-only protein BID interfere 

with OPA1 oligomerization and trigger cristae junction opening to make cytochrome c 

available for release146, 149. ROS modulator 1 (ROMO1), regulates OPA1 to control cristae 

organization and enhance mitochondrial resistance to BID-induced cristae junction opening 

and cytochrome c release150.
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Mitochondrial dynamics and stress responses leading to disease

The previous section discussed specific mechanisms by which stressors influence different 

facets of mitochondrial dynamics, promoting cellular adaptation or demise. Below we 

discuss three stereotypic mitochondrial stress response patterns and how they are translated 

into disease states. Abnormal mitochondrial dynamics are associated with morphological, 

genetic, and biochemical mitochondrial recalibrations that trigger cellular stress 

responses2, 3. These recalibrations engender the production of diffusible signals that 

influence the organism at multiple levels (Figure 1, right), and cause disease in some cases 

by inducing mtDNA instability3.

Stress responses can have both adaptive and maladaptive effects. Adaptive effects contribute 

to resilience, whereas maladaptive effects contribute stress pathophysiology and disease 

state development. As adaptation becomes exhausted and maladaptation becomes dominant, 

the organism transitions from physiology to pathology (Figure 3A). Based on onset and 

duration, we distinguish 3 types of stressors which cause different stress response patterns: i) 

Early onset, chronic; ii) Late onset, acute; and iii) Late onset, chronic (Figure 3B–D).

Early onset chronic stressors

Early onset stressors are generally chronic and produce progressive disease (Figure 3B). 

Inherited genetic defects in genes of the fusion/fission machineries are stressors that 

permanently alter mitochondrial dynamics or motility throughout life 3, 83. The 

consequences can be devastating but often the initial defect can be compensated for by 

increased activity of the quality control provided by mitochondrial dynamics. When the 

defect impairs a fraction of normal dynamics, these defects can be compensated for, but may 

be aggravated beyond compensation by the accumulation of subsequent stressors3. The 

accumulation of stressors, such as secondary mtDNA mutations, may overwhelm the system 

and cause disease once the biochemical threshold is reached151. In humans, the threshold 

between physiological adaptation and pathology may vary based on particular mutations, but 

is estimated to be around 60% of mtDNA mutation load151.

As in animal models (Table 1), autosomal mutations particularly in the fusion machinery 

(MFN2152, OPA163), but also in fission factors (DRP1153, MFF154) and a motor adaptor 

(TRAK1155) lead to mitochondrial disorders. The shared clinical symptoms for these 

neurodegenerative diseases are neurological impairments such as retinal ganglion cell 

degeneration and neuromuscular symptoms. OPA1, named after its genetic mutation, was 

shown to be the main cause of ADOA156, 157. MFN2 mutations cause approximately 20% of 

CMT2A cases, an inherited peripheral neuropathy characterized by abnormal mitochondrial 

trafficking30, 31. To date, no disease has been associated with mutations in MFN1. In part, 

the pathogenic mechanism involves the accumulation of mtDNA mutations and deletions 

that perturb OXPHOS75, 158, 159. However, in many cases, ETC dysfunction is absent, 

indicating that abnormal fusion activity and motility represent a sufficient stressor to affect 

cell-level and organ-level function153, 154. The canonical mitochondrial fusion-fission and 

motility dynamics proteins regulate other aspects of mitochondrial behaviors, and proteins 

such as MFN2 can cause disease via impairments of ER-mitochondrial communication, 

Ca2+ signaling or mitophagy160.
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Late onset acute stressors

Late onset stressors are generally acquired, can be relatively short-lived, and do not 

generally affect mitochondrial quality or the ability to produce functional organelles (Figure 

3C). Excess of metabolic substrates such as acute hyperglycemia and hyperlipidemia can 

activate PKA to promote DRP1-dependent fission4, 161. Hyperglycemia aIso increases ROS 

to mediate fission, and fission further augments ROS emission162. Both MFN1 and MFN2 

are involved in metabolic sensing and regulation of whole-body energy homeostasis163, 164, 

illustrating the adaptive cellular role of mitochondrial dynamics in response to acute 

metabolic stressors. Ischemia-reperfusion injury, such as myocardial infarction or stroke, 

usually occur late in adult life. The acute drop in oxygen and metabolic substrates followed 

by rapid reoxygenation causes substantial remodeling of mitochondrial morphology 

dominated by DRP1-mediated fission165, 166, and the system rarely recovers full function. 

