
Essays in Biochemistry (2018) 62 341–360

https://doi.org/10.1042/EBC20170104

*These authors contributed

equally to this work.

Received: 09 April 2018

Revised: 21 May 2018

Accepted: 23 May 2018

Version of Record published:

20 July 2018

Review Article

Mitochondrial dynamics: overview of molecular

mechanisms
Lisa Tilokani*, Shun Nagashima*, Vincent Paupe and Julien Prudent

Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, U.K.

Correspondence: Julien Prudent (julien.prudent@mrc-mbu.cam.ac.uk)

Mitochondria are highly dynamic organelles undergoing coordinated cycles of �ssion and

fusion, referred as ‘mitochondrial dynamics’, in order to maintain their shape, distribution

and size. Their transient and rapid morphological adaptations are crucial for many cellular

processes such as cell cycle, immunity, apoptosis and mitochondrial quality control. Muta-

tions in the core machinery components and defects in mitochondrial dynamics have been

associated with numerous human diseases. These dynamic transitions are mainly ensured

by large GTPases belonging to the Dynamin family. Mitochondrial �ssion is a multi-step

process allowing the division of one mitochondrion in two daughter mitochondria. It is reg-

ulated by the recruitment of the GTPase Dynamin-related protein 1 (Drp1) by adaptors at

actin- and endoplasmic reticulum-mediatedmitochondrial constriction sites. Drp1 oligomer-

ization followed by mitochondrial constriction leads to the recruitment of Dynamin 2 to ter-

minate membrane scission. Inner mitochondrial membrane constriction has been proposed

to be an independent process regulated by calcium in�ux. Mitochondrial fusion is driven by

a two-step process with the outer mitochondrial membrane fusion mediated by mitofusins

1 and 2 followed by inner membrane fusion, mediated by optic atrophy 1. In addition to

the role of membrane lipid composition, several members of the machinery can undergo

post-translational modi�cations modulating these processes. Understanding the molecular

mechanisms controlling mitochondrial dynamics is crucial to decipher how mitochondrial

shape meets the function and to increase the knowledge on the molecular basis of diseases

associated with morphology defects. This article will describe an overview of the molecular

mechanisms that govern mitochondrial �ssion and fusion in mammals.

Introduction
For a long time, mitochondria have primarily been considered as the ‘powerhouse’ of the cell, producing
the energy required for cellmetabolism by oxidative phosphorylation (OXPHOS) [1,2]. It is now accepted
that mitochondria are also involved in numerous other physiological processes such as programmed cell
death, innate immunity, autophagy, redox signalling, calcium homeostasis and stem cells reprogramming
[2-4]. Mitochondrial ultrastructure visualized by electron microscopy (EM) is characterized by a dou-
ble membrane system. The outer mitochondrial membrane (OMM) faces the cytosol, and the inner mi-
tochondrialmembrane (IMM) protrudes into the mitochondrialmatrix containing mitochondrial DNA
(mtDNA). The compartment delimited by the IMM and theOMM is referred as the intermembrane space
(IMS).However, the development of live cell imaging over the last 30 years has dramatically changed the
concept of mitochondria being static and isolated structures. Indeed, mitochondria can modulate their
morphology to create a tubular network coordinated by fission and fusion events. The balance between
these two opposite processes regulates mitochondrial number, size and positioning within the cytoplasm
and is referred as ‘mitochondrial dynamics’ [5].
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Figure 1. The mitochondrial morphology network

Representative microscopy confocal images showing the different mitochondrial morphological aspects from control (Ctrl), Mfn1-

and Drp1-Knockdown (Kd) mouse embryonic �broblasts cells. Mitochondria are labelled with an anti-TOM20 antibody (OMM

marker). Tubular, fragmented and hyperfused mitochondria are highlighted by zoomed areas (white squares); scale bars: 10 µm.

Please note that the bright TOM20-positive structure in the zoom area of the Drp1-Kd is not a mitochondrial fragment but a mito-

chondria-derived vesicle [192].

Mitochondrial fission is characterized by the division of one mitochondrion into two daughter mitochondria,
whereas mitochondrial fusion is the union of two mitochondria resulting in one mitochondrion. The deregulation
of these spatio-temporal events results in either a fragmented network characterized by a large number of small
round-shape mitochondria or a hyperfused network with elongated and highly connectedmitochondria (Figure 1).
These balanced dynamic transitions are not only required to ensure mitochondrial function but also to respond to
cellular needs by adapting the network to nutrient availability and to the metabolic state of the cell [6]. Moreover,
different morphological states are associated with multiple physiological and pathophysiological conditions [7].Mi-
tochondrial fragmentation is often linked to mitochondrial dysfunction as this morphological state predominates
during elevated stress levels and cell death [8]. However, it is also observed in the phase G2/M of the cell cycle and
is needed for mitochondrial motility, quality control and mtDNA inheritance [9,10]. Although still under debate,
a fused mitochondrial network would allow matrix component distribution and stimulation of OXPHOS activity
[11]. Mitochondrial elongation also confers protection against phagophore engulfment during autophagy triggered
by nutrient starvation and is mainly associated with cell survivalmechanisms [12].
The main proteins composing the core machinery are large GTPase proteins belonging to the Dynamin fam-

ily (Figure 2). These mechanoenzymes can oligomerize and change conformation to drive membrane remod-
elling, constriction, scission and/or fusion [13]. Mitochondrial constriction and scission are carried out by the
Dynamin-related/-like protein 1 (Drp1) and Dynamin2 (Dnm2), respectively [14].Mitochondrial fusion is ensured
by mitofusins 1 and 2 (Mfn1 andMfn2) and optic atrophy 1 (OPA1), which mediateOMM and IMM fusion, respec-
tively [15]. Knockout (KO) of either of these GTPases is embryonic lethal in mice and embryonic fibroblasts derived
from these mice harbour drastic mitochondrialmorphology defects [16-19] (except for theDnm2-KOmouse where
mitochondrialmorphology has not been investigated). The relevance of mitochondrial dynamics has also been high-
lighted in humans where pathogenic mutations in genes corresponding to the core fission machinery (Drp1 [20],
Dnm2 [21], MFF [22] and Mid49 [23]), fusion (Mfn2 [24] and OPA1 [25,26]), and other factors involved in these
events (e.g.MSTO1 [27,28], GDAP1 [29] and SLC25A46 [30,31]) have been reported.

