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Abstract: Asthma is a complex, inflammatory disorder characterized by airflow 
obstruction of variable degrees, bronchial hyper-responsiveness, and airway inflammation. 
Asthma is caused by environmental factors and a combination of genetic and 
environmental stimuli. Genetic studies have revealed that multiple loci are involved in the 
etiology of asthma. Recent cellular, molecular, and animal-model studies have revealed 
several cellular events that are involved in the progression of asthma, including: increased 
Th2 cytokines leading to the recruitment of inflammatory cells to the airway, and an 
increase in the production of reactive oxygen species and mitochondrial dysfunction in the 
activated inflammatory cells, leading to tissue injury in the bronchial epithelium. Further, 
aging and animal model studies have revealed that mitochondrial dysfunction and 
oxidative stress are involved and play a large role in asthma. Recent studies using 
experimental allergic asthmatic mouse models and peripheral cells and tissues from 
asthmatic humans have revealed antioxidants as promising treatments for people with 
asthma. This article summarizes the latest research findings on the involvement of 
inflammatory changes, and mitochondrial dysfunction/oxidative stress in the development 
and progression of asthma. This article also addresses the relationship between aging and 
age-related immunity in triggering asthma, the antioxidant therapeutic strategies in treating 
people with asthma. 
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Abbreviations: AHR, airway hyper-responsiveness; ATP, adenosine triphosphate; DCs, 
dendritic cells; ETC, electron transport chain; LOX, lypoxygenase; MPT, mitochondrial 
permeability transition; mtDNA, mitochondrial DNA; OVA, ovalbumin; Prx1, 
peroxiredoxins 1; ROS, reactive oxygen species; TAC, tricarboxylic acid; Th1, T helper 
type 1; Vit-E, vitamin E; eGpx, extracellular glutathione peroxidase; GSH, glutathione; 
GST, glutathione-S-transferase; GSSG, glutathione disulfide; GPx, glutathione peroxidase; 
SS31 (Szeto-Schiller31); mtDNA, mitochondrial DNA; BALF, bronchoalveolar lavage fluid. 

 

1. Introduction 

Asthma is a complex inflammatory disorder characterized by airflow obstruction of variable degrees, 
bronchial hyper-responsiveness, and airway inflammation [1]. Asthma affects people of all ages, but 
children are mostly affected. Currently in the United States, some 22 million people are reported to have 
asthma, 6 million of whom are children. Asthma is a heterogeneous disorder caused by environmental 
factors and a combination of genetic and environmental stimuli. Recent genetic studies have revealed 
that multiple genetic loci are involved in causing the etiology of asthma [2-5]. However, the ADAM33 
gene (located on chromosome 20), expressed predominantly in lung and muscle cells, is strongly 
associated with the disorder [6]. In addition, there is some evidence indicating the possible 
involvement of mitochondrial DNA (mtDNA) defects in the etiology of asthma [7-9]. 

Recent molecular, cellular, and animal model studies have revealed that several cellular events are 
involved in the progression of asthma and in the subsequent injury to the tissues of the bronchial 
epithelium, including increased IgE synthesis, an imbalanced T helper-type 1/T helper-type 2 
(Th1/Th2) paradigm, increased Th2 cytokines leading to the recruitment of inflammatory cells to the 
airway and the activation of those cells; increased production of reactive oxygen species (ROS); and 
mitochondrial damage and dysfunction in activated inflammatory cells [10,11]. 

This article discusses the association of genes with asthma, and mitochondrial dysfunction and 
oxidative stress in asthma, particularly in asthmatic mouse models and in peripheral tissues from 
asthmatic humans. This article also discusses the potential antioxidant therapeutics of asthma, with a 
focus on mitochondria-targeted antioxidants. 

2. Causes of Asthma 

Asthma is a complex disorder of the airways, in which antigens trigger Th2 pulmonary 
inflammation, resulting in the infiltration of eosinophils into the lungs, airway hyper-reactivity, mucus 
hypersecretion, and increased production of IgE [1,12,13]. In asthmatic patients, the muscles of airway 
walls squeeze, the walls of the airway swell, and the airway narrows, blocking the passage of air. Mucus 
produced inside the lining of the airway further blocks air passage. Asthma is a major, world-wide health 
concern; it affects 7% of the U.S. population and 300 million worldwide [14]. Asthma is believed to be 
involved in interactions between genes and environmental factors. Once a person develops asthma, 
many environmental factors (natural and man-made) may trigger an asthma attack [15]. Such factors 
include animal skin; hair and feathers; grains; dust and house mites; exercise; mold; pollen; smoke; 
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strong odors and chemical sprays; occupational dust, such as from wood and metals; and air pollution, 
such as cigarette smoke, auto exhaust, and sulfur dioxide [16-18]. 

3. Genetics and Asthma 

Recent genetic studies of asthmatic humans have revealed that multiple genetic loci are involved in 
triggering asthma [2-5]. Over 25 genetic loci have been found to be associated with asthma in 6 or 
more separate ethnic populations [19], and many of these genes are associated with the immune 
system. The ADAM33 gene (located on chromosome [20]), expressed mainly in lung and muscle cells, 
has been particularly associated with asthma [6]. Gene and environmental interactions may cause a 
vast majority of asthma cases [15]. However, a recent report suggests that childhood asthma may be 
associated with single, nucleotide polymorphisms in genetic loci on chromosome 17 [20]. 

A study of a well-known childhood asthma management program revealed that single nucleotide 
polymorphisms (SNPs) may be associated with asthma; these SNPs are found in multiple genetic loci, 
including importin 13 [21], VEGF [22], MMP-12 [23], Wnt [24], ORMDL3, 2PBP2/GSDMB/ 
ORMDL3 [25-27], PDE4D [28], PRKCA [29], TGF-beta1 [30], IL-10 [31], IL-13 [32], JAG1 [33], 
ANKRD5 [33], IL-17 [34], IL25 [35], 12q24 [36-39], IL-12beta [40], and beta2-adrenergic receptor [41]. 
In addition, mtDNA defects may be involved in the progression of asthma in children [7-9]. 