Some toxic insults cause an acute and permanent tissue injury such as doxorubicin that 

engages mostly ROS and mtDNA damage the cardiomyocytes167.

Late onset chronic stressors

Late onset chronic stressors occur mostly in adult life but produce lasting deleterious effects 

on the system (Figure 3D). Poorly controlled diabetes, which manifests as the chronic 

elevation of blood glucose and lipids, represents a chronic stressor that generally develops 

later in life168. The metabolic oversupply of diabetes increases fission with concurrent 

accumulation of mtDNA defects in various tissues168. Obesity is associated with 

reorganization of ER-mitochondrial contacts resulting in mitochondrial Ca2+ overload, 

compromised mitochondrial oxidative capacity and augmented oxidative stress169. Repeated 

environmental and chemical stressors, such as smoking and chronic alcohol abuse, are also 

late onset chronic stressors that influence mitochondrial dynamics and potentially alter the 

trajectory of primary mitochondrial diseases170. Chronic alcohol exposure leads to 

mitochondrial fusion inhibition in cardiac myocytes115 and in skeletal muscle by targeting 

MFN1 protein levels59. A number of stressors may therefore converge on different facets of 

mitochondrial dynamics and, when too high in duration and intensity, lead to maladaptive 

changes which alone or in combination with other stressors, may culminate in disease.

Most neurodegenerative diseases have been linked to primary or secondary changes in 

mitochondrial dynamics171, 172. In addition to the inherited genetic defects in the proteins 

assigned to mitochondrial dynamics (see Early Onset Chronic), mutations in other proteins 

including amyloid precursor protein, presenilins, and α-synuclein, common in 

neurodegenerative diseases, causes interference with mitochondrial dynamics’ 169.173. The 

dynamic structure and function of the ER-mitochondrial contacts seems to be affected in 

many of these cases173, 174. However, altered ER-mitochondrial contacts and other 

impairments of mitochondrial dynamics (i.e. fragmentation) are also documented in sporadic 

cases supporting the view that mitochondrial dynamics is central to the pathogenesis of 

neurodegeneration174, 175. ROS and Ca2+ dysregulation, often documented in 

neurodegenerative diseases, can interfere with various aspects of mitochondrial dynamics 

and can be part of cycles that drive disease progression34.
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Conclusions and looking forward

Much progress has been made in dissecting the molecular mechanisms that underlie 

mitochondrial dynamics. Recent in vitro and in vivo work has begun to map the effects of 

specific disease-causing stressors on various facets of mitochondrial and cellular responses. 

A challenge ahead will be to understand how the resulting mitochondrial and cellular 

recalibrations, both acute and chronic, interact to produce symptoms. Single models with 

limited readouts do not appear sufficiently precise or inclusive to explain the complex 

phenotypic variability in symptoms that manifest in animals and individuals with abnormal 

mitochondrial dynamics. Given the interaction of stressors and responses at the molecular, 

cellular and organismal levels (see Figure 1, right), future efforts may require advances in 

concurrent measurement of functions across multiple levels of organization, and 

development of multivariate and biologically meaningful methods and concepts to integrate 

such multi-level data. This would contribute to understanding the processes that translate 

stressors into symptoms and disease.