Together, this highlights the importance of understanding how mitochondrial morphology is regulated, in order
to decipher how mitochondrial shape meets the function. In this article, we will present an overview of the recent
proposedmechanisms regulating mitochondrial fission and fusion in mammals.

Molecular mechanisms of mitochondrial fusion
Mitofusins and outer mitochondrial membrane fusion
OMM fusion is ensured by the two large GTPases homologues Mfn1 and Mfn2 in mammals, which share approxi-
mately 80% sequence similarity in humans. The Mfns orthologue, fuzzy onion (Fzo1), was originally characterized
in Drosophila melanogaster [32] and is conserved from yeast [33] to human [34]. Overexpression of either Mfns
leads to mitochondrial aggregation around the nucleus [35].WhileMfn1-KO induces mitochondrial fragmentation,
Mfn2-KO exhibits swollen spherical mitochondria [16]. This difference can be explained by the fact that Mfn1 has
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Figure 2. Schematic representation of the structural elements of the fission and fusion proteins, and their associated

post-translational modifications

Illustration of the core machinery proteins involved in (A) mitochondrial �ssion and (B) fusion. The classical model proposes that

Mfns contain two transmembrane (TM) domains in between HR1 and HR2 domains. Alternatively, Mfns have been recently demon-

strated to have only one TM that lies between the two HR domains. Cysteine residues, sensitive to oxidative stress are located in the

C-terminal located in the IMS (only Mfn2 structural domains are represented but this new topology is also applicable to Mfn1). Do-

mains are depicted in different colours. Identi�ed location of post-translational modi�cations are indicated by P (Phosphorylation), N

(S-nitrosylation), S (SUMOylation), G (O-GLcNAcylation), A (Acetylation) or U (Ubiquitination); BSE, bundle signalling elements; CC,

coil-coil; GED, GTPase effector domain; HR, heptad repeat; MTS, mitochondrial targeting sequence; NTD, nucleotidyl transferase

domains; PH, Pleckstrin homology; PR, Proline rich; RR, repeat regions; TM, transmembrane.

been shown to have a greater guanosine triphosphate (GTP)-dependent membrane tethering activity [36]. In ad-
dition, Mfn2 is not only involved in fusion but is also a key regulator of the mitochondria-endoplasmic reticulum
(ER) contact sites tethering [37,38]. Nevertheless, overexpression of Mfn1 or Mfn2 in Mfn2-KO or Mfn1-KO MEF
cells, respectively, can restore mitochondrial fusion [16]. Both proteins also accumulate at contact areas between two
adjacent mitochondria [35] and establish homo or heterotypic complexes leading to mitochondrial fusion [39].

Globally, mitochondrial fusion is characterized by three different steps: the tethering of twomitochondria in trans,
the docking of two membranes increasing the contact surface area and decreasing the distance between the two
membranes [40], and finally the fusion of the two OMM due to conformational changes induced by GTP hydrolysis
[36,41] (Figure 3).
Over the last 15 years, the proposed mechanism of mitochondrial fusion by mitofusins has been based on their

topology. Like yeast Fzo1 [42], it was accepted that Mfns were inserted in the OMM via two transmembrane (TM)
domains separated by a short loop exposing their N-terminal region containing the GTPase and the coil-coil heptad
repeat 1 (HR1) domains and their C-terminal harbouring the HR2 domain in the cytosol [34,43-45] (Figures 2 and
3A). Based on this model and some structural insights, the requiredmechanistic steps of fusion have been proposed
(Figure 3A).
For example, it has been proposed thatMfns dimeric antiparallel trans interactions between apposing mitochon-

dria are established via theirHR2 domains, followed by GTP hydrolysis resulting in OMM fusion [44].

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 3. Simplified models for mitochondrial fusion in mammals

(A) Schematic representations of mitochondrial fusion, based on the Mfns topology suggesting two TM domains with both the

HR1 and HR2 domains facing the cytosol. (1) The outer membrane of two opposing mitochondria are tethered by the interaction in

trans of the HR2 and/or GTPase domains of Mfns. GTP binding or/and hydrolysis induce Mfns conformational change leading to

mitochondrial docking and to an increase of membrane contact sites. For clarity reasons, not all of the recent suggested models

leading to Mfns dimerization and conformational change are highlighted in the scheme. (3) Finally, GTPase-dependent power

stroke or GTP-dependent oligomerization ensure OMM fusion. The composition of the OMM in phospholipids can also regulate

this process. (4) Following OMM fusion, OPA1 and CL drive IMM fusion. The interaction between OPA1 and CL on either side of the

membrane tethers the two IMM, which fuse following OPA1-depedent GTP hydrolysis (5). In this model, S-OPA1 has been shown

to enhance OPA1–CL interaction and fusion. Please note that after OMM and IMM fusion, Mfn2 and OPA1, as membrane-bound

proteins, are still present on the different membranes but are disassembled. (B) Schematic representations of OMM fusion based

on the new metazoan Mfns topology suggesting only one TM placing the Mfn C-terminus in the IMS. Oxidized environment in

the IMS (ROS production) and increase concentration of GSSG lead to the establishment of two disulphide bonds within the IMS

domain. These redox-mediated disulphide modi�cations induce the dimerization and oligomerization of Mfns molecules which may

promote tethering or GTPase activity required for OMM fusion. Interestingly, this redox-regulated Mfns oligomerization is a dynamic

and reversible process. Yellow stars indicate an oxidized environment.

