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Ischemic stroke (IS) accounts for more than 80% of the total stroke, which

represents the leading cause of mortality and disability worldwide. Cerebral

ischemia/reperfusion injury (CI/RI) is a cascade of pathophysiological events

following the restoration of blood flow and reoxygenation, which not only

directly damages brain tissue, but also enhances a series of pathological signaling

cascades, contributing to inflammation, further aggravate the damage of brain

tissue. Paradoxically, there are still no effective methods to prevent CI/RI, since

the detailed underlying mechanisms remain vague. Mitochondrial dysfunctions,

which are characterized by mitochondrial oxidative stress, Ca2+ overload, iron

dyshomeostasis, mitochondrial DNA (mtDNA) defects and mitochondrial quality

control (MQC) disruption, are closely relevant to the pathological process of

CI/RI. There is increasing evidence that mitochondrial dysfunctions play vital

roles in the regulation of programmed cell deaths (PCDs) such as ferroptosis

and PANoptosis, a newly proposed conception of cell deaths characterized

by a unique form of innate immune inflammatory cell death that regulated

by multifaceted PANoptosome complexes. In the present review, we highlight

the mechanisms underlying mitochondrial dysfunctions and how this key event

contributes to inflammatory response as well as cell death modes during

CI/RI. Neuroprotective agents targeting mitochondrial dysfunctions may serve

as a promising treatment strategy to alleviate serious secondary brain injuries.

A comprehensive insight into mitochondrial dysfunctions-mediated PCDs can

help provide more effective strategies to guide therapies of CI/RI in IS.
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GRAPHICAL ABSTRACT

Overview of mitochondrial dysfunctions-induced PANoptosis and ferroptosis during CI/RI.

Introduction

Stroke is the second leading cause of death and the third
major cause of disability globally (Pandian and Sebastian, 2021).
In 2019, around 12.2 million people suffered from a new or
recurrent stroke, which has increased substantially from 1990 to
2019 (Zhou et al., 2016; GBD 2019 Stroke Collaborators, 2021).
Ischemic stroke (IS) accounts for more than 80% of all stroke types,
and according to incomplete statistics, about 14 million people
suffer from IS annually (Farina et al., 2021). During IS, blood flow
is blocked, oxygen and nutrients are depleted, triggering a cascade
of ischemic events in the brain (Magistretti and Allaman, 2015;
Shen et al., 2021; Shi et al., 2021). Treatment for IS can be achieved
through reperfusion, which restores blood flow/oxygenation to the
brain in a timely fashion and efficiently salvaging the function of
potentially reversible ischemic penumbra by thrombolysis such as
intravenous recombinant tissue-type plasminogen activator (rtPA)
or mechanical thrombectomy. Rapid reperfusion paradoxically has
the constraint of a short recanalization time window and may result
in irreparable neurological damage, a condition known as cerebral
ischemia/reperfusion injury (CI/RI) (Gao et al., 2015).

Abbreviations: AMPK, AMP-activated protein kinase; ANT, adenine
nucleotide translocator; APAF1, apoptotic protease activating factor-
1; ASC, apoptosis-associated speck-like protein containing a caspase
recruitment domain; ATP, adenosine triphosphate; BBB, blood-brain barrier;
Bcl-2, B-cell leukemia/lymphoma 2; BER, base excision repair; CI/RI,
cerebral ischemia/reperfusion injury; CNS, central nervous system; CoQ,
coenzyme Q; CsA, cyclosporine-A; CypD, cyclophilin D; Cyt C, cytochrome
C; DAMP, damage-associated molecular patterns; DHM, dihydromyricetin;
DISC, death-induced signaling complex; DR, direct reversal; Drp1, dynamin-
related protein 1; DSBs, double-strand breaks; EAA, excitatory amino acid;
ETC, electron transportation chain; FADD, Fas-associated protein with a
death domain; Fis1, mitochondrial fission protein 1; FtMt, mitochondrial
ferritin; FUNDC1, FUN14 domain containing 1; Gln, glutamine; GLUD1,
glutamate dehydrogenase 1; GPX4, glutathione peroxidase 4; GSDMD,

Although recent clinical trials have shown that the
administration of reperfusion therapy 24 h or more after
stroke onset has a positive effect on the prognosis of patients with
acute ischemic stroke (Ragoschke-Schumm and Walter, 2018), it
often leads to additional cerebral damage, creating an important

Gasdermin D; GSH, glutathione; GTP, guanosine triphosphate; IMM, inner
mitochondrial membrane; IMS, intermembrane space; IS, ischemic stroke;
LC3, light chain 3; LIP, labile iron pool; L-OPA1, the long form of OPA-1;
MDV, mitochondria derived vesicle; MFF, mitochondrial fission factor;
MFN1/2, mitofusin 1/2; MiD49/MiD51, mitochondrial dynamics proteins
of 49/51 kDa; MIMP, mitochondrial inner membrane permeabilization;
miRNAs, microRNAs; MLKL, mixed lineage kinase domain-like protein;
MMP, mitochondrial membrane potential; MMR, DNA mismatch repair;
MO, mitochondrial outer membrane permeabilization; MPT, mitochondrial
permeability transition; mPTP, mitochondrial permeability transition pore;
MQC, mitochondrial quality control; mtDNA, mitochondrial DNA; mTORC1,
mammalian target of rapamycin; mtROS, mitochondrial ROS; NADPH,
nicotinamide adenine dinucleotide phosphate; NHE, Na/H exchanger;
NLRC4, NOD-like receptors with caspase activation and recruitment
domain 4; NLRP3, NOD-like receptor pyrin domain-containing 3; NMDA,
N-methyl-D-aspartic acid; NO, nitric oxide; NOS, nitrogen species; NRF1/2,
nuclear respiratory factor 1/2; OMM, outer mitochondrial membrane; OPA1,
optic atrophy 1; OXPHOS, oxidative phosphorylation; PCD, programmed cell
death; PDH, pyruvate dehydrogenase; PGAM5, phosphoglycerate mutase
family member 5; PGC-1α, peroxisome proliferator-activated receptor-γ