Future work should aim to influence adaptive and maladaptive dynamic physiological 

responses (see Figure 3) and to restore them towards healthy states. This will require the 

ability to accurately map dynamic processes at the molecular and organellar levels, and to 

monitor changes in bioenergetics over considerable time periods. A further challenge is how 

best to address these questions in physiologically relevant disease models. Most studies 

highlighting the pathophysiological relevance of mitochondrial motility have been 

performed in experimentally convenient systems, such as neural axons and dendrites in vitro 

in which mitochondrial trafficking is prominent and easily tracked16, but may not represent 

in vivo behavior176. Understanding the physiological role of mitochondrial reshaping, 

rebuilding and recycling in specialized tissues remains vastly unexplored and an inspiring 

challenge for the field.
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Figure 1. Framework outlining elements of the overall mitochondrial stress response and the link 
to disease, with a focus on mitochondrial dynamics.
Stressors affecting mitochondria vary in nature and origin (left). Intrinsic stressors are those 

that arise from the molecular and biological components of the organism itself, such as DNA 

mutations and the product of chemical reactions. Stressors induce specific stress responses 

involving multiple facets of mitochondrial dynamics and key cellular processes (center). 

Components of the mitochondrial and cellular stress responses are not mutually exclusive, 

and also interact and influence each other (not depicted in the figure). Collectively, stress 

responses affect health and disease trajectories in a multi-level way by influencing inter-

related domains of organ and organism function (right). Physiology and pathology can 

therefore manifest at each level, clinically at the level of symptoms and disorders (e.g., 

fatigue, ataxia, ophtalmoplegia), and sub-clinically in the disruption of biological rhythms 

(e.g., circadian oscillations, mitochondrial membrane potential oscillations), of cell-cell 

communication (e.g., production of mitochondria-derived metabolites, pro-inflammatory 

molecules and cytokines), or of organ systems (e.g., brain and cognitive function, cardiac 

contractility, hormone biosynthesis). Levels of function are interconnected. Abbreviations: 

mtDNA, mitochondrial DNA; nDNA, nuclear DNA; OMM, outer mitochondrial membrane; 

IMM, inner mitochondrial membrane; ER, endoplasmic reticulum; UPRmt, mitochondrial 

unfolded protein response; MDVs, mitochondria-derived vesicles; PTP, permeability 

transition pore; ROS, reactive oxygen species; CMG, circulating mitochondrial genome 

(also ccf-mtDNA); SASP, senescence-associated secretory profile; ETC, electron transport 

chain.
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Figure 2. Components of mitochondrial dynamics and their response to stress:
A. Reshaping, localization and motility of mitochondria (depicted by black OMM and gray 

IMM) along the microtubules (blue) supported by molecular motors (Kinesin and Dynein) 

and adaptors (MIRO and TRAK) facilitates the inter-organelle communication and physical 

tethering with the ER or other organelles. Mitochondrial fusion (green and red organelles 

merge to result yellow post-fusion content) occurs in association to microtubules and 

mediated by GTPase proteins located at the OMM (MFN1/2) and IMM (OPA1). Fission of 

mitochondria is also supported by association with the ER, and triggered by DRP1 and 

Dynamin2 GTPases. Recently described dynamic processes are mitochondrial nanotunnel 

formation that also depends on interaction with microtubules, intra-mitochondrial dynamics 

directed by MICOS (mitochondrial contact site and cristae organizing system), OPA1 and 

F1/F0 (ATP synthase) and matrix volume changes, depending on IMM K+ channels and the 

Permeability Transition Pore (PTP). B. Rebuilding and recycling processes, mitochondrial 
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biogenesis involves expression of organelle-targeted proteins upon activation of 

transcriptional factors PGC1-α and YY1, and phospholipids biosynthesis. Recycling of 

mitochondria can be mediated by mitochondria derived vesicles (MDVs) regulated by 

Vps35, Syntaxin-17, and mitophagy, driven by PINK1 and Parkin. Mitochondria host cell 

death signaling pathways that control cytochrome c release to decide on cell survival or 

removal C. Mitochondrial reshaping under stress. Diverse stressors (red) trigger adaptive 

responses in mitochondrial reshaping processes. Stressors commonly cause mitochondrial 

motility arrest, hyperelongation and donut formation or total fragmentation. Under stress, 