In contrast to the HR2 trans model, more recent structural studies conducted with a ‘minimal’ recombinant
Mfn1 (internal deletion of the HR2 and generation of the predicted TM domains) revealed that the tethering is
mediating through the GTPase domains [46,47]. The fusion of the adjacent membranes may then be ensured by a
GTPase-dependent power stroke [47] orGTP-dependent oligomerization [46].While crystal structures clearly reveal
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theGTPase binding in trans as a primary mechanism of tethering, a peptide that mimics theHR1 helix has also been
shown to activate mitochondrial fusion [48]. These peptides, or smaller drugs that alter the conformation of HR1,
increase mitochondrial fusion when added to cells. Based onmodelling from the structures, the authors propose that
these compounds interfere withHR1 binding toHR2, thereby opening the helix and promoting mitochondrial teth-
ering and fusion [48]. These compounds were not tested in a direct mitochondrial fusion assay, so it remains possible
that other mechanisms can explain their cellular effects. Finally, it has been recently proposed that the C-terminal
tail ofMfn1, harbouring theHR2 domain, contains an amphipathic helix required forMfn1 insertion and promoting
mitochondrial fusion [49]. More recent work has shown that HR1, but not HR2, promotes liposome tethering and
lipid mixing in reconstituted assays, hinting that this HR may destabilize the lipids to drive membrane fusion [50].
The idea that theMfns form a larger fusion pore, visualized as a circular mitochondrial docking complex, has been
suggested using cryo-electron microscopy in isolated yeast mitochondria [40]. This study has also revealed that the
cycles of GTP hydrolysis are required to assemble this dynamic structure [40].
Importantly, the prediction that HR1 and HR2 both reside on the cytosolic side of the OMM was based on the

established topology of the yeast orthologue Fzo1. However, this topology was recently challenged, forcing a recon-
sideration of the current models [51] (Figures 2 and 3B). Furthermore, phylogenetic analysis has revealed thatMfns
fromyeast andmetazoans are highlydivergent, with bioinformatics predicting a single TMdomain inmetazoanMfns,
with two membrane spanning regions inMfns of the fungal clade. Classical biochemical experiments confirmed that
humanMfns harbour only oneTMdomain, placing the∼12 kDaC-terminal and theHR2 domain in the IMS [51]. In-
terestingly, this new topology has been functionally linked to the control of mitochondrial fusion by redox signalling.
Indeed, two cysteines located in theHR2 domains can be oxidized by increased level of oxidized glutathione leading
to the formation of disulphide bonds between twoMfns molecules and their oligomerization required for membrane
fusion [51]. These results confirmed initial studies describing the role of reactive oxygen species and oxidative stress
in promoting mitochondrial fusion [52-54]. This new topology is consistent with the observation that HR2 did not
drive liposome tethering or fusion [50]. Given the previous assumptions that theHR2 domain resides in the cytosol,
this new topology raises a number of outstanding questions, for example: Are the GTPase domain interactions in
trans sufficient to tether two mitochondria withHR1 domain driving bilayer mixing? Do the compounds interfering
withHR1 domain affect additional Mfn partners that may participate in fusion?

Together, these data highlight the requirement of a reappraisal of the current acknowledged models and further
experiments based on this new model should be performed in the near future to confirm and shed light on the full
mechanism of OMM fusion.

OPA1 and inner mitochondrial membrane fusion
IMM fusion occurs downstream of OMM fusion and is mediated by the large GTPase OPA1 and specific IMM lipid
components. Indeed, genetic loss of OPA1 leads to mitochondrial fragmentation whereas OPA1 overexpression in-
duces mitochondrial elongation [55]. OPA1, originally described in the yeast model (Mgm1p) [56], is evolutionary
conserved and is a complex protein with eight identified splice-variants. Its protein domain organization shares sim-
ilarities with ‘classical’ dynamins (Figure 2). It is inserted within the IMM via a ∼100 residues N-terminal matrix
targeting signal followed by a TM domain, exposing the majority of the protein to the IMS [57]. Despite the role of
the GTPase and GTPase effector domain (GED) domains for GTP hydrolysis, the specific roles of the different do-
mains during fusion events are not well understood.OPA1 harbours at least two sites for proteolytic cleavage, which
generate shorter and soluble fragments. These cleavages are mediated by two membrane-bound metalloproteases,
OMA1 [58,59] and YME1L [60,61], cleaving the protein at S1 and S2 sites, respectively. This results in at least five
OPA1 fragments detectable by immunoblot where the two higher molecular weight forms are referred as L-OPA1
and the three shorter as S-OPA1. The abundance of the different OPA1 isoforms is cellular context specific and af-
fects mitochondrial dynamics regulation. Indeed, OMA1-dependent cleavage of OPA1 is a stress response, whereas
stimulation of OXPHOS induces YME1L activity. It is interesting to note that a mild mitochondrial stress leads to a
stress-induced mitochondrial hyperfusion (SIMH) mechanism regulated by the Stomatin-like protein 2, Mfn1 and
OPA1 and acting as a pro-survival response [62].

Initial work has described the requirement of both L- and S-OPA1 isoforms to allow mitochondrial fusion since
L-OPA1 and S-OPA1 alone have only little fusion activity [61]. However, recent studies have now shown that the
L-OPA1 isoform alone is sufficient to drive fusion. Indeed, L-OPA1 accumulation drives fusion during SIMH [62] and
is responsible for the mitochondrial hyperfusion observed in YME1L/OMA1-DKO cells [63]. The balance between
OPA1 cleavage by OMA1 and YME1L plays a crucial role in fusion regulation and the precise role of the S-OPA1
generation is not perfectly understood [64]. Indeed, initialwork has shown that S-OPA1 isoform is also able to induce

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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membrane tubulation in a liposome assay [65] and stimulation of OXPHOS induces YME1L-dependent S-OPA1
generation leading to mitochondrial fusion [66]. In contrast, mitochondrial stress-induced OPA1 cleavage byOMA1
can lead to mitochondrial fragmentation [58,59].

In mammals, OPA1 localization in only one of the two opposing mitochondria is sufficient to drive the fusion of
both membranes [67]. These findings have been recently confirmed and a new model for IMM fusion regulated by
OPA1 and a particular phospholipid has been proposed [68] (Figure 3A). As described later in this article, mem-
brane lipid composition and in particular the lipid, cardiolipin (CL), play a crucial role in membrane remodelling
and dynamics. CL is a mitochondria specific negatively charged lipidmainly localized in the IMM and required for
the assembly and stability of large protein complexes like mitochondrial contact site and cristae organizing system
(MICOS) and OXPHOS complexes [69]. Incubation of recombinant L-OPA1 with reconstituted CL-containing li-
posomes leads to a heterotypic interaction between L-OPA1 and CL driving membrane fusion [68]. In this model,
S-OPA1 facilitates OPA1-CL binding andmembranes fusion, corroborating studies performed in yeast showing the
requirement of both S- and L-OPA1 isoforms as well as cardiolipin for IMM fusion [70,71]. Interestingly, these data
have been validated in cellulo using a cell fusion assay, and suggest that the presence of OPA1 and CL on either side
of the membrane can promote fusion and represents the minimal IMM fusion machinery [68]. These results also
suggest that the OPA1 homotypic interaction is not involved in IMM fusion but in cristae architecture control.
Finally,OPA1-dependent IMM fusion depends onMfn1 but notMfn2 [62,72]. This observation raises the possible

communication between the two membranes during fusion and suggests a potential interaction ofMfn1 withOPA1,
a hypothesis now more plausible based on the newMfns topology [51].
Overall, because of the complex processing of OPA1 and the lack of 3D structure of the protein, the precise mode

of action of OPA1 has remained elusive. Further studies are needed to fully establish the mechanism of IMM fusion.

Molecular mechanisms of mitochondrial fission
Drp1 and adaptors
Mitochondrial fission is amulti-step processwhere the recruitment of the largeGTPaseDrp1plays a crucial role.Drp1
is evolutionary conserved and its role in mitochondrial division was initially described in Caenorhabditis elegans
[73] and yeast [74,75] before being extensively studied in mammals [76]. It is mainly a cytosolic protein, which is
dynamically recruited to mitochondrial and peroxisomal membranes where it oligomerizes and drives membrane
constriction in a GTP-dependent manner [14]. Indeed, genetic loss of Drp1 leads to a drastic elongation of both
mitochondria and peroxisomes [77] in multiple cell lines and a variety of animalmodels [18,19].
Drp1 is composedof fourdistinctdomains, anN-terminal GTPasedomain followedby themiddledomain, variable

domain (or B-insert) and the GED in C-terminal (Figure 2). Like ‘classical dynamins’, Drp1 also contains bundle
signalling elements (BSE) and stalk regions, butdoes not harbour the pleckstrin homology (PH)domain or the proline
and arginine rich domain (PRD) at the C-terminal. The BSEs connect the GTPase domain with the stalk domain
allowing Drp1 binding to membranes and subsequently its oligomerization [78].

During mitochondrial division, Drp1 is recruited to the OMM where it forms a ring-like structure around mi-
tochondria leading to the narrowing of the membrane [76,78,79] (Figure 4). Then, GTP hydrolysis enhances this
membrane constriction [80] which marks a potential future site of mitochondrial scission. Assembly of Drp1 at the
OMM is mediated by the central stalk (middle domain) forming Drp1-oligomeric helices starting at two different
points of the membrane [78,81]. Interestingly, in contrast with the ‘common pathway’ where cytosolic Drp1 is di-
rectly recruited to a constriction site through its membrane-anchored adaptors, a ‘targeted equilibrium’ has been
proposed. In this model, dimeric and oligomeric forms of Drp1 are in constant balance between the cytosol andmi-
tochondria [82].Mitochondria-bound Drp1 puncta can merge into a mature-sized Drp1 complex capable of moving
laterally along the mitochondrial tubule, induce constriction and eventually fission [82].
AsDrp1 lacks a PH domain to bindmembrane phospholipids directly, its recruitment at theOMM requires adap-

tors proteins. In the yeast model, Dnm1 (Drp1 orthologue) is recruited to the OMM via the membrane-anchored
protein fis1 [83] and two receptors Mdv1 [84] and Caf4 [85]. However, there are no obvious orthologues for Mdv1
andCaf4 inmammals and recent studies suggest that Fis1 is not involved in the fissionmechanism in basal conditions
[86]. Instead, the tail-anchored proteins mitochondrial fission factor (MFF) [87] and mitochondrial dynamics pro-
teins 49 and 51 (MiD49 and MiD51) [88,89] act as receptors for Drp1 in mammals (Figures 2 and 4). On one hand,
overexpression of MFF leads to a fragmented network [90] whereas MFF genetic invalidation induces mitochon-
drial and peroxisome elongation [87,90], accompanied by a decrease in Drp1 mitochondrial recruitment. Indeed,
MFF can specifically recruit high-oligomeric forms of Drp1 in cellulo [91] and stimulate its GTPase [92] activity
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Figure 4. Simplified model for mitochondrial fission in mammals

Schematic representation of the multi-step processes required for mitochondria division. (1) In the matrix, replication of the mtDNA

marks the site for ER-recruitment. In parallel, Drp1 oligomers are in constant balance between the cytosol and mitochondria. In

addition, IMM constriction occurs at mitochondria–ER contacts in a Ca2+-dependent process, before Drp1 oligomerization and

maturation. (2) Oligomeric forms of Drp1 accumulate at ER-sites where the pre-constriction of the membrane has been initiated. (3)

The zoomed area highlights the factors regulating mitochondrial division. The ER-bound INF2 and mitochondrial Spire1C induce

actin nucleation and polymerization at mitochondria–ER contact sites. The Myosin IIa may ensure actin cable contraction, providing

the mechanical force to drive mitochondria pre-constriction. At these sites, MFF and MiDs recruit Drp1 where it oligomerizes in a

ring-like structure and (4) GTP-hydrolysis leads to conformational change, enhancing pre-existing mitochondrial constriction. The

composition of the OMM in phospholipids also regulates Drp1 assembly and activity. (5) Then, Dnm2 is recruited to Drp1-mediated

mitochondrial constriction neck where it assembles and terminates membrane scission, (6) leading to two daughter mitochondria.

(7) The mechanisms of disassembly of the �ssion machinery following division remain unclear but both adaptors and Drp1 are

found at both mitochondrial tips after division.

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution

License 4.0 (CC BY).

347

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://p

o
rtla

n
d
p
re

s
s
.c

o
m

/e
s
s
a
y
s
b
io

c
h
e
m

/a
rtic

le
-p

d
f/6

2
/3

/3
4
1
/4

8
6
7
7
6
/e

b
c
-2

0
1
7
-0

1
0
4
c
.p

d
f b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Essays in Biochemistry (2018) 62 341–360

https://doi.org/10.1042/EBC20170104

enhancing membrane constriction in liposome assay. On the other hand, MiDs overexpression leads to mitochon-
drial elongation due to Drp1 sequestration [88,93], whereas low levels induce mitochondrial fragmentation [94].
MiD49/51-DKO phenocopiesMFF-KO, characterized by mitochondrial hyperfusion and Drp1 recruitment defects,
showing a potential redundancy betweenMiD49 andMiD51 [86,95].MiDs harbour a nucleotidyltransferase domain
and MiD51 requires ADP as a cofactor to stimulate Drp1 oligomerization and GTPase activity [96,97]. However, in
vitro experiments usingMiD51-bound liposomes demonstrated the capacity ofMiD51 to inhibit Drp1 GTPase ac-
tivity [95].While these receptors colocalize together in discrete foci with Drp1 at ER-constriction sites [86,94],MFF
and MiD49/51 can act independently on Drp1 recruitment and activity [98]. Therefore, it is assumed thatMFF and
MiDs have distinct but complementary roles in mitochondrial fission whereMiDs recruit GTP-bound state of Drp1
to facilitate oligomerization whereasMFF selectively recruits oligomeric and active forms of Drp1. These functional
differences have been highlighted recently during the cell death programme [86]. Further work would shed light on
the precise mechanisms of Drp1 recruitment by these adaptors.

Final step of mitochondrial scission
Although the roleDrp1 plays in membrane constriction is well described, its capacity to terminate fission has always
been questioned. Recombinant Drp1 expression leads to liposome tubulation but not to their scission [99]. More-
over, cryo-EM imaging in yeast showed that the most representative diameter ofDnm1-lipid tubes constriction upon
addition of GTP was 50–60 nm [100], which suggested that final scission required an additional process. Recently,
the canonical protein Dnm2, initially involved in endocytic vesicle scission, has been proposed to catalyse this final
step [101] (Figure 4). Like Drp1, Dnm2 is a GTPase that assembles in a collar–like structure around the constrict-
ing lipid ‘necks’ of budding membrane--bound vesicles [13]. Live-cell imaging experiments have shown that Dnm2
acts downstream of mitochondrial Drp1 activity, is transiently and specifically recruited to ER- and Drp1-induced
constriction sites and leads to fission [101]. In addition, silencing Dnm2 induces mitochondrial elongation and the
presence of highly narrow and elongated super-constriction sites. This phenotype was not rescued by re-expression
of Dnm2 mutants lacking its GTPase, PH or PRD domains suggesting that activity, lipid binding and localization of
Dnm2 are required for its role in mitochondrial division [101].

Mitochondrial division occurs at ER contact sites
A groundbreaking discovery in the mitochondrial dynamics field was the discovery that the ER was required for
the initial step of mitochondrial division. Indeed, high-resolution and 3D reconstructed images acquired using EM
and tomography have shown that not only ER tubules make contact with mitochondria but they can also wrap
around them leading to mitochondrial constriction [102] (Figure 4). This pre-constriction step is required to de-
crease the average mitochondrial diameter from approximately 300–500 nm to approximately 150 nm [102], to allow
Drp1-oligomeric ring formation. Therefore,Drp1 and its adaptorsMFF andMiD49/51 are also specifically recruited
to these mitochondria–ER contact sites prior to mitochondrial division [95,102,103].With recent evidence implicat-
ing the role of phospholipids [104] and calcium transfer [105,106] during the process, it is tempting to suggest that
these ER contact sites are not just required for mitochondrial pre-constriction but also represent a signalling platform
for metabolite exchange, facilitating membrane remodelling and division.
The ER-bound inverted-formin 2 (INF2) and the mitochondrial anchored formin-binding Spire1C are both

actin-nucleating proteins (Figure 4). Silencing either protein leads to mitochondrial elongation and defects in
actin polymerization at the mitochondria–ER interface [107,108]. At these contact sites, INF2 cooperates with
Spire1C to regulate actin assembly required for mitochondrial constriction before Drp1 recruitment and oligomer-
ization [107,108]. In addition, Myosin IIA may ensure actin cable contraction providing the mechanical force for
pre-constriction site formation [109]. Furthermore, transient F-actin bursts have been observed at mitochondria just
before Drp1-dependent mitochondrial division [110,111] and other proteins involved in actin cytoskeleton regula-
tion have been shown to regulate mitochondrial fission such as cofilin [110,112], cortactin [110], Arp2/3 [110] and
Septin 2 [113]. Finally, Drp1 can bind F-actin in vitro which stimulates its oligomerization and its GTPase activity
[114]. Together, the concomitant action of the ER and actin has clearly been identified as a crucial regulator of mito-
chondrial division and further studies will shed light on new potential regulators and their links with other members
of the fission machinery.
Since the discovery of the role of the ER in mitochondrial division and the capacity of the oligomeric form ofDrp1

to move along the tubules, it was unclear how the ER identifies andmarks the sites for mitochondrial division. It had
already been described that mitochondrial nucleoids were localized at mitochondria–ER contact sites in yeast [115]
and mammal cells [116]. Recently, using high-resolution microscopy and live cell imaging, replicating mtDNA has
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specifically been spatially associated at mitochondria–ER contacts and constrictions, marking future mitochondrial
fission sites [117] (Figure 4), allowing mtDNA distribution to the two newly generatedmitochondria. This new ob-
servation describes mtDNA replication as one of the first steps of mitochondrial division raising new questions about
the regulating mechanism and how this signal coming from the matrix is transmitted to the ER.

Constriction and division of the inner mitochondrial membrane
While the mechanisms regulating OMM constriction are well documented, the events leading to IMM constriction
or division are poorly understood. Until now, no machinery has been associated with IMM division. EM analyses in
C. elegans [73] and from rat cardiomyocytes [118] reported the potential presence of IMM constriction or division in
the absence of eitherDrp1 orOMM constriction, which suggested that it could happen early during themitochondrial
division process.However, only very recently, an underlying mechanism for IMM constriction and possibly division
has been proposed.

Coupling EM to super-resolution microscopy, two recent studies have suggested that IMM constriction is
Ca2+-dependent and occurs at mitochondria–ER contact sites [105,106]. Stimulation of ER-induced calcium release
to mitochondria leads to the constriction of the inner membrane compartment andmay induce IMM division before
Drp1 recruitment, therefore independently ofOMM-constriction [105,106]. In addition, this phenomenon is inhib-
ited by the loss of the mitochondrial calcium uniporter (MCU), which also leads to mitochondrial elongation. This
is consistent with previous work suggesting a link between mitochondrial Ca2+ influx andmitochondrial fragmenta-
tion [119].While in human Osteosarcoma cells (U2OS), IMM constriction has been attributed to the stimulation of
mitochondria–ER contacts andmitochondrial calcium uptake by INF2-mediated actin polymerization [105], in neu-
rons this mechanism is ensured by OPA1 processing [106]. Indeed, calcium entry in mitochondria induces a drop
in mitochondrial membrane potential leading to the activation of OMA1 and the processing of OPA1 in S-OPA1.
S-OPA1 accumulation disrupts the capacity of the MICOS complex to stabilize OMM–IMM tethering, leading to
the IMM untethering and possibly constriction [106]. This proposed mode of action confirms the role previously
described for S-OPA1 in fission. Indeed, S-OPA1 can localize at mitochondria–ER contact sites with the OMM fis-
sion machinery, but also overexpression enhances mitochondrial fission [120]. However, further studies need to be
performed to decipher the players regulating IMM constriction and division and precisely incorporate these events
in the globalmitochondrial division process.

Additional layers of mitochondrial dynamics regulation
Membrane lipids composition in mitochondrial dynamics
Phospholipids are the major components of mitochondrial membranes and their role in membrane curvature, re-
modelling and regulation of mitochondrial dynamics has recently emerged. Mitochondrial membranes are mainly
composed of phosphatidylcholine and phosphoethanolamine but also containminor amounts of other phospholipids
like phosphatidic acid (PA) and cardiolipin (CL), which play a major role in membrane remodelling. PA, a saturated
lipid, is directly transferred from the ER to mitochondria, where it is converted into CL at the IMM [121]. A small
amount of CL can be located to the OMM where CL can be converted into PA by the OMM C-anchoredmember of
the phospholipase D family, mitoPLD [104].
Initial work has demonstrated that overexpression of mitoPLD triggered mitochondrial hyperfusion, whereas its

ablation inhibited fusion and inducedmitochondrial fragmentation [122]. Interestingly, hydrolysis ofOMM-localized
PA in diacylglycerol (DAG) or lysoPA by cytosolic mitochondrial recruited PA phosphatase (lepin 1b) [123] or phos-
pholipase (PA-PLA1) [124], respectively, inhibits fusion induced by PA accumulation. While PA accumulation en-
hancesMfn1/2-dependentOMM fusion [122],CL stimulatesOPA1 assembly andGTPase activity, subsequently lead-
ing to liposomes membrane tubulation [65]. As described earlier, CL plays a major role in the heterotypic interaction
with OPA1, which stimulates fusion and represents the minimummachinery to drive inner membranes fusion [68].

AlthoughDrp1 lacks a specific PHdomain, it has been shown that it can interact with bothCL and PA.Drp1 bind-
ing toCL via its B-insert domain drives oligomerization and stimulation of itsGTPase activity enhancing constriction
and tubulation of liposome membranes [92,125-129], designating CL at theOMM as a pro-fission phospholipid. In-
terestingly, Drp1 oligomerization and GTP hydrolysis can rearrange liposome membranes containing CL to create a
constricted membrane region enriched in CL and favourable to scission [126]. In contrast, PA synthesis by the mi-
toPLD negatively regulatesDrp1-dependent mitochondrial division [130]. In cellulo,Drp1 binds directly PA, via an
unstructured loop in its stalk domain, at the OMM constriction sites leading to its oligomerization but to an inhibi-
tion of itsGTPase activity, which results in mitochondrial hyperfusion [130,131].Overall, these studies highlight the
antagonistic roles of PA and CL microdomain formation in mitochondrial fission and fusion regulation.
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Post-translational modifications of the core components
Post-translational modifications of the core protein machinery have been extensively studied in the last 10 years
(Figure 2). Drp1 phosphorylation has been the most studied and phosphorylation at serine 616 and serine 637 are
considered as pro-fission and pro-fusion forms, respectively.During mitosis,Drp1 is phosphorylated by cdk1/cyclin
B kinase dependent on serine 616, stimulating its oligomerization, subsequently inducing mitochondrial fission and
ensuring organelle distribution to daughter cells [132]. Drp1 can also be phosphorylated by other kinases at this
residue during cell death by protein kinase C (PKC) [133] and the Ca2+-/calmodulin-dependent kinase II (CaMKII)
[134,135] and by ERK-1/2 during cancer cell invasion [136,137] and cell reprograming [138]. On the other hand,
protein kinase A, recruited to mitochondria through A kinase-anchoring protein 1 (AKAP1), phosphorylates Drp1
on residue 637 inhibiting fission and protectingmitochondria from autophagosomal degradation during nutrient de-
privation [139] and cell death [140,141]. Dephosphorylation of this residue is carried out by the calcium-dependent
phosphatase calcineurin during cell death [140,142,143] and PGAM5 during necrosis [144]. Finally, other kinases
including Rho-associated coiled coil-containing protein kinase 1 (ROCK1) [145] and glycogen synthase kinase 3β
(GSK3B) [146,147] can phosphorylate Drp1 andmodulate mitochondrialmorphology. In addition to phosphoryla-
tion, Drp1 can be dynamically SUMOylated/deSUMOylated on multiple non-consensus sites within the B domain
controlling its stable association with the membrane, fission activity and cell death [148-153].Drp1 can also be ubiq-
uitinated by the RING-finger ubiquitin E3 ligase MARCH5/MITOL [154] and Parkin [155]. Finally, Drp1 activity
can be controlled by S-nitrolysation [156-158] (but this regulation is still controversial) and O-GluNAcylation [159]
modifications in its variable domain.