3.1. Mitochondrial DNA Changes and Asthma 

Polymorphisms or haplotype differences in the mitochondrial genome are associated with asthma in 
humans [7-9]. Raby et al. [9] investigated the involvement of variations in the mitochondrial genome, in 
children with asthma and atopy. They studied 654 self-reporting white children (5 to 12 years old) who 
had mild to moderate asthma. Eight haplogroup-tagging polymorphisms were genotyped with TaqMan 
probe hybridization assays in this population, and mitochondrial haplogroup tests of association with 
atopy-related phenotypes were performed with haplo-stats. Raby et al. found strong evidence 
associating the mitochondrial haplogroup with total serum IgE levels (684 IU/L in carriers and 389 IU/L 
in non-carriers) and with carriers of European haplogroup U (frequency 11%) who have higher total 
serum IgE levels compared to noncarriers. Haplogroup U carriers reported greater reactivity to skin 
pricks and a higher frequency of atopic dermatitis. This study suggested that common mitochondrial 
haplogroups may influence atopic diathesis, particularly in children with a maternal history of atopy. 

Jones et al. [8] sought to determine whether mtDNA mutations play a role in the development of 
age-related maculopathy. Using PCR and restriction fragment length polymorphism analysis they 
detected mitochondrial myopathy, encephalopathy, lactic acidosis, and the stroke (MELAS) A3243G 
mutation in 570 subjects identified to have signs of early, age-related maculopathy. In one patient, they 
found an A3243G mutation. This patient exhibited clinical symptoms of early, age-related 
maculopathy, mild hearing loss, hypertension, and ischemic heart disease, indicating that the 
mitochondrial A3243G mutation is involved in a rare form of asthma (Figure 1). 
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These age-dependent mtDNA defects may be critical factors determining the susceptibility of 
asthma in elderly people. However, further research is needed to investigate mtDNA defects, including 
large deletions and single nucleotide changes in the lungs of asthmatic aged people and children. 

4. Mitochondrial Structure, Function, and Physiology 

Increasing evidence suggests that abnormalities in mitochondria are involved not only in aging, age-related 
neurodegenerative diseases, cancer, diabetes, and several other mitochondrial diseases [45,47,48,56-58], but 
also in the development of asthma [7-9]. However, the precise connection between mitochondrial 
abnormalities and asthma is not well understood. 

Mitochondria are cytoplasmic organelles that are essential for life and death. Mitochondria perform 
several cellular functions, including intracellular calcium regulation, ATP production, the release of 
proteins that activate the caspase family of proteases, alteration of the reduction-oxidation potential, 
and free-radical scavenging [65]. Mitochondria are compartmentalized into 2 lipid membranes: the 
outer mitochondrial membrane and the inner mitochondrial membrane. The outer membrane is porous and 
allows the passage of low molecular-weight substances between the cytosol and the inter-membrane space. 
The inner membrane provides a highly efficient barrier to ionic flow, houses the mitochondrial respiratory 
chain (i.e., the electron transport chain [ETC]), and covers the mitochondrial matrix, which contains 
tricarboxylic acid (TCA) and beta-oxidation (Figure 2). Mitochondria are transmitted maternally. However, 
in rare situations, paternal inheritance and a recombination of mtDNA have been reported [60]. 

Mitochondria are controlled by both nuclear and mitochondrial genomes. mtDNA consists of a 
16,571 base-pair, double-stranded, circular DNA molecule [61]. A mitochondrion contains 2–10 copies 
of mtDNA [60]. mtDNA contains 13 polypeptide genes that encode essential components of the ETC. 
mtDNA also encodes the 12S and 16S rRNA genes, and the 22 tRNA genes required for mitochondrial 
protein synthesis [60]. Nuclear genes encode the remaining mitochondrial proteins, metabolic 
enzymes, DNA and RNA polymerases, ribosomal proteins, and mtDNA regulatory factors, such as the 
mitochondrial transcription factor A. Nuclear mitochondrial proteins are synthesized in the cytoplasm 
and are subsequently transported into mitochondria. Mitochondrial ATP is generated via oxidative 
phosphorylation within the inner mitochondrial membrane (Figure 2). 

Oxidative stress is a major factor associated with the development and progression of asthma. A 
large body of data suggests that free radical oxidative damage—particularly of lipids, nucleic acids, 
and proteins—is extensive in the lungs of ovalbumin (OVA)-sensitized asthmatic mice [10,11,62,63]. 
Increased oxidative stress is thought to result in the generation of ROS, which is released by activated 
inflammatory cells in the epithelium.  

Oxidative stress is commonly used to explain the imbalance between the production of oxidants and 
endogenous antioxidant defenses in mammalian cells. In general, mammalian cells undergo apoptotic 
death when there is an imbalance between oxidants and antioxidants (that is, the cell has more oxidants 
than endogenous antioxidant defenses). This oxidative damage mainly occurs via the mitochondrial 
ETC [64,65]. 
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mitochondrial respiratory chain complex proteins were found after cellular oxidative insult induced by 
the exposure to a ragweed pollen extract. Seventh, several oxidative stress studies revealed that 
endogenous antioxidant enzymes were decreased in the peripheral tissues of asthmatic adult patients 
relative to the control subjects, indicating that mitochondrial dysfunction and oxidative stress is present 
in asthmatic adults [78-82]. Overall, these findings suggest that pre-existing mitochondrial dysfunction 
that is induced by oxidant environmental pollutants may be responsible for airway inflammation in 
asthmatic patients. 

6.1. Oxidative Stress in Humans with Asthma 

Recent studies of mitochondria dysfunction and oxidative stress using peripheral cells and tissues 
from asthmatic patients and control subjects suggest that antioxidant enzymes are in lower levels in 
asthmatic patients [78-85]. 

Comhair et al. [79] measured serum superoxide dismutase (SOD) activity and proteins, the 
glutathione peroxidase/glutathione antioxidant system, and oxidatively modified amino acids in adult 
subjects with asthma and healthy control subjects. They found SOD activity, but not manganese 
superoxide dismutase (Mn-SOD) or copper- and zinc-containing superoxide dismutase (Cu, Zn-SOD) 
protein, was lower in asthmatic serum as compared with control subjects, and activity loss was 
significantly related to airflow constriction. Further, serum SOD activity inversely correlated with 
circulating levels of 3-bromotyrosine, a post-translational modification of proteins produced by the 
eosinophil peroxidase system of eosinophils. These findings are consistent with greater oxidant stress 
found in asthmatic patients leading to greater inactivation of SOD, which may increase inflammation 
and progressive airflow obstruction. 

To determine the antioxidant response of the respiratory epithelium to airway inflammation that 
characterizes asthma, De Raeve et al. [80] quantified-Cu, Zn-SOD, MnSOD, catalase, and glutathione 
peroxidase in bronchial epithelial cells of asthmatic and healthy control subjects. Although catalase 
and glutathione peroxidase in bronchial epithelium of asthmatics were similar to control SOD activity in 
asthmatics not on inhaled corticosteroid was lower than asthmatics on inhaled corticosteroid and 
controls. However, Mn-SOD and Cu, Zn-SOD mRNA, and protein levels did not change in the asthmatic 
subjects, nor in the control subjects. Importantly, Cu, Zn-SOD-specific activity in asthmatics not on 
inhaled corticosteroid was less than that in the asthmatic on inhaled corticosteroid and control subjects. 

Wu et al. [81] determined the connection between eosinophil activation and tissue injury in 
asthmatic subjects. Using mass spectrometry, they determined that 3-bromotyrosine serves as a 
specific "molecular fingerprint" for proteins modified through the eosinophil peroxidase-hydrogen 
peroxide system, in the presence of plasma levels of halides. They applied a localized allergen to 
model the effects of eosinophils and brominating oxidants in human lung injury. Endobronchial biopsy 
specimens from the allergen-challenged asthmatic, but not healthy control, subjects exhibited 
significant enrichments in eosinophils and eosinophil peroxidase. Baseline levels of 3-bromotyrosine 
in bronchoalveolar lavage proteins from those asthmatic subjects who were mildly allergic were but 
not statistically significantly elevated over those levels in control subjects. After exposure to the 
allergen challenge, lung segments from the asthmatic subjects, but not healthy control subjects, 
exhibited a >10-fold increase in BAL 3-bromotyrosine content, but only a two-to threefold increase in 
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3-chlorotyrosine, a specific oxidation product formed by neutrophil- and monocyte-derived 
myeloperoxidase. These results indicated reactive brominating species as a distinct class of oxidants 
formed in vivo. This study concluded eosinophil peroxidase is a potential therapeutic target for 
allergen-triggered inflammatory tissue injury in humans. 

Thomassen et al. [82] studied the in vivo effects of a localized allergen challenge on airway nitric 
oxide levels and the activation of a transcription factor. They found increased nitric oxide (NO) in the 
airway in the asthmatic subjects but not in the control subjects. The increased NO in the asthma 
subjects was associated with an increase in inflammatory cytokines, GM-CSF, and macrophage 
inflammatory protein-1 in the epithelial lining fluid and eosinophilic infiltrate in bronchoalveolar 
lavage fluid (BALF) and biopsy specimens. To investigate the mechanisms of cytokine gene 
expression, Thomassen et al. evaluated the activation of the transcription-factor activator protein-1 and 
the nuclear factor-kappaB (NF-kappaB) in cells from the BALF. The activator protein-1 was not 
activated before or after the local allergen challenge. In contrast, NF-kappaB activation was less in the 
BALF cells from asthmatic subjects with increased NO in comparison to control subjects.  

Fitzpatrick et al. [83] measured antioxidant enzymes in the bronchoalveolar lavage from 65 children 
with severe asthma, including 35 children with baseline airway obstruction. Control data were obtained 
from six children with psychogenic cough or vocal cord dysfunction who were undergoing diagnostic 
bronchoscopy and from 35 healthy adult controls. GSH, GSSG, and other determinants of airway 
oxidative stress–including glutathione S-transferase, glutathione reductase, glutathione peroxidase, 
malondialdehyde, 8-isoprostane, and H2O2–were measured in epithelial lining fluid. The redox 
potential in the epithelial lining fluid was calculated from GSH and GSSG with the Nernst equation. 
Compared with both groups of controls, subjects with severe asthma had lower airway GSH and 
increased GSSG, even though there were no differences in GST, and GPx activities between both 
control groups and the asthmatic group. This was accompanied by increased malondialdehyde, 
8-isoprostane, and H2O2 concentrations in the asthmatic children’s epithelial lining fluid. This group 
also exhibited increased biomarkers of oxidant stress in the epithelial lining fluid that are associated with 
increased formation of GSSG and a shift in the GSH redox potential toward a more oxidized state. 

Comhair et al. [84] showed that extracellular gluthione peroxidase (eGPx) is higher in the airways 
of adult asthmatic subjects than in those of healthy controls and that the source for the increased eGPx 
was bronchial epithelial cells. The eGPx mRNA in bronchial epithelial cells increased eightfold after 
the exposure to ROS and glutathione, the latter which is an essential cofactor in eGPx activity. 
Alterations in intracellular and extracellular oxidized and reduced glutathione were temporally 
associated with the increase of eGPx, further supporting the involvement of redox mechanisms in gene 
expression. The overexpression of superoxide dismutase, but not catalase, inhibited the induction of 
eGPx and identified superoxide as a key intermediary. The eGPx mRNA half-life was not affected by 
ROS, suggesting a transcriptional mechanism for eGPx regulation. Fusion genes of deletion fragments of 
the eGPx gene 5’ flanking region driving a reporter gene conclusively identified the ROS-responsive 
region, which contained the consensus DNA binding site for the redox-regulated transcription factor, 
activator protein 1. 

Using gas chromatography-mass spectrometry, MacPherson et al. [85] found a 10-fold increase in 
3-nitrotyrosine content, a global marker of protein modification, in proteins recovered from the 
bronchoalveolar lavage of severe asthmatic patients compared with nonasthmatic subjects. Parallel gas 
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chromatography-mass spectrometry analyses of bronchoalveolar lavage proteins for 3-bromotyrosine 
and 3-chlorotyrosine (selective markers of eosinophil peroxidase and myeloperoxidase-catalyzed 
oxidation, respectively) showed a dramatic preferential formation of 3-bromotyrosine in the asthmatic 
subjects compared to the nonasthmatic subjects. Bronchial tissue from individuals who died of asthma 
exhibited the most intense anti-3-nitrotyrosine immunostaining in epitopes that colocalized with 
eosinophils. These studies identified eosinophils as a major source of oxidants in asthmatic subjects. 

Taken together, these studies suggest that antioxidant approaches in asthmatic persons may be 
useful to treat them. 

6.2. Oxidative Stress in Induced Mouse Models of Asthma 

Researchers do not know precise genetic factors underlying asthma, and without such information, 
it is not possible to create genetically engineered animal models to study asthma. However, several 
groups have developed induced asthmatic mouse models in order to study mechanisms of allergic 
asthma [10,76,77,86,87]. In most of these mouse models, mice are sensitized to an allergen with alum 
as an adjuvant, and then, over a period of 1–9 days for acute models and 5–9 weeks for chronic 
models, the mouse are challenged with an allergen via their airways [87]. These mice developed such 
changes as airway inflammation, reversible airway obstruction, eosinophilia in airway tissue, increased 
CD4+ lymphocytess, increased CD8+ lymphocytes, mucus hyperproduction, increased allergen-
specific IgE, increased Th2 cytokines, early- and late-phase responses, and mitochondrial structural 
and functional abnormalities [10,76,77,88,89]. Although these models do not develop all of the 
asthmatic features known to plague humans with asthma, they do develop several of these asthmatic 
features, making them good models for the study of asthma progression. 

Mabalirajan et al. [10] developed a mouse model that is allergic to OVA. This model exhibits 
several features of mitochondrial dysfunction, such as reduction of cytochrome c oxidase activity in 
lung mitochondria, reduction in the expression of subunit III of cytochrome c oxidase in the bronchial 
epithelium, the appearance of cytochrome c in the lung cytosol, decreased levels of ATP in the lungs, 
reduced expression of 17 kDa of complex I in the bronchial epithelium, and ultrastructural changes in 
mitochondria, such as swelling of mitochondria and the loss of cristae. These features suggest that 
changes in mitochondrial structure and mitochondrial dysfunction are associated with allergic asthma. 

Park et al. [90] studied the relationship between increased pulmonary oxidative stress and features 
of asthma during an allergic inflammatory response. Asthmatic parameters were measured at 9 time 
points, starting from the first day of the challenge with and without antioxidant treatment. 
Bronchoalveolar lavage fluid cells, histopathologic features, and airway hyper-responsivenesswere 
also measured at the same time points. Park et al. found that the oxidized glutathione ratio was reduced 
from immediately after the OVA challenge to day 1. The ratio then rapidly recovered to normal at day 2. 
At day 3, the inflammatory cells in the BALF reached a maximum level and then progressively 
decreased. However, histopathologic examination revealed that substantial airway inflammation 
persisted through day 28. These results indicate that increased oxidative stress in the lung precedes 
other key phenotypes of allergic airway disease. 

Konga et al. [91] studied the effects from computer-printer emissions and cigarette smoke on the 
structure and function of mitochondria in asthmatic mice by measuring the levels of ROS, lipid 
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peroxides, and glutathione, and by measuring the activities of isocitrate dehydrogenase, 
alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, complexes I to IV, 
and cytochrome oxidase activity. In addition, oxidative phosphorylation was evaluated to assess the 
functional capacity of mitochondria. These researchers found highly elevated levels of ROS and lipid 
peroxides, and reduced levels of mitochondrial enzymes in the asthmatic mice exposed to only the 
tobacco smoke and in those exposed to both printer emissions and the tobacco smoke. However, the 
asthmatic mice exposed to only printer emissions exhibited only slight increases in the parameters 
studied. Based on these results, Konga et al. [91] concluded that printer emissions exert a synergistic 
effect in the presence of tobacco smoke and that printer emissions increase damage to the lung 
mitochondria by disrupting the structural and functional integrity of the mitochondrial membrane. 

Bharadwaj and Agrawal [92] studied dendritic cells to identify morphological changes in 
OVA-sensitized mice after they were exposed to allergens. They found that the dendritic cells in the 
lungs of challenged mice were more mature owing to their pronounced dendrites than were the 
dendritic cells in the lungs and spleen of control mice that were treated with PBS. The presence of 
large numbers of well-developed mitochondria and rough endoplasmic reticulum in myeloid dendritic 
cells from both lungs and spleen of OVA-sensitized and challenged mice indicate greater functional 
activity. Additionally, dendritic cells from the OVA-sensitized and challenged mice also exhibited 
more fat and glycogen stores than the control mice. These findings suggest that morphological features 
may be indicate mature, fully functioning dendritic cells and and mitochondrial abnormalities in the 
lungs of allergic asthmatic mice. 

Using 2-dimensional polyacrylamide gel electrophoresis and liquid chromatography-tandem mass 
spectrometry techniques, Zhang et al. [93] studied the impact of the thiol antioxidant, 
N-acetylcysteine, on protein expression in an OVA mouse model. They found that several oxidantive 
stress proteins (e.g., chitinase 3-like protein, acidic mammalian chitinase pulmonary surfactant-
associated protein D, resistin-like molecule alpha and haptoglobin alpha-subunit) were significantly 
greater in the BALF of the OVA-challenged mice, compared to the control group. These findings 
suggest that oxidative stress proteins may play an important role in the pathogenesis of asthma [93]. 

Inoue and colleagues [94] studied the role of peroxiredoxin 1 (Prx 1), a ubiquitous antioxidant 
enzyme in mouse allergic inflammation. They sought to determine whether endogenous Prx I protects 
against allergic asthma traits in Prx-1 knockout (−/−) mice. Prx 1 (−/−) and wild-type mice were 
immunized with OVA plus aluminum potassium sulfate, and subsequently challenged with OVA. 
Twenty-four hours after the last OVA challenge, the influx of leukocyte influxs, including eosinophils, 
into BALF was significantly greater in the Prx 1 (−/−) mice compared to the influx in the wild-type 
mice. In contrast, when the wild-type mice were immunized with OVA and complete Freund's 
adjuvant, the opposite phenomenon was observed: in the Prx 1(−/−) mice, in the presence of 
OVA/alum, the infiltration of peribronchial inflammatory leukocytes, the resistance of the cholinergic 
airway, and the expression of interleukin (IL)-2 were significantly greater and the interferon-gamma 
was significantly less than in the wild-type mice. These findings suggest that endogenous Prx 1 
protects against allergen-related Th2-type airway inflammation and hyper-responsiveness via the 
suppression of IL-2 in lungs and the regulation of the Th1/Th2 balance [94]. 



Pharmaceuticals 2011, 4              
 

 

441

Overall, these findings suggest that mitochondrial structural and functional abnormalities are 
associated with allergic asthma. However, without an animal model that faithfully mimics the allergic 
features of asthmatic humans, it is difficult elucidating mitochondrial abnormalities in asthmatic patients.  

7. Therapeutic Approaches to Asthma 

Several therapeutic approaches have been developed to reduce and/or prevent the symptoms of 
allergies and asthma in humans: the control and reduction of allergens in the environment, oral 
antihistamines, decongestants, intranasal corticosteroids, mast cell stabilizers, and immuno- and 
antioxidant- therapies 

7.1. Antioxidant Approaches: Evidence from Experimental Rodent Models of Asthma 

Increasing evidence suggests that mitochondrial dysfunction and oxidative stress are associated with 
asthma, but the precise nature of this association is unclear. Several groups found decreased 
mitochondrial dysfunction and oxidative stress in asthmatic mice treated with antioxidants [95-105]. 
For example, using a C57BL/6 mouse model of allergic asthma, Lee et al. [95] studied the role of 
antioxidants in regulating the receptor activator of NF-kappaB expression. They evaluated the effects 
of the vascular growth factor receptor inhibitor and L-2-oxothiazolidine-4-carboxylic acid (a prodrug 
of cysteine), on the receptor activator of NF-kappaB mRNA expression. The mice developed 
pathophysiological features of asthma in the lungs: increased expression of the receptor activator of 
NF-kappaB mRNA, an increased number of inflammatory cells in the airways, increased vascular 
permeability, and increased levels of vascular endothelial growth factor receptor. In allergen-induced 
asthmatic lungs of the C57BL/6 mice, L-2-oxothiazolidine-4-carboxylic acid and a vascular endothelial 
growth factor receptor inhibitor markedly reduced the levels of plasma extravasation and vascular 
endothelial growth factor receptors. Seventy-two hours after the mice inhaled, expression of the 
receptor activator of NF-kappaB mRNA was reduced. These results indicate that the 
L-2-oxothiazolidine-4-carboxylic acid and the vascular endothelial growth factor receptor inhibitor 
may be associated with the regulation of vascular permeability. Further, these results suggest that the 
vascular endothelial growth factor receptor may regulate the receptor activator of NF-kappaB 
expression. These findings provide a crucial molecular mechanism that can justify the use of 
antioxidants to prevent and/or to treat asthma and other airway inflammatory disorders. 

Using a C57BL/6 mouse model of allergic asthma, Lee et al. [96] studied the effects of antioxidants 
on the regulation of IL-18 expression. They found increased levels of ROS production in cells from 
broncho-alveolar lavage fluids and that the administration of L-2-oxothiazolidine-4-carboxylic acid or 
alpha-lipoic acid reduced the increased levels of ROS, the expression of IL-18 mRNA and protein, 
airway inflammation, and bronchial hyper-responsiveness. They also found that antioxidants 
down-regulated nuclear factor-kappaB and that antioxidants may reduce IL-18 expression in asthma 
mice by inhibiting NF-kappaB activity. 

Castro et al. [97] investigated the effect of the antioxidant butylated hydroxyanisole (BHA) on 
respiratory syncytial virus-induced lung inflammation, and airway hyper-reactivity in BALB/c mice. 
The mice were infected with plaque-forming units of a respiratory syncytial virus, in the presence and 
in the absence of orally administered BHA. BHA significantly attenuated respiratory syncytial,  
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virus-induced lung oxidative stress, indicated by a decrease in malondialdehyde and 4-hydroxynonenal 
content, in the broncho-alveoar lavage of the respiratory syncytial, virus-infected mice. BHA also 
reduced respiratory syncytial virus-induced clinical illness and body weight loss, and attenuated 
respiratory syncytial virus-induced airway hyper-reactivity. This study concluded that modulation of 
oxidative stress may be a novel pharmacologic approach to ameliorate respiratory syncytial 
virus-induced acute lung inflammation.  

Mabalirajan et al. [98] studied the effects of Vit-E in an experimental allergic BALB/c mouse 
model. The OVA-sensitized and challenged mice exhibited characteristic features of asthma, such as 
airway hyper-responsiveness, airway inflammation, and airway remodeling. In addition, they showed 
increased expression in the metabolites of 12/15-lipoxygenase, a reduction in the activity and 
expression of the third subunit of mitochondrial cytochrome-c oxidase, and increased cytochrome c in 
lung cytosol, all of which indicate that OVA sensitization may cause mitochondrial dysfunction in 
mice. Vit-E was administered orally to these mice and levels of 12/15-LOX expression, key 
mitochondrial functions, and ultrastructural changes of mitochondria in bronchial epithelia were 
measured. Vit-E treatment resulted in the reduction of key mitochondrial dysfunctions and the 
alleviation of asthmatic features, including reduced airway hyper-responsiveness; Th2 responses, 
including IL-4, IL-5, IL-13, and OVA-specific IgE; reduced eotaxin; airway inflammation; expression 
and metabolites of 12/15-LOX in lung cytosol; lipid peroxidation; nitric oxide metabolites in the lung; 
restored activity and expression of the third subunit of cytochrome-c oxidase in lung mitochondria and 
bronchial epithelia, respectively; reduced appearance of cytochrome c in lung cytosol; and restored 
mitochondrial ultra-structural changes in the bronchial epithelia. 

Mabalirajan et al. [99] studied the effects of esculetin, a plant-derived coumarin and 
immunomodulator, to restore anti-asthma properties and mitochondrial dysfunction and structural 
changes in a mouse model of experimental asthma. Treatment with esculetin reduced airway 
hyper-responsiveness, Th2 response, lung eotaxin, BALF eosinophilia, airway inflammation, and 
OVA-specific IgE. Esculetin reduced the metabolites of 15-lipoxygenase and lipid peroxidation, the 
latter which is an essential prerequisite for mitochondrial dysfunction. Interestingly, esculetin restored 
the activity of cytochrome c oxidase of the ETC in lung mitochondria and also restored the expression 
of the third subunit of cytochrome c oxidase in the ETC of the bronchial epithelium. It reduced the 
level of cytochrome c and caspase 9 activity in the lung cytosol, and restored mitochondrial structural 
changes and ATP levels in the lung. In addition, esculetin reduced subepithelial fibrosis and TGF-beta 
1 levels in the lung. These results suggest that esculetin not only restores mitochondrial dysfunction 
and structural changes but also alleviates asthmatic features. 

Using an OVA-induced allergic mouse model of asthma, Lee et al. [100] investigated the 
suppressive effects of resveratrol on asthmatic parameters, including cytokine release, eosinophilia, 
airway hyper-responsiveness, and mucus hypersecretion. Resveratrol significantly inhibited increases 
in Th2 cytokines, such as IL-4 and IL-5, in plasma and BALF and also suppressed airway 
hyper-responsiveness, eosinophilia, and mucus hypersecretion. The efficacy of resveratrol was similar 
to that of dexamethasone, a glucocorticoid that was used as a positive control. These results suggest 
that resveratrol may have applications in the treatment of bronchial asthma. 

Using gene expression analysis, Dittrich et al [101] studied the genes and proteins involved in 
allergic airway disease, in asthma mice. They found increased expression of two antioxidant enzymes, 
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glutathione peroxidase-2 and glutathione-S-transferase omega 1-1, in two mouse strains after allergic 
airway disease was induced and localized in lung epithelial cells. Mice with targeted disruption of the 
glutathione peroxidase-2 gene showed significantly enhanced airway inflammation compared to the 
sensitized and challenged wild-type mice. These data indicate that genes encoding the antioxidants 
glutathione peroxidase-2 and glutathione-S-transferase omega 1-1 are genes expressed upon the 
induction of allergic airway inflammation, independently of allergic susceptibility. 

Chang et al. [102] studied the effects of vitamin C on OVA-sensitized and challenged mice. They 
found that dexamethasone treatments and a diet supplemented with high doses of vitamin C 
significantly decreased the infiltration of eosinophilia into BALF. A diet supplemented with a high 
dose of vitamin C significantly increased the ratio of interferon-gamma/interleukin-5 cytokines, 
suggesting that high doses of vitamin C may attenuate allergic inflammation in vivo by modulating the 
Th1/Th2 balance toward the Th1 pole during the Th2-skewed allergic airway inflammation and 
decreasing eosinophilic infiltration into BALF. 

Ahmad et al. [103] studied endogenous asymmetric dimethylarginine and peroxynitrite in murine 
mouse models of an allergic airway inflammation that resembles asthma. Asymmetric 
dimethylarginine levels and nitrosative stress positively correlated with cytosol and mitochondria 
during allergic airway inflammation. This was associated in bronchial epithelia with an increased 
expression of protein-arginine methyltransferase-2 and a reduced expression of dimethylarginine 
dimethylaminohydrolase-2. Increased nitrotyrosine was similarly localized to the bronchial epithelium, 
as well as in the infiltrated inflammatory cells. Administration of L-arginine–which was expected to 
compete with asymmetric dimethylarginine and to reverse the uncoupling/inhibition of nitric oxide 
synthase restored normal asymmetric dimethylarginine metabolism and restored a reduction 
innitrosative stress in the lung. Because dimethylarginine dimethylaminohydrolase-2 function is 
known to be negatively related to oxidative stress, this may represent a feed-forward loop effect. 

Okamoto et al. [104] investigated the role of antioxidants in airway hyper-responsiveness to 
acetylcholine using young asthmatic mice. The mice were fed either a normal diet, an 
alpha-tocopherol-supplemented diet, or a probucol-supplemented diet 14 days before the first 
sensitization. They were immunized with an antigen at 12-day intervals. Starting from 10 days after the 
second immunization, they were exposed to the antigen three times every fourth day using an 
ultrasonic nebulizer. Twenty-four hours after the last antigen inhalation, airway responsiveness to 
acetylcholine was measured and BALF was collected. They found significantly decreased levels of IL-
4 and IL-5 in the BALF of the alpha-tocopherol-supplemented mice. The serum IgE level was 
decreased in probucol-supplemented mice. Airway hyper-responsiveness to acetylcholine was 
repressed in the antioxidant-supplemented mice. These findings suggest that alpha-tocopherol and 
probucol suppress allergic responses in asthmatic mice. 

In a recent study of antioxidants, Mehta et al. [105] investigated the efficacies of choline and the 
antioxidant alpha-lipoic acid in a rodent model of allergic asthma. In the mice receiving choline and 
alpha-lipiic acid, these researchers found significantly decreased total lymphocyte counts, total 
eosinophil counts, eosinophil peroxidase activity maloialdehyde in the BALF [105]. 

Overall, these studies suggest that antioxidant treatments are beneficial to asthmatic experimental 
rodents and may have potential use as treatment for asthmatic patients.  
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7.2. Antioxidant Approaches: Evidence from Asthmatic Humans Treated with Antioxidants 

As described above, mitochondrial dysfunction and oxidative stress are key factors that are involved 
in humans with allergic asthma and also in mouse models of allergic asthma. It is reasonable to treat 
asthmatic humans with antioxidants to decrease the effects of oxidants. There are several antioxidants 
and amino acid substrate, L-arginine available, including endogenous metobolites (glutathione, 
N-actylcysteine, heme oxygenase 1), natural antioxidants and other nutrients (vitamin C, E, co-enzyme 
Q10, curcumin, alpha lipoic acid, fish oil), and herbal molecules and polyphenols (esculitin, 
sulforaphane, PG102, resveratrol, epigallocatechin 3 gallate, caffeic acid phenethyl ester). Currently, 
these antioxidants have been tested in experimental mouse models of asthma and cell lines from 
asthmatic humans, and in clinical trials of asthmatic humans [106]. 

Recently, Gazdik et al. [107,108] measured coenzyme Q10 levels in the plasma and whole blood of 
asthmatic humans and found decreased levels of coenzyme Q10. They also measured coQ10, 
alpha-tocopherol, and beta-carotene in the plasma and whole blood in patients with bronchial asthma 
and in healthy control subjects [107]. They found significantly decreased levels of coQ10 and 
alpha-tocopherol in the plasma and whole blood of bronchial asthmatic humans compared to healthy 
subjects, indicating oxidative damage in asthmatic humans. The same research group [109] studied the 
effects of coQ10 on asthma patients by supplementing coQ10 in their diets. In a randomized clinical 
study of 41 bronchial asthma patients (13 males, 28 females), ages 25–50 years, all suffered from 
persistently mild-to-moderate asthma. They were divided into two subject groups: one group received 
a standard anti-asthmatic therapy and was clinically stabilized, and the second group received the same 
standard anti-asthmatic therapy plus the antioxidant coQ10 as Q-Gel (120 mg) + 400 mg 
alpha-tocopherol and 250 mg of vitamin C per day. The groups were crossed over at 16 weeks, for a 
total duration of 32 weeks. The asthmatic patients fed a diet supplemented with CoQ10 had reduced 
levels of corticosteroids compared to the levels of corticosteroids in healthy subjects, supporting the 
hypothesis that antioxidants are useful in reducing oxidative stress in asthmatic patients [109]. 

Several studies recently assessed the N-acetylcysteine in reducing oxidative stress in asthmatic 
humans [110-113]. The outcomes of these studies have been inconclusive, particularly in terms of 
understading the upper airway epithelium. Recently, Moradi et al. studied the effects of NAC (IV 
NAC in 150 mg/kg on day 1, followed by 50 mg/kg/day for three more days) on 27 patients with acute 
lung injury considering the glutathione-S-transferase genetic variations, as an important enzyme 
contributing in oxidative stress pathways. NAC was found to improve oxygenation and to decrease the 
mortality rate in the treated asthmatic subjects compared to the control subjects. 

Several other studies assessed the effects of natural antioxidants (e.g., vitamin C, E, beta carotene) 
on asthmatic humans, and found that diets supplemented with them did not decrease or otherwise 
affect asthmatic features [114-118]. However, Papas et al. [119] evaluated the safety of a novel 
micellar formulation (CF-1) of fat-soluble nutrients and antioxidants. Ten subjects, ages 8 to 45 years 
old, were given orally 10 ml of the CF-1 formulation daily for 56 days after a 21-day washout period 
in which subjects stopped supplemental vitamin use, except for a standard multivitamin. Plasma 
obtained at -3, 0, 1, 2, 4, and 8 weeks was assayed for beta-carotene, gamma-tocopherol, retinol, and 
CoQ10, as well as for safety parameters. In addition, pulmonary function was measured and induced 
sputum was assayed for markers of inflammation and quantitative bacterial counts prior to and during 
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dosing. Supplementation with CF-1 significantly increased beta-carotene levels at all dosing time 
points compared to levels at screening and baseline. In addition, gamma-tocopherol and CoQ10 
significantly increased from baseline in all subjects. The novel CF-1 formulation safely and effectively 
increased plasma levels of important fat-soluble nutrients and antioxidants. In addition, improvements 
in antioxidant plasma levels were associated with reductions in airway inflammation in CF patients. 

Overall, the natural antioxidants and nutrients did not show strong beneficial effects in patients with 
asthma [114-118]. One possible reason for this limited success is that natural antioxidants may not 
reach sites of free radical production effectively, and they may scavenge free radicals and decrease 
oxidative damage in asthmatic patients. Targeted antioxidants to mitochondria may decrease 
mitochondrially derived oxidative stress much more effectively than natural antioxidants [120]. 

8. Mitochondria-Targeted Antioxidants: Potential Therapeutic Molecules for Asthma 

Recently, antioxidants to prevent and to treat mitochondria in patients with mitochondrial diseases, 
including asthma, has received much attention, especially because antioxidant approaches seem to 
have few or no adverse effects. However, they may be prevented from doing so because naturally 
occurring antioxidants, such as vitamins E and C, may not reach the relevant sites of free radical 
generation, especially if mitochondria are the primary source of ROS [120]. To overcome this problem 
and to better assess whether antioxidant approaches may be a productive treatment for asthma, a better 
system to deliver antioxidants to lung mitochondria of asthmatic persons is needed. 

Considerable progress has been made in the last seven years, in developing mitochondria-targeted 
antioxidants, such as triphenylphosphonium-based antioxidants (MitoQ, MitoVitE, MitoPBN) and 
cell-permeable, small peptide-based antioxidants (SS02, SS31, SS19, and SS20) [64,121-123] (Figure 5). 
The efficacies of these antioxidants are being tested in cell and animal models of neurodegenerative 
diseases [124-125], but not yet in patients with allergies or asthma. 

8.1. Cell-Permeable, Small Peptide Antioxidants 

Recently, Szeto and Schiller developed a series of four small, cell-permeable, mitochondria-
targeted antioxidant peptides (Szeto-Schiller or SS peptides) that protect mitochondria from oxidative 
damage [122,123]: (1) SS-01 H-Tyr-D-Arg-Phe-Lys-NH2; (2) SS-02 H-Dmt-D-Arg-Phe-Lys-NH2; 
(3) SS-31 H-D-Arg-Dmt-Lys-Phe-NH2; and (4) SS-20 H-Phe-D-Arg-Phe-Lys-NH2. Mechanistically, 
the SS31 peptide targets the inner mitochondrial membrane, due to the electrostatic attraction between 
these cationic peptides (positive charge) and the highly anionic cardiolipin molecules (negative charge) 
of the inner mitochondrial membrane. Further, SS31 has a dimethyltyrosine residue, allowing SS31 to 
scavenge oxyradicals and inhibit linoleic acid and low density lipoprotein oxidation. By reducing 
mitochondrial ROS, SS31 was able to prevent the opening of the MPT pore, prevent mitochondrial 
swelling, and reduce cytochrome c release in response to a high Ca2+ overload [122,123]. 

An overload of intracellular calcium can also lead to an increase in mitochondrial ROS and an 
opening of the mitochondrial permeability transition (MPT) pore [64]. However, by reducing 
mitochondrial ROS, scavenging SS31 inhibited the opening of the MPT, which prevented 
mitochondrial swelling and reduced the release of cytochrome c in response to calcium overload [120]. 
These results support the hypothesis that ROS potentiates the MPT pore via oxidation of the adenine 
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More recently, using mouse neuroblastoma (N2a) cells and primary neurons from C57BL/6 mice, 
Reddy et al. [126] investigated the toxicity of herbicides, picloram and triclopyr, and protective effects 
of SS1 peptide against picloram and triclopyr toxicity. They measured total RNA content, cell viability 
and mRNA expression of endogenous levels of peroxiredoxins, neuroprotective genes (PGC1α, 
FOXO1, NMDA receptor) ETC genes in N2a cells treated with herbicides and SS31. Using primary 
neurons from C57BL/6 mice, Reddy et al. [126] studied neuronal survival in neurons treated with 
herbicides, in neurons pretreated with SS31 plus treated with herbicides, neurons treated with SS31 
alone, and untreated neurons. They found significantly decreased total RNA content, and cell viability 
in N2a cells treated with herbicides compared to untreated N2a cells. Decreased mRNA expression of 
neuroprotective genes, and ETC genes in cells treated with herbicides was found compared to 
untreated cells. However, cells pretreated with SS31 prevented toxicity caused by herbicides. 
Immunofluorescence analysis of primary neurons revealed that decreased neuronal branching and 
degenerating neurons in neurons treated with picloram and triclopyr. However, neurons pretreated with 
SS31 prevented degenerative process caused by herbicides. Based on these results, they conclude that 
SS31 peptide appears to protect neurons from herbicide toxicity [126]. 

Recently, Manczak et al. [127] investigated the effects of the mitochondria-targeted antioxidants, 
MitoQ and SS31, and the anti-aging agent resveratrol on neurons from a mouse mode of Alzheimer’s 
disease (AD) and N2a cells incubated with the amyloid-beta (Aβ) peptide. Using electron and confocal 
microscopy, gene expression analysis, and biochemical methods, they studied mitochondrial structure 
and function and neurite outgrowth in N2a cells treated with MitoQ, SS31, and resveratrol, and then 
incubated with Aβ. In N2a cells only incubated with the Aβ, they found increased expressions of 
mitochondrial fission genes, Drp1 and Fis1 and decreased expression of fusion genes, Mfn1, Mfn2 and 
Opa1 and also decreased expression of peroxiredoxins. Electron microscopy of the N2a cells incubated 
with Aβ revealed a significantly increased number of mitochondria. Biochemical analysis revealed that 
function is defective in mitochondria. Neurite outgrowth was significantly decreased in Aβ-incubated 
N2a cells, indicating that Aβ affects neurite outgrowth. However, in N2a cells treated with MitoQ, 
SS31, and resveratrol, and then incubated with Aβ, abnormal expression of peroxiredoxins and 
mitochondrial structural genes were prevented and mitochondrial function was normal; intact 
mitochondria were present and neurite outgrowth was significantly increased. In primary neurons from 
Aβ precursor protein transgenic mice that were treated with MitoQ and SS31, neurite outgrowth was 
significantly increased and cyclophilin D expression was significantly decreased. These findings 
suggest that mitochondria-targeted antioxidants, MitoQ and SS31 prevent Aβ toxicity [127]. 

Findings from these studies suggest that mitochondria-targeted antioxidants have great potential as 
a treatment for people with asthma. Further research is needed to evaluate the efficacies of 
mitochondrial-targeted antioxidants in experimental models of asthma, not only in experimental mouse 
models but also in nonhuman primate models (which is genetically closer to humans). 

9. Conclusions and Future Directions 

Recent genetic studies have revealed that multiple genetic loci are involved in the etiology of 
asthma, and recent advances in cellular, molecular, and animal model studies have revealed that 
several cellular events are involved in the progression of asthma, including (1) an imbalanced Th1/Th2 
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paradigm; (2) increased Th2 cytokines leading to the recruitment of inflammatory cells to the airway 
and the activation of those cells; (3) increased production of ROS and mitochondrial dysfunction in the 
activated inflammatory cells, leading to tissue injury in the bronchial epithelium; and (4) mitochondrial 
defects in allergic mice and asthmatic humans. Initial studies of mitochondrial dysfunction and 
oxidative stress revealed that mitochondrial oxidative stress is critically involved in asthma and may 
play a large role in the development of allergic asthma. Further, recent studies of antioxidants using 
experimental allergic asthmatic mouse models suggest that mitochondria-targeted antioxidants may be 
promising treatments for people with asthma. However, mitochondria-targeted antioxidants have not 
been tested as anti-asthmatic drugs. Investigation into these areas may improve our understanding of 
asthma and may help develop therapeutics of asthma. 
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