ER-mitochondria contacts usually become tighter but loosening has also been documented.
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Figure 3. Influence of stressor types on mitochondrial stress responses that progress to disease.
A. Biological systems stand in balance between adaptative and maladaptative states that 

determine physiological and pathological outcomes. The threshold between these states can 

vary between individuals, and over time. B-D. Three main types of stressors can be 

identified based on their onset and duration. Stressors refer to a singular perturbation with a 

time of onset and specific duration; Bioenergetics is the capacity to use OXPHOS to 

transform energetic substrates and oxygen into ΔΨm to generate ATP and perform work 

(e.g., Ca2+ uptake), illustrated here as the transition from green to purple; Adaptation reflects 

the activation of secondary processes (e.g., gene expression, mitochondrial biogenesis, 

increased contractility) that act to compensate for bioenergetic defects. Survival indicates the 

ability of cells and organs to sustain viability and normal functions. B. EARLY ONSET 

stressors are generally chronic in nature, such as inherited mtDNA and nDNA mutations that 

alter key components of mitochondrial dynamics and bioenergetics. Early onset chronic 
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stressors may cause a substantial initial loss in bioenergetic capacity (i.e., fitness) and lead to 

progressive decline in survival. C. LATE ONSET ACUTE stressors are punctual, arising 

from chemical exposure, ischemia, or other reversible event. Late onset acute stressors 

generally induce a rapid and substantial loss of bioenergetic capacity and survival associated 

with an induction of compensatory adaptive processes that may remain elevated beyond the 

duration of the stressor, enabling the maintenance of sub-maximal but sufficient functional 

capacity. D. LATE ONSET CHRONIC stressors are those that also arise punctually later in 

life but remain active and often progress in intensity, such as metabolic dysregulation in 

diabetes, neurodegenerative processes, and toxic compound exposure from substance abuse. 

Late onset chronic stressors generally lead to progressive decline in bioenergetics and 

survival, the progression of which is reduced by compensatory adaptive mechanisms.
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Table 1:

Mouse models for mitochondrial reshaping proteins

A summary of defects observed for reshaping proteins at the level of mitochondrial dynamics and 

bioenergetics, targeted organs, systemic consequences and response upon stressor exposure. MEF=Mouse 

Embryonic Fibroblasts; SM= Skeletal muscle, CM=Cardiomyocytes, ETC= Electron transport chain activity.

Genetic stressor Mitochondrial dynamics & 
bioenergetics defects

Affected 
organs

Pathology & Symptoms Interaction with 
other stressors

Ref.

Mfn1−/− Fragmentation, ↓fusion & ΔΨm Not known Development delay, 
Lethal E12.5

Not known 62

Mfn2−/− Fragmentation, ↓ fusion &ΔΨm Placenta Lethal E11.5 Not known 62

Cerebellum, 

conditional66

Fragmentation, altered distribution 
& cristae,  ↓ COX & SOD & 
nucleoid

Cerebellum Locomotion defects Not known 66

Heart, inducible70 ↑ Area, ↓ [Ca2+]mt uptake & SR-

mito tethering

Heart Not known Isoproterenol: 

Ca2+ and ETC, 
dysregulation

70

T105M+/+78 T105M

+/− neuroectoderm79

Altered distribution, ↓abundance in 
peripheral nerves

Hindlimbs, 
SM

CMT2A-like Not known 7879

Mfn2 R94W +/+ 
Mfn2 R94W +/−

Fragmentation, ↓ATP Brain, pan-
neuronal

Lethal @ P1 CMT2A-
like

Not known 68

Mfn2 R94Q, neuro ↑ number in motoneurons Neurons CMT2A-like Not known 67

Mfn1/2 SM, 
conditional

↑ Area, cristae defects, 
↓mtDNA,↑deletions,↓COX

SM Low body weight, SM 
atrophy

Exercise: ↑ lactate 75

Mfn1/2 Heart, 

conditional71–73 

Heart, inducible 

adult71, 74

Fragmentation, cristae defects72, 73, 

↓mtDNA, ↓biogenesis, ↓COX72 

Fragmentation, ↓OCR71, 74 ↓ER-

mito tethering74

Heart Lethal E9.571, E1573. 
↓cardiac function (P7) & 
death <3wks, heart failure 
72, ↓ cardiac 

development73 Dilated 

cardiomyopathy71

Ischemia/
Reperfusion: 