In addition, Drp1 receptors can also be regulated by post-translational modifications. Indeed, MFF is a substrate
of the cellular energy sensor AMP-activated protein kinase (AMPK) uponmitochondrial dysfunction and a decrease
in the cytosolic ATP/AMP ratio [160]. Phosphorylation of MFF enhances Drp1 recruitment, mitochondrial fission
and damaged mitochondrial degradation [160]. Finally, MiD49 is also ubiquitinated by MARCH5/MITOL leading
to its proteasomal degradation [161].
Post-translational modifications of mitochondrial fusion proteins are less documented. Indeed, the IMM OPA1

protein is regulated by proteolytic cleavage as already described, and only fewmodifications have been associatedwith
Mfn1/Mfn2. The activity and stability ofMfn1 is regulated by ubiquitination and acetylation.MARCH5 ubiquitinates
acetylated Mfn1 promoting its proteasomal degradation during mitochondrial stress [162]. During starvation, the
protein deacetylase HDAC6 binds to and deacetylates Mfn1 enhancing fusion [163]. Finally, the phosphorylation
of Mfn1 in the HR1 domain by the extracellular-signal-regulated kinase (ERK) inhibits mitochondrial fusion and
promotes apoptosis [164].

Mfn2 can also be ubiquitinated by the HECT-type E3 ubiquitin-ligase Huwe1 [165], the RING-between RING
type E3 ubiquitin-ligase Parkin [166], and the canonical RING-finger ligase MARCH5 [167] to control its activity
and stability. Indeed, PINK1-phosphorylated Mfn2 can be ubiquitinated by Parkin leading to mitophagy [166] and
JNK-phosphorylatedMfn2 can be ubiquitinated byHuwe1, which leads to its degradation, facilitating fragmentation
and apoptosis [165].

Other proteins regulating mitochondrial dynamics
While most work has focused on the coreGTPases that governmitochondrial dynamics, additional factors have been
identified that either directly or indirectly modify mitochondrial dynamics.
Ganglioside-induced differentiation associated protein 1 (GDAP1) and SLC25A46 are two proteins which can

control mitochondrial fission. GDAP1 has been proposed to participate in fission upstream MFF and Drp1 [29].
SLC25A46 has been suggested to be the mammalian orthologue of the yeast Ugo1, a protein interacting with Fzo1
andMgm1 to coordinate outer and inner membrane fusion processes in yeast [168,169].However, loss of SLC25A46
in human cells leads to mitochondrial hyperfusion probably due to a deregulation of mitochondrialmembrane phos-
pholipids composition suggesting that the role of SLC25A46 seems to have evolved toward a pro-fission function
[30,31]. Finally, additional evidence suggests that inner mitochondrial compartments may drive mitochondrial di-
vision. An IMM protein, mitochondrial fission process 1 (MTFP1), also called MTP18, has been involved in early
step of mitochondrial division, upstreamDrp1 activity [170,171]. Indeed,MTFP1 loss induces mitochondrial hyper-
fusion and a deregulation of Drp1 phosphorylation in an unknown mechanism [172]. This small, inner membrane
protein was recently shown to be a translational target of mTOR, where protein expression was lost upon starvation
or inhibition of mTOR, driving mitochondrial hyperfusion which promoted cell survival [172].

MSTO1 (Misato) is a cytoplasmic regulator of the OMM fusion machinery since it depletion leads to im-
paired fusion [27,28]. Finally, the reactive oxygen species modulator 1 (ROMO1) protein has been identified as a
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redox-regulated protein required for mitochondrial fusion and normal cristae morphology [53]. ROMO1, or Mgr2
in yeast, has a primary role in regulating the lateral release of membrane proteins transiting through the Tim23 chan-
nel during biogenesis [173]. However, under oxidative stress, ROMO1 is required for OPA1 oligomerization and
ROMO1 silencing induces mitochondrial fission [53], reinforcing the interplay between redox signalling and the
control of mitochondrial fusion. It is unclear whether this function in OPA1 dynamics directly relates to defects in
biogenesis, or if it may have a secondary stress-related function in metazoans.

Table 1 Clinical syndromes due to mutations in genes encoding fission and fusion machinery components

Gene OMIM Inheritance Disease Symptoms Refs

MFN2 608507 AD Charcot–Marie–Tooth disease type 2A Distal limb muscle weakness and atrophy, axonal

degeneration/regeneration, areflexia, distal sensory

loss (pain and temperature more frequent) with or

without: (a) CNS involvement (cognitive decline,

spasticity, encephalopathy), (b) optic atrophy, (c)

hearing loss and (d) vocal cord paresis

[24]

AR Charcot–Marie–Tooth disease type 2A [174]

AD Hereditary motor and sensory neuropathy VIA [178]

OPA1 605290 AD Optic atrophy 1 Progressive loss of visual acuity, temporal optic nerve

pallor, central scotoma with or without: (a) CNS

(ataxia, spasticity, hearing loss) and (b) PNS (axonal

sensorineural polyneuropathy) symptoms.

[26]

AD Optic atrophy plus syndrome [25]

AR Behr syndrome Early-onset optic atrophy accompanied by neurologic

features, including ataxia, pyramidal signs, spasticity

and mental retardation

[185]

MSTO1 617619 AR/AD Myopathy and ataxia Hand and feet muscle weakness, growth impairment,

fine tremor, cerebellar hypotrophy with or without: (a)

white matter hyperintensities, (b) frontal lobe atrophy

and (c) mental retardation

[27] [28]

DNM1L 603850 AR/AD Encephalopathy Abnormal brain development, seizures, hepatic

dysfunction, encephalopathy, dysmorphism.

[20] [187]

AD Optic atrophy 5 Progressive loss of visual acuity, optic nerve atrophy

and central scotoma

[188]

MFF 614785 AR Encephalopathy Seizures, dysphagia, optic and peripheral

neuropathy, developmental delay, microcephaly,

cerebellar atrophy and basal ganglia lesions

[22]

MIEF2 615498 AR Mitochondrial myopathy Progressive muscle weakness, intermittent muscle

pain and exercise intolerance

[23]

DNM2 602378 AD Centronuclear myopathy 1 Slowly progressive muscle weakness. [21]

AD Charcot–Marie–Tooth disease, axonal type 2M Distal limb muscle weakness and atrophy and

sensory impairment, areflexia +/-neutropenia.

[180]

AD Charcot–Marie–Tooth disease, dominant intermediate B

AR Lethal congenital contracture syndrome 5 Polyhydramnios, decreased foetal movements,

intracranial bleeding, retinal haemorrhage, joint

contractures and respiratory insufficiency

SLC25A46 610826 AR Pontocerebellar hypoplasia type 1 Early onset of optic atrophy, peripheral axonal

sensorimotor neuropathy, ataxia, myoclonus,

cerebellar atrophy, hypotonia with variable degree of

severity, age at onset and association of symptoms

[189]

AR Hereditary sensory motor neuropathy [31]

AR Optic atrophy spectrum disorders [30]

GDAP1 606598 AR Charcot–Marie–Tooth disease type 4A Distal limb muscle weakness and atrophy and

sensory impairment, areflexia with or without: (a)

axonal regeneration and (b) vocal cord paresis

[176] [175]

AR/AD Charcot–Marie–Tooth disease type 2K

AR Charcot–Marie–Tooth disease type A

AR Charcot–Marie–Tooth disease with vocal cord paresis

INF2 610982 AD Charcot–Marie–Tooth disease type E Distal limb muscle weakness and atrophy and

sensory impairment, areflexia, sensorineural hearing

loss and foot drop

[177]

AD Focal segmental glomerulosclerosis Proteinuria and renal failure [179]

A non-exhaustive list of the diseases related to the principal identified mutations in genes encoding the core components of mitochondrial dynamics

with associated symptoms. Abbreviations: AD, autosomal dominant; AR, autosomal recessive; CNS, central nervous system; OMIM, Online Mendelian

Inheritance in Man R©; PNS, peripheral nervous system.

Mitochondrial dynamics: clinical syndromes
Pathogenic mutations in genes encoding the core fission and fusion machinery components have been linked to dif-
ferent severe human disorders, highlighting the physiological role of mitochondrial dynamics in cell homoeostasis

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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(Table 1). These defects are mainly associated with neuromuscular and central nervous system (CNS) clinical syn-
dromes and they are responsible for severe disabilities and progressive clinical course.
Clinical genetics studies have identified pathogenic mutations inMFN2 [24,174], GDAP1 [175,176], INF2 [177]

and DNM2 [180] as a cause of different types of Charcot–Marie–Tooth (CMT) disease, a clinically diverse group of
inherited peripheral neuropathies. CMT diseases are characterized by degeneration of peripheral sensory andmotor
axons, causing distal sensory loss, muscle atrophy and weakness. In addition, MFN2 has also been associated with
hereditary motor and sensory neuropathyVI, with optic atrophy and vocal cord paresis as potential additional symp-
toms [178].Defects in the ER-associated fission protein INF2 can also cause renal focal segmental glomerulosclerosis
[177,179] while DNM2 mutations have also been responsible of centronuclear myopathy [21] or lethal congenital
contracture syndrome 5 [180].
Dominantmutations have been reported inOPA1, and associatedwith optic atrophy, themost common hereditary

optic neuropathy [181]. This neuropathy is characterized by a loss of retinal ganglion cells in the optic nerve, leading
to a gradual and progressive loss of vision [25,26]. It has been challenging to pinpoint the cause of the selective degra-
dation of the optic nerve, because similarly to Mfn2, OPA1 also plays multiple roles, such as in cristae architecture
and in apoptosis [182]. A subset of dominant mutations in the GTPase domain of OPA1, which is directly involved
in IMM fusion, has been associated with dominant optic atrophy plus syndrome, defined by the development of
additional symptoms such as deafness, ataxia andmyopathy throughout adulthood [183,184]. Instead, recessive mu-
tations in OPA1 cause Behr syndrome, a complex neurological disorder characterized by early-onset optic atrophy,
ataxia, spasticity and mental retardation [185]. These three distinct clinical syndromes due to OPA1 mutations are
not clearly explained by the underlying pathophysiology [186].
Mutations in pro-fusion geneMSTO1 cause mitochondrialmyopathy and ataxia [27,28]while mutations inDRP1

lead to a severe neurological syndrome with microcephaly, abnormal brain development, optic atrophy and persis-
tent lactic acidemia [20,187,188]. Furthermore, defects involving Drp1 adaptors, MFF [22] and MIEF2 [23], have
been linked to human diseases. Indeed, patients harbouring mutations in MFF exhibit seizures, optic neuropathy
andmicrocephaly [22]. Patients carrying mutations inMIEF2 suffer frommyopathy, with complex I and complex IV
activity deficiency inmuscle [23]. Pathogenic mutations have also been associatedwith other regulators of mitochon-
drial fission. Indeed, patients carryingmutations in SLC25A46 have been reported to present clinically heterogeneous
disorders, ranging from pontocerebellar hypoplasia [189], hereditary sensorymotor neuropathy [31] to optic atrophy
spectrum disorder [30].

Studies on in vivo and in vitromodels with defective fission/fusionmachinery components have been fundamental
for shedding light on the crucial role of mitochondrial dynamics in the control of cell fate decisions. However, the
clinical and genetic complexity of these disorders have not been explained yet and additional studies are required to
improve our understanding on the molecular basis of diseases associated with mitochondrial dynamic defects.

Conclusions
Mitochondrial fusion and fission are crucial events and it is evident that these dynamic morphological transitions
control cell fate decisions. Elucidating how these events are regulated, from a molecular but also biological point of
view, represents a crucial step to the understanding of numerous human diseases. The discovery of new players which
regulate these events is in constant evolution, from unexpected organelles [190] to key biological events [191], and
that will continue in the following years with the development of novelmicroscopy technology and genetic tools.

Summary
• Mitochondria are highly dynamic organelles that remodel their network in order to maintain their

shape, distribution and size.

• The balance between �ssion and fusion events modulates mitochondrial morphology depending

on the metabolic needs of the cell.

• The components of the core machinery regulating mitochondrial dynamics belong to the Dynamin

family and these mechano-GTPases enzymes ensure these dynamic transitions.

• Mitochondrial dynamics are controlled by additional layers of regulation including the ER–actin

axis, membranes lipid composition and post-translational modi�cations of the key proteins.
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• Mitochondrial �ssion and fusion regulate numerous physiological functions and numerous dis-

eases have reported abnormal mitochondrial morphology.
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with the M-AAA protease; OMM, outer mitochondrial membrane; OPA1, optic atrophy protein 1; PA, phosphatidic acid; PH,

pleckstrin homology; PKC, protein kinase C; PR, proline rich; ROMO, reactive oxygen species modulator; TM, transmembrane.
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