coactivator 1α; PINK1, PTEN-induced kinase 1; PUFAs, polyunsaturated
fatty acids; PYGL, glycogen phosphorylase; RIPK, receptor-interacting
protein kinase; RNS, reactive nitrogen species; ROS, reactive oxygen
species; rtPA, recombinant tissue plasminogen activator; SIRT1, sirtuin
1; SLC3A2, solute carrier family 3 member 2; SLC7A11, solute carrier
family 7 member 11; SMAC, second mitochondria-derived activator of
caspase; SOD2, superoxide dismutase 2; S-OPA1, short form of OPA-1;
system Xc-, cystine/glutamate antiporter system; TAK1, growth factor beta-
activated kinase 1; tBIDa, truncated active BID; TCM, traditional Chinese
medicine; TFAM, mitochondrial transcription factor A; TNF-α, tissue necrosis
factor-alpha; TRADD, TNF receptor-associated death domain; TRAF, TNFR-
associated factor; TRAIL, tumor necrosis factor-related apoptosis inducing
ligand; UCP2, uncoupling protein 2; VDAC, voltage-dependent anion
channel; XIAP, X-linked inhibitor of apoptosis protein; ZBP1, Z-DNA-
binding protein; 1pH, proton gradient; 19m, mitochondrial membrane
potential.
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clinical dilemma. Reperfusion-induced reactive oxygen species
(ROS) production overwhelms the cell’s anti-oxidative defense
mechanism, rendering it incapable of scavenging free radicals,
disturbing neuronal homeostasis, which leads to inflammatory
response, oxidative stress, apoptosis, necrosis, and other
pathological processes, culminating in cell death (Deb et al., 2010).

Increasing evidence indicates that mitochondria play vital
roles in improving neuronal survival and neurological function
after IS (Deb et al., 2010; Anzell et al., 2018; Yang et al., 2021).
Mitochondria are cellular organelles responsible for energy
production and metabolism in cells, providing adenosine
triphosphate (ATP) to active neurons (Sjostrand, 1953; Gustafsson
et al., 2016; Xian and Liou, 2021). During CI/RI, energy balance
is disturbed due to reduced blood supply and ATP synthesis
is disturbed (Borutaite, 2010). One of the hallmarks of CI/RI
are mitochondrial dysfunctions (Vosler et al., 2009), which are
characterized by mitochondrial oxidative stress, mitochondrial
Ca2+ overload, iron dyshomeostasis, mitochondrial DNA
(mtDNA) defects and mitochondrial quality control (MQC)
disruption. Following ischemia and reperfusion, mitochondrial
dysfunctions initiate a cascade of events that result in acute and
persistent inflammatory responses and activate the programmed
cell deaths (PCDs), such as ferroptosis and PANoptosis, a recently
proposed concept of programmed cell deaths characterized by a
unique inflammatory cell death modality, including pyroptosis,
apoptosis and necroptosis. These pathophysiological processes
are intertwisted and deleterious to the neural cells, regulating
the disease and immune response of CI/RI. However, how
mitochondrial dysfunctions govern cell death has been unclear
and somewhat controversial. A thorough understanding of
mitochondrial dysfunctions in different physiological and
pathological conditions is essential to provide therapeutic avenues
for IS (Bock and Tait, 2020).

This review will offer an insight into the pathomechanism
underlying the mitochondrial dysfunctions in various types of
PCDs and mitochondria-targeted therapeutic potential against
PCDs especially PANoptosis and ferroptosis in CI/RI. Clarifying
the relationship of pathology between mitochondrial dysfunctions
and PCDs and uncover the molecular pathways will not only
contribute to a thorough understanding of the mitochondrial
dysfunction-mediated PCDs machinery but also lighten potential
novel pharmacological targets for IS.

2. CI/RI and mitochondrial
dysfunctions

2.1. CI/RI pathology

The earliest symptom of IS is cerebral ischemia (Khoshnam
et al., 2017). Protecting the ischemic penumbra and restoring brain
function is critical. However, CI/RI is inevitable after restoration of
blood flow and may be the most important determinant of poor
prognosis (Kalogeris et al., 2016; Nentwich, 2016). Reperfusion
produces paradoxical tissue responses, which lead to a severe
imbalance of metabolic supply and demand, and eventually
activates neuronal death and causes hippocampal and cortical
damage, initiating cerebral hemorrhage and deteriorating the

blood-brain barrier (BBB) (Kishimoto et al., 2019; Huang et al.,
2021). CI/RI results from a complex series of pathophysiological
events including burst of ROS, free radical damage, Ca2+

homeostasis disorder, EAA toxicity, neuroinflammation, and fat
decomposition, etc., (Kalogeris et al., 2016; Wu M. et al., 2021).
Ca2+ overload and ROS burst are the initial events of CI/RI
(Pundik et al., 2012; Hayyan et al., 2016; Kalogeris et al., 2016;
Wu M. Y. et al., 2018; Chen and Li, 2020).

During cerebral ischemia, ATP synthesis efficiency declines due
to ischemia and hypoxia in the brain, along with acidic intracellular
metabolites and purine bases surging. Thus, the Na+/H+ exchanger
(NHE) exchanges for sodium ions (Sansbury and Spite, 2016)
and the lack of oxygen supply forces cells to produce ATP,
which is insufficient to maintain ATPases (e.g., Na+/K+ ATPase)
function. This results in cellular Ca2+ overload and disruption
of mitochondrial architecture. Once reperfusion, the oxygen and
substrates required for aerobic ATP generation are restored, and
hydrogen ions that accumulate in the extracellular space are
removed, which promotes additional Ca2+ influx. At the same
time, the oxygen influx could also fuel ROS production (Chen H.
et al., 2011). Ca2+ accumulation also mediates the excitotoxicity
and then promotes cerebral edema and activation of the
intracellular self-destruction cascade. Mitochondria absorb excess
Ca2+ when Ca2+ levels are elevated by excitotoxicity, leading
to organelle enlargement and formation of the mitochondrial
permeability transition pore (mPTP), which executes and activates
cell death pathways (Andrabi et al., 2020). Reperfusion-promoted
ROS damage and oxidative stress injure the proteins, lipids, as
well as mtDNA, which causes straight damage to mitochondrial
function after CI/RI (Borutaite, 2010). Moreover, CI/RI seriously
affects glial cells, including oligodendrocytes, microglia, and
astrocytes (Song et al., 2017). Oligodendrocytes are particularly
sensitive to injuries, including hypoxia, ROS/nitrogen species
(NOS) and excitotoxicity (Merrill and Scolding, 1999; Smith et al.,
1999), which impair the functional activity of the mitochondrial
respiratory chain (Ziabreva et al., 2010). Microglia are critical
for regulating neuroinflammation. Mitochondrial dyshomeostasis
injures microglial function and exacerbated the pathogenic process
of IS (Zhou et al., 2019). Astrocytes communicate and protect
neurons from hypoxia and excitotoxicity through the gap junction
and BBB, whereas inhibition of astrocyte mitochondrial function
leaves neurons vulnerable to cell death (Ouyang et al., 2013).
Mitochondrial dysfunctions are the most critical link of CI/RI.

2.2. Mitochondrial abnormalities and
dysfunctions in CI/RI

Mitochondria are the most vulnerable organelle to cerebral
ischemic injury (Hill et al., 2018). Burst of ROS, Ca2+ overload,
excitotoxicity and other consequences of CI/RI could trigger
mitochondrial dysmorphology/dysfunctions (Figure 1). Notably,
preserving or promoting mitochondrial function is a potential
therapeutic target for treating CI/RI.

2.2.1. Mitochondrial structure abnormalities
In the brain, mitochondria generate ATP by electron

transportation chain (ETC), which is composed of transmembrane
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FIGURE 1

Overview of mitochondrial dysfunctions during CI/RI. Mitochondria are the most susceptible organelle to CI/RI. ATP consumption, glucose/O2

deprivation, burst of ROS, Ca2+ overload, excitotoxicity, inflammatory response and other consequences of CI/RI could trigger mitochondrial
dysfunctions including mitochondrial oxidative stress, Ca2+ overload, iron dyshomeostasis, mitochondrial DNA defects, mitochondrial quality
control disruption as well as mitochondrial-induced PCDs. These cellular processes ultimately lead to the death of neuron.

protein complexes (I-IV) embedded in the inner mitochondrial
membrane (IMM) (Tang et al., 2016; Zhao et al., 2019). During
cerebral ischemia, the energy supply is drastically reduced. IMM
and mitochondrial cristae structure deform due to oxygen radicals
and Ca2+ overload, triggering mitochondrial response, including
excessive ROS production, mitochondrial Ca2+ overloading,
and disrupted MQC. During reperfusion, Ca2+ influx and ROS
burst promote the mitochondria’s swelling, increasing cytoplasmic
density, depolarization of mitochondrial membrane potential
(19m) and opening of the mPTP (Solenski et al., 2002).

The mPTP is a high-conductance channel that composed
of three proteins: the voltage-dependent anion channel (VDAC)
in the outer mitochondrial membrane (OMM), the adenine
nucleotide translocator (ANT) in the IMM and cyclophilin

D (CypD) in the mitochondrial matrix (Rao et al., 2014;
Pérez and Quintanilla, 2017; Rottenberg and Hoek, 2017),
regulating molecular exchange between the mitochondrial matrix
and cytoplasm. The mPTP regulation by CypD is the most
critical for mitochondrial morphology. Under normal conditions,
mPTP is closed, and the IMM selectively allows the passage of
small metabolic substrates and ions. When the cell undergoes
oxidative stress, Ca2+ and ROS concentrations burst and the
permeability of mPTP increases, initiating further production
and release of ROS that damage both mitochondrial and
nuclear DNA, proteins, and phospholipids. Further, the opening
of the mPTP forms the mitochondrial permeability transition
(MPT). It releases cytochrome C (Cyt C) and serine protease
into the cytosol (Tajeddine, 2016), which could trigger the
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caspase cascade, leading to PCDs and a series of damage
(Van Opdenbosch and Lamkanfi, 2019).

2.2.2. Mitochondrial oxidative stress
Oxidative phosphorylation (OXPHOS) is an oxygen-dependent

process in mitochondria that consumes chemical energy from
catabolism to produce ATP and power energy-dependent biological
processes. The OXPHOS system works through a series of protein
complexes, consisting of ETC complexes I, II, III, and IV, and ATP
synthase (complex V), along with two electron carriers, Cyt C, and
coenzyme Q (CoQ) (Zhao et al., 2022). Thus, mitochondria are
famous as “the powerhouse of the cell”.

Mitochondrial oxidative stress is a condition that arises
from an imbalance between oxidation and antioxidation in the
mitochondrial respiratory chain (Sinha et al., 2013). It plays an
essential role in CI/RI development (Quesnelle et al., 2015). The
reduction of oxygen in mitochondria following cerebral ischemia
limits mitochondrial OXPHOS, which decreases ATP production,
leading to the release of oxygen radicals from ETC and the eruption
of incomplete metabolism such as superoxide anion (O2

−),
hydroxyl radicals (·OH), reactive nitrogen species (RNS) and nitric
oxide (NO) (Vinogradov and Grivennikova, 2016; Trujillo-Rangel
et al., 2022). While during reperfusion, after the oxygen supply
is restored, the pro-oxidant enzyme system and mitochondria
use oxygen as a substrate to produce oxygen radicals, generating
transient but an exorbitant burst of ROS in cells and ultimately
triggering a series of processes ranging from altered cell signaling
pathways to cell death (Andrabi et al., 2020). Furthermore,
the reperfusion process also significantly reduces the activity of
succinic dehydrogenase and Cyt C oxidase and another key enzyme
along the ETC, leading to a reduction in OXPHOS efficiency, which
affects ATP production (Cadenas and Davies, 2000).

2.2.3. Mitochondrial Ca2+ overload
Normally, cytosolic Ca2+ is strictly regulated through the

cell membrane, endoplasmic reticulum, and mitochondria. As
Ca2+ buffer, mitochondria absorb substantial amounts of cytosolic
Ca2+ at the expense of 19m. The pathways of Ca2+ entry
into the mitochondrial matrix are known as the mitochondrial
calcium uniporter (MCU), the "rapid mode" mechanism, and
the mitochondrial ryanodine receptor (Feissner et al., 2009).
When cerebral blood flow gets interrupted and oxygen supply is
reduced, Na+/K+ ATPase and other ion channels are prevented
from maintaining a regular electrochemical gradient, resulting in
continued depolarization of glial and neuronal cells (Liao et al.,
2019). Open voltage gated Ca2+ channels, insufficient Ca2+ pump
activity, and ATP deficiency lead to increased intracellular Ca2+

concentration. Ca2+ overload causes the release of excitatory
neurotransmitters, particularly glutamate extracellularly (Singh
et al., 2019), which binds to NMDA (N-methyl-D-aspartic acid) and
other ion receptors, causing massive Ca2+ influx and consequent
excitotoxicity. Excessive matrix Ca2+ concentrations, especially
when associated with oxidative stress, precipitate the opening of
mPTP (Briston et al., 2017), which is associated with apoptosis via
the mitochondrial pathway or other PCDs due to mitochondrial
damage (Bernardi et al., 2022). There has also been evidence
that mitochondrial Ca2+ uptake can be responsible for the
production of free radicals (Feissner et al., 2009). The mechanism of
mitochondrial Ca2+ overload is a topic of great debate in the field.

2.2.4. MtDNA defects
Mitochondria are the only organelle possessing their circular

genome, which is 16.6 kb in mammals, encoding 13 subunits that
are essential in the maintenance and regulation of mitochondrial
functions, such as encoding essential proteins of ETC and
OXPHOS system (Liu H. et al., 2022). As mtDNA exists
within the mitochondrial matrix or attached to the IMM,
it can be easily damaged by free radicals produced by the
respiratory chain. However, it is barely protected by histones
and cannot effectively synthesize glutathione to remove oxygen
radicals (Fariss et al., 2005). Following CI/RI, mitochondria
activate several mtDNA repair and clearance pathways such
as direct reversal (DR), DNA mismatch repair (MMR), base
excision repair (BER), double-strand breaks (DSBs) and other
mtDNA repair pathways (Alexeyev et al., 2013). In mitochondria,
BER is the most typical mechanism to repair various types
of DNA damage affecting the nuclear genome (Fontana and
Gahlon, 2020). If these repair mechanisms are not sufficient
to restore mtDNA structure and function, irreversible defects
occur, leading to mutations in mtDNA (Liu H. et al., 2022).
Furthermore, mtDNA mutations alter tRNA structure, which
defects the assembly of the respiratory chain complex and enzyme
activity, further increasing ROS production and exacerbating
mtDNA mutations, creating a vicious cycle in CI/RI. Chen H.
et al. (2001) showed that CI/RI could cause mtDNA damage.
Although mtDNA can repair itself after <30 min of transient
cerebral ischemia, the damage is irreversible after prolonged
ischemia, which reduces the activity of complexes I and IV
in the ETC, thereby disrupting the integrity of the respiratory
chain complex electron transport. The mtDNA mutation also
affects mitochondrial autophagy. Compared to normal cells,
mtDNA mutant cells show reduced expression of autophagy
marker protein light chain 3 (LC3) and reduced accumulation
of autophagic substrate p62, resulting in impaired mitochondrial
autophagy and significantly increased ROS levels (Zhang et al.,
2018). Mitochondrial DNA damage could induce ATP synthesis
defect, aggravating the outcome of programmed cell deaths,
with the poor clinical symptoms such as cognitive impairment,
Alzheimer’s disease (AD) and Parkinson’s disease (PD) (Anzell
et al., 2018). Consequently, mtDNA is an important driver of
CI/RI and can be used as a marker from primary plasma
samples or tissue (Chong et al., 2022; Salvador et al., 2023).
Mitochondrial diseases stemming from mtDNA point mutations
and deletions present a wide clinical spectrum of phenotypes
(Nissanka and Moraes, 2018). ELISA, PCR amplifications, whole-
genome sequencing could be used for detection (Bernal-Tirapo
et al., 2023). Further investigation of mtDNA as a potentially
sensitive marker of CI/RI and response to mitoprotective therapy
is warranted.

2.2.5. Disrupted MQC
Mitochondrial quality control (MQC) is a significant process

for maintaining mitochondrial health and function (Youle, 2019),
which involves mitochondrial biogenesis, mitochondrial fission
and fusion, and mitophagy (Pickles et al., 2018). These processes
are essential for the production of energy, the maintenance of
mitochondrial structure and function, and the removal of damaged
or dysfunctional mitochondria.
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2.2.5.1. Mitochondrial biosynthesis
Mitochondrial biogenesis refers to the generation of new

mitochondrial mass and the replication of mitochondrial DNA by
proliferation of pre-existing organelles, which is essential to meet
increased cellular energy demands and to repopulate mitochondrial
contents in newly generated cells during cell proliferation (Yang
et al., 2019).

The key regulators of mitochondrial biosynthesis include
peroxisome proliferator-activated receptor-γ coactivator 1α

(PGC-1α), AMP-activated protein kinase (AMPK), nuclear
respiratory factor 1/2 (NRF1/2), mitochondrial transcription
factor A (TFAM) and sirtuin 1 (SIRT1) (Li et al., 2021). SIRT1-
PGC-1α and AMPK-PGC-1α axes are key pathways that regulate
mitochondrial biogenesis (Li et al., 2017). During CI/RI, PGC-1α

is activated by upstream AMPK or SIRT1 and deacetylases
through phosphorylation and deacetylation modifications.
Meanwhile, upregulating the mammalian target of the rapamycin
(mTORC1)/PGC-1 signaling pathway could activate mitochondrial
biogenesis and cellular senescence (Summer et al., 2019). PGC-1α

could improve ATP production and mitochondrial mass by
activating NRF1/TFAM axis in oxidative stress environments (You
et al., 2016). After IS, microglial PGC-1α expression upregulates
for a short period of time, significantly reducing neurological
deficits after ischemic injury, with reduced neuroinflammation
and enhanced mitophagy (Han et al., 2021). Meanwhile, PGC1-α
is a master regulator to activate superoxide dismutase 2 (SOD2)
and the uncoupling protein 2 (UCP2); both are mitochondrial
proteins and may contribute to neuronal survival and ROS
scavenging (Chen S. D. et al., 2011). Furthermore, PGC-1α could
regulate dynamin-related protein 1 (Drp1) protein expression and
phosphorylation (Peng et al., 2017). In conclusion, activation of
mitochondrial biosynthesis maintains mitochondrial homeostasis.
It increases cellular antioxidant and anti-infective activity and
has been proposed as a potential new target for mitigating
mitochondrial damage during CI/RI disease.

2.2.5.2. Mitochondrial fission and fusion
Mitochondria are morphologically dynamic organelles

that often undergo fission and fusion events that regulate
mitochondrial integrity and bioenergetics and contribute to
maintaining cellular homeostasis in healthy and diseased cells.
Under normal conditions, mitochondria change shape, size and
number by constantly fusing and dividing to meet the needs of
cellular metabolism. However, under the induction of ischemia
and hypoxia injury factors, ROS-induced mitochondrial oxidative
stress can directly lead to a disruption of the relative mitochondrial
fission/fusion balance, resulting in increased mitochondrial
breakage and fragmentation and increased susceptibility of
neurons to cell death.

In mitochondrial fission, Drp1 and fission protein 1
(Fis1) can divide mitochondria by binding to receptors on
the OMM through multiple post-translational modifications,
including S-nitrosylation, phosphorylation, SUMOylation,
dephosphorylation, and ubiquitination (Qin et al., 2021). In CI/RI
conditions, an increase in ROS levels disrupts mitochondrial
membrane potential and mitochondrial depolarization, resulting
in the translocation of Drp1 to the OMM via the recruitment
of mitochondrial Fis1, fission factor (MFF) and mitochondrial
dynamics proteins of 49/51 kDa (MiD49/MiD51), also known

as MIEF1/MIEF2, where it promotes excessive mitochondrial
fragmentation by coupling guanosine triphosphate (GTP)
hydrolysis (Estaquier and Arnoult, 2007). Drp1-mediated
mitochondrial fission is an initial event required for ischemic
neuronal cell death (Fonseca et al., 2019). It has been suggested
that the proapoptotic B-cell leukemia/lymphoma 2 (Bcl-2)
family protein Bax function directly or indirectly as a Drp1
receptor to promote mitochondrial fission and cell death
(Montessuit et al., 2010). Liu et al. (2012) found that Drp1
and P-Drp1 upregulation occurred after tMCAO, peaking
at 2 and 14 days, respectively, suggesting an increase in
mitochondrial fission in I/R condition. In vitro and in vivo
studies shows that the mitochondrial fission inhibition by the
Drp1 inhibitor or siRNA had beneficial effects on cerebral
ischemia (Grohm et al., 2012; Flippo et al., 2020). Drp1
inhibition may have therapeutic value in treating stroke and
neurodegeneration.

Mitochondrial fusion shares the mitochondrial matrix or
metabolites such as proteins, mtDNA, or membrane components
where the ETC occurs (Anzell et al., 2018). At the same time,
damaged mitochondria can be repaired through fusion with
healthy mitochondria to integrate contents and promote cell
survival by complementation (Liu et al., 2018). Fusion proteins,
including optic atrophy 1 (OPA1) and mitofusin 1/2 (MFN1/2),
can protect tissues and neurons from death under CI/RI through
their pro-fusion function (Dimmer and Scorrano, 2006). MFN1
and MFN2 proteins, which contain two transmembrane domains
in the OMM with a GTPase domain, provide energy for OMM
fusion by mixing the mitochondrial lipid bilayer. Similarly, OPA1
performs a similar function to enable IMM fusion (El-Hattab
et al., 2018). The short form of OPA-1 (S-OPA1) mediates inner
mitochondrial membrane fission, while the long form of OPA-
1 (L-OPA1) has been reported to protect ischemic injuries by
maintaining mitochondrial functions and attenuating neuronal
apoptosis (Cipolat et al., 2004). Moreover, elevated levels of
MIEFs promote in a manner that is mediated by MFN1/2 and
OPA1 but independent of Drp1, and MIEF1/2 can alleviate
hFis1-induced mitochondrial fragmentation and contribute to
mitochondrial fusion (Yu et al., 2021). In hypoxic situations,
CI/RI can impair mitochondrial fusion by decreasing OPA1 or
depleting MFN2, thereby undermining intracellular homeostasis
and inducing neuronal death (Peng et al., 2018; Wei et al., 2019;
Chen Y. et al., 2020). Under I/R conditions, the upregulation of
OPA1 expression greatly facilitates mitochondrial fusion, reversing
the interconnected mitochondrial morphology and alleviates I/R-
induced neuronal apoptosis, thereby reducing infarct volume
(Wei et al., 2019). Furthermore, the downregulation of MFN2
aggravated the CI/RI by inhibiting autophagosome formation
and the fusion of autophagosomes and lysosomes, demonstrating
that MFN2 could ameliorate CI/RI by promoting autophagy
(Peng et al., 2018).

Therefore, a delicate dynamic balance between fission and
fusion is essential to maintain the structure and function of
mitochondria (Li and Liu, 2018; Zhang et al., 2019). Excessive
mitochondrial fission or insufficient fusion promotes the decreased
ATP production and mtDNA stability, impaired mitochondrial
permeability transition pore sensitivity, and cell death (Chen et al.,
2010; Zhou et al., 2017; Wei et al., 2019).
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FIGURE 2

PANoptosis pathways. Exposure to stimulus during CI/RI can lead to the initiation of the apical sensors, such as ZBP1, which then induces the
activation of proteins involved in pyroptosis, apoptosis, and necroptosis to form the ZBP1-PANoptosome and mediate PANoptosis. Three arms of
cell death are executed by GSDMD family proteins (pyoptosis), caspase-3/7/8 (apoptosis) and MLKL (necroptosis). TAK1 could block formation of the
PANoptosome and induction of PANoptosis.

2.2.5.3. Mitophagy

Mitochondrial autophagy, also known as mitophagy, is a
cellular process that selectively removes the dysfunctional and
damaged mitochondria by coordinated mitophagy pathways.
Under ROS stress, cell aging, nutritional deprivation, and other
conditions, mitochondrial depolarization damage will manifest. To
preserve the integrity of the mitochondrial network and restore
cellular homeostasis, an autophagy system is activated to encase and
degrade dysfunctional mitochondria selectively. This mechanism
consists primarily of four steps (Xu et al., 2020): 1) External stimuli
dissipate mitochondria and disrupt mitochondrial membrane
potential (MMP), which is the prerequisite for mitophagy to occur.

2) Mitochondrial autophagosomes take shape. 3) Mitochondrial
autophagosomes are delivered to the lysosome for degradation.
4) Lysosomes degrade mitochondrial contents. In mammalian
cells, PINK1/Parkin axis is one of the most studied mitophagy
mechanisms. The serine/threonine kinase PINK1 and the E3
ubiquitin ligase Parkin cooperatively sense cellular stress and
promote the binding of ubiquitinated proteins to microtubule-
associated protein LC3 to form autophagosomes and then initiate
the autophagy mechanism (Zhang et al., 2021). Additionally,
there are other receptors which can directly bind to LC3 without
ubiquitination, thus initiating mitophagy, which mainly includes
the Nip3-like protein X (NIX)/BCL2-interacting protein 3-like
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(BNIP3L) receptor, BCL2-interacting protein 3 (BNIP3) receptor,
FUN14 domain containing 1 (FUNDC1) receptor (Villa et al., 2018;
Ma et al., 2020; Poole et al., 2021).

Under physiological conditions, autophagy is capable of
removing the abnormally aggregated proteins and degenerated
subcellular organelles, while excessive autophagy may result in
massive and unnecessary cell death (Wang Y. et al., 2020). After
CI/RI, fluorescence results show that PINK1 accumulates on OMM
and Parkin translocation occurs in the penumbra of rat cortex,
and the levels of other related autophagy proteins such as LC3
and Beclin1 are elevated (Lan et al., 2018). Researchers have found
that promoting mitophagy via PINK1/Parkin could decrease the
accumulation of damaged mitochondria and ameliorate neuronal
injury during CI/RI (Wu X. et al., 2018; Ma et al., 2020;
Wang H. et al., 2020; Mao et al., 2022). Wu X. et al. (2021)
found that NIX degradation leads to mitophagy deficiency in
ischemic brains, indicating that NIX may be a potential therapeutic
target for ischemic stroke. Overexpression of FUNDC1 inhibits
apoptosis and improves mitochondrial function against CI/RI
(Cai et al., 2021). In myocardial ischemia/reperfusion, hypoxic
preconditioning could induce FUNDC1-dependent mitophagy to
resist ischemia/reperfusion injury (Zhang W. et al., 2017). This
indicates that similar mechanisms may exist in CI/RI. The dynamic
balance between these three processes of MQC is essential for
maintaining mitochondrial homeostasis and function.

3. PANoptosis/ferroptosis in CI/RI

3.1. PANoptosis

Initially, pyroptosis, apoptosis and necroptosis were considered
different and independent (Chen X. et al., 2022). The crosstalk
between these pathways has therefore led to the establishment
of the concept of PANoptosis, defined as an inflammatory PCD
pathway with key features of pyroptosis, apoptosis, and necroptosis
that cannot be accounted for by any of these three PCDs
pathways alone (Figure 2; Kuriakose et al., 2016; Kesavardhana
et al., 2017; Malireddi et al., 2018, 2019, 2020a). Pathogen- or
pharmacologically mediated obstruction of survival signaling acts
as a key danger signal to trigger the assembly of PANoptotic cell
death complexes (Wang and Kanneganti, 2021). Recent progress
has shown that receptor-interacting protein kinase (RIPK)1/RIPK3,
Fas-associated protein with a death domain (FADD), caspase-8
and apoptosis-associated speck-like protein containing a caspase
recruitment domain (ASC) are the master regulators to form a
PANoptosome and then activate PANoptosis (Malireddi et al.,
2019), which is equivalent to providing a molecular scaffold that
allows engagement of key pyroptotic, apoptotic, and necroptotic
machinery (Briard et al., 2021; Chen X. et al., 2022).

Z-DNA-binding protein (ZBP1) acts as an innate immune
sensor to activate all three pathways and inflammation that
contemporaneously engages key molecules from pyroptosis,
apoptosis and necroptosis. Upon sensing stimulus, ZBP1 activation
leads to its interaction with RIPK1/RIPK3, FADD and caspase-
8 to form cell death signaling scaffolds (Malireddi et al., 2019).
Additionally, growth factor beta-activated kinase 1 (TAK1) acts as
a master switch for PANoptosis quiescence (Malireddi et al., 2019).

TAK1 inhibition/deletion leads to the activation of apoptosis,
pyroptosis, and necroptosis (Malireddi et al., 2018, 2020b; Orning
et al., 2018; Sarhan et al., 2018). In the absence of external stimuli,
TAK1 deficiency causes loss of cellular homeostasis and unleashes
inflammatory signaling and PANoptosis (Malireddi et al., 2020b).
There are still unanswered questions concerning the mechanistic
details of PANoptosis, even though ZBP1 and TAK1 are known as
regulators.

3.2. Ferroptosis

Ferroptosis is a distinct PCD type characterized by lipid
peroxidation relying on ROS generation and severe iron overload
(Yang and Stockwell, 2008; Dixon et al., 2012). This pathway
is essential in neuronal cell death (Lu et al., 2017; Wu J.
R. et al., 2018). Morphologically, ferroptosis causes reduction
or vanishing of mitochondria crista, condensed mitochondrial
membrane densities, and OMM rupture (Xie et al., 2016; Wang H.
et al., 2020), a unique feature that is distinguishable from other
forms of cell death (Dixon et al., 2012). Emerging evidence suggests
that stroke is associated with iron buildup, lipid peroxidation, and
a reduction of glutathione (GSH) and glutathione peroxidase 4.
(GPX4). In neurons, GPX4 can inhibit excessive lipid peroxidation.
Hence GPX4 activity inhibition triggers ferroptosis (Gaschler et al.,
2018; Ingold et al., 2018; Kang et al., 2018). The lethal metabolic
imbalance resulting from GSH depletion or inactivation of GPX4
is the executor of ferroptosis within the neural cell (Stockwell
et al., 2017). The injury of the cystine/glutamate antiporter system
(system Xc-), which consists of solute carrier family 3 member
2 (SLC3A2) and solute carrier family 7 member 11 (SLC7A11),
lessens GSH production and GPX4 activation, resulting in lipid
peroxidation of polyunsaturated fatty acids (PUFAs) and the
accumulation of PUFAs-O-OH that can form lipid ROS. In
contrast, Fe2+ ions are present in large quantities, which bind to
PUFAs-O-OH and then initiate lipid ROS by the Fenton reaction,
leading to iron death and neuronal damage (Cao and Dixon,
2016; Yang et al., 2016; Yang and Stockwell, 2016). PANoptosis
and ferroptosis differ in morphological characteristics, signaling
pathways, inhibitors/key regulators, and mitochondrial association
(Table 1).

3.3. PANoptosis in CI/RI

The recent progress in understanding of the extensive crosstalk
between different PCDs and signaling cascades unequivocally
establishes the existence of multifaceted signaling platforms. It
is well established that pyroptosis, apoptosis, and necroptosis
occur simultaneously during CI/RI in diverse passage cell lines
or primary neurons. Moreover, PANoptosis can contribute to
neuroinflammation, which has widespread repercussions on the
body. Since the components of the PANoptosome are widely
implicated in neurological disorders, an improved understanding
of the molecular underpinnings of the PANoptosis will be able
to inform the development of new and improved therapeutic
strategies (Malireddi et al., 2020b).

There are many central nervous systems (CNS) diseases
characterized PANoptosis (Yuan and Yankner, 2000;
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McKenzie et al., 2020; Yan et al., 2021), which is generally
associated with inflammatory reactions (Pender and Rist, 2001;
Degterev et al., 2019; Lünemann et al., 2021). The inflammasome
(Friedlander et al., 1997), caspase-8 (Krajewska et al., 2011),
RIPK1 (Xu et al., 2018; Degterev et al., 2019) and other core
components of the PANoptosome, are implicated in neuronal
death (Fricker et al., 2018). Inflammation and immune system
activation are often involved in the CI/RI pathophysiology,
which can cause serious brain damage (Chamorro et al., 2016;
Lambertsen et al., 2019; Shi et al., 2019; Zhang F. et al., 2022). In
the existing studies of PANoptosis, the expression of cell death
and the pathophysiological mechanism related to inflammation in
IS are similar to the phenotype and mechanism, which provides
basic evidence for the possible existence of PANoptosis and
PANoptosomes (Yan et al., 2022). Otherwise, glial cells have been
reported to interfere with these three forms of cell death after
being stimulated by injury (Zhao et al., 2017; Xu et al., 2019;
Naito et al., 2020; Liu X. et al., 2022), which overlaps with the
inflammation-related and immune-related reports of existing
studies of PANoptosis (Yan et al., 2022). Moreover, studies have
shown that some molecules can simultaneously interfere with two
PANoptosis components under CI/RI. RIPK3, as the key molecule
of necroptosis, can interact with the Jun N-terminal kinase-
mediated inflammatory signaling pathway, which is closely related
to neuronal apoptosis (Hu et al., 2020). Blocking of thromboxane
A synthase/thromboxane A2/thromboxane prostanoid signal can
inhibit apoptosis and pyroptosis concurrently (Chueh et al., 2020).
Moreover, the nucleotide oligomerization domain-like receptors
with caspase activation and recruitment domain 4 (NLRC4)
inflammasome complex can simultaneously regulate apoptosis and
pyroptosis (Poh et al., 2019). Hence, PANoptosis induced by CI/RI
could be regulated and intervened simultaneously.

Although there is no study on the PANoptosome in CI/RI, the
existing data of the components that make up a PANoptosome are
highly expressed in the brain. Studies have shown that inhibiting
TAK1 can reduce neuronal death induced by CI/RI (Neubert et al.,
2011; Wang L. et al., 2019; Wu et al., 2020). Additionally, TAK1
affects the microglia’s function and interacts with an inflammatory
pathway to activate neuronal apoptosis and pyroptosis (Gong et al.,
2015; Zeyen et al., 2020). Furthermore, it is vital in the interaction
between necroptosis and apoptosis of neurons during CI/RI (Naito
et al., 2020). All these findings show that molecules like TAK1 may
regulate PANoptosomes in CI/RI.

3.4. Ferroptosis in CI/RI

There is considerable evidence that ferroptosis plays a
significant role in CI/RI pathogenesis. Research indicates that
ferroptosis occurs mainly in neurons and exacerbates CI/RI
(Guan et al., 2019; Yuan et al., 2021; Liu W. et al., 2022). The
CI/RI pathogenesis results in increased vulnerability to oxidative
stress and ATP production, which is impeded to maintaining
metabolic activity and the activity of system Xc-. Meanwhile,
neuronal membranes are rich in PUFAs, which are easy to lipid
hydroperoxides and induce ferroptosis (Conrad and Pratt, 2019).

Moreover, under CI/RI conditions, iron accumulation in
affected brain areas is the key mediator of neuronal damage and

death (Castellanos et al., 2002). Iron chelation therapy, such as
deferoxamine, has been shown to attenuate the cellular damage
observed in the brains of experimental I/RI animal models (Prass
et al., 2002; Hanson et al., 2009). Another study demonstrates that
ferroptosis inhibition by GPX4 provides protective mechanisms
against neurodegeneration (Zou and Schreiber, 2020; Li et al.,
2022). Alim et al. (2019) reported that pharmacological selenium
could augment GPX4 expression, which inhibits ferroptosis and
protect neurons from CI/RI in C57BL/6 mice. Furthermore,
dihydromyricetin (DHM) represses ferroptosis by SPHK1/mTOR
signaling pathway inhibition, thereby alleviating CI/RI, suggesting
that DHM may be a candidate drug for CI/RI treatment (Xie J. et al.,
2022). Additionally, CI/RI-related neuronal damage can be rescued
by ferroptosis inhibitors such as liprostatin-1 and ferrostatin-
1, strongly suggesting a direct involvement of ferroptosis in
CI/RI (Tuo et al., 2017). Primarily, additional research into the
involvement of ferroptosis in CI/RI is required. Ferroptosis is
the primary cause and a potential treatment for IS and other
cerebrovascular disorders.

4. Mitochondrial dysfunctions in cell
death

4.1. Mitochondrial dysfunctions and
pyroptosis

Mitochondrial ROS (mtROS) has long been considered a key
signaling molecule for pyroptosis since it promotes the efficiency
of the GSDMD (Gasdermin D) cleavage by caspase-1 (Wang C.
et al., 2019). Active GSDMD forms pore permeabilizes, leading
to pyroptosis. In turn, active GSDMD and inflammasome can
cause MOMP (mitochondrial outer membrane permeabilization),
which induces mitochondrial dysfunctions and forms extensive
crosstalk between pyroptosis and mitochondrial apoptosis (Rogers
et al., 2019; Tsuchiya et al., 2019). Additionally, Yeon et al. (2017)
showed that phospholipid oxidation and accumulation of oxidized
phosphatidylcholine during cell injury could induce the production
of mtROS, which then activates the NLRP3 inflammasome. The
mtROS, mitochondrial Ca2+ and mitochondrial destabilization can
induce NLRP3 inflammasome activation and activate pyroptosis
(Yeon et al., 2017; Yu et al., 2019). Suppression of mitochondrial
mitophagy also slows the pyroptosis progression (Yu et al., 2019).

4.2. Mitochondrial dysfunctions and
apoptosis

Mitochondria are key factors in triggering apoptosis. The
intrinsic pathway is related to mitochondria (Wei et al., 2001).
Upon induction of mitochondrial apoptosis effectors, MOMP is
driven by pro–apoptotic members of the BCL–2 family of proteins
(prominently BAX and BAK). Activation of the pro–apoptotic
effectors BAX and BAK are usually essential for MOMP and cell
death (Wei et al., 2001). Under normal conditions, inactive BAX
localizes to the cytoplasm and inactive BAK to the mitochondria.
Once activated, they can directly bond to a subclass of BH3–only

Frontiers in Cellular Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fncel.2023.1191629
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-17-1191629 May 18, 2023 Time: 12:59 # 10

She et al. 10.3389/fncel.2023.1191629

TABLE 1 Hallmarks of four types of programmed cell death (PCD).

Pyroptosis Apoptosis Necroptosis Ferroptosis

Morphological
changes

Cellular swelling, membrane
rupture, and cellular contents

flowing out

Wrinkled cells, nuclear condensation,
cell membrane ectropion, and apoptotic

body formation

Cell enlargement, cellular
swelling, and membrane