Protection 74

71–74

Mfn1/2 &Drp1 KO, 
Inducible

Clustering, ↓OXPHOS & impaired 
mitophagy

Heart Cardiac hypertrophy 
Heart failure

Not known 177

Opa1−/− Not known Not known Developmental delay, 
lethal E13.5

Not known 63

Opa1−/+ Q285STOP Fragmentation63, 81,  ↓ OCR & 

Complex IV81. Heart: cristae 
defects, ↓ mtDNA, OCR, ATP & 

ETC82

Retina, brain, 
spleen, liver, 
heart

ADOA-like63, Dendro-

pathy80, Late-onset 

cardiomyopathy82

ER-stress-induced 
apoptosis: 

resistance81 

Ischemia/
Reperfusion: ↓ 
viability82

63, 80–82

Opa1−/+ (c.1065 
+ 5G→A)

Cristae defects in optic nerve Optic Nerve (+/+): Lethal <E12 (+/−): 
ADOA –like, ↓retinal 
ganglion cells

Not known 69

Opa1delTTAG−/

+83, 178
Fragmentation, ↑ cristae area83, 

↓Ca2+ uptake in CM 178

Optic nerve, 
SNS, SM

(+/+): Lethal E10.5 
ADOA-like, deafness, 

locomotion defects 83

Ischemia/
Reperfusion:

 ↑ infarct area178

83, 178

Opa1−/−, SM, 

conditional76 and 

inducible76, 77

↓ mass, mosaic topology, cristae, ↓ 
ETC & supercomplex76, ↓ mtDNA, 
nucleoid # & OCR

SM, adipose 
tissue, liver, 
epithelium

Lethal P9, hypoglycemia, 

SM atrophy76, weakness, 
atrophy, inflammation, 

early aging76, myopathy77

Aging: ↓ Opa1 
Diet-induced 
obesity: Normal 
glucose level 
(28607005)

76, 77

Opa1−/−, β−Cells179 Fragmentation, altered cristae & 
Complex IV

Pancreas Hyperglycemia Glucose 
intolerance

Not known 179
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Genetic stressor Mitochondrial dynamics & 
bioenergetics defects

Affected 
organs

Pathology & Symptoms Interaction with 
other stressors

Ref.

Drp1−/− Aggregation, hyperelongation Placenta, 
brain, heart, 
vessels

Lethal E11.5–12.5, Brain 
hypoplasia

Bax-and Ca2+-
linked apoptosis 
inducers: 
resistance

64, 65

Miro1−/− ↓retrograde23 & anterograde28 

transport.

Brainstem Lethal P0, brainstem 
motor-neuron loss, short 
neurite.

Not known 23, 28

Miro2−/− Normal shape & transport No animal phenotype Not known 28

Miro1−/−neuronal Lack of mitochondria in spinal cord 
axons

Brainstem, 
lumbar spinal 
cord

Upper motoneuron 
disease, Death P35

Not known 23

Miro1/2−/− Short and rounded, perinuclear 
gathering.

Placenta Lethal E10.5, lack of 
vascularization

Not known 29

Nat Cell Biol. Author manuscript; available in PMC 2019 August 30.


	Abstract
	Mitochondrial stressors and cellular stress responses
	Mitochondrial dynamics
	Mitochondrial reshaping mechanisms and responses to stressors
	Mitochondrial Motility
	Mitochondrial fusion and fission dynamics
	Nanotunnels
	Homotypic mitochondrial contacts
	Heterotypic inter-organelle communication
	Intra-mitochondrial dynamics to shape cristae and adjust matrix volume

	Mitochondrial dynamics and stress responses leading to disease
	Early onset chronic stressors
	Late onset acute stressors
	Late onset chronic stressors

	Conclusions and looking forward
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Table 1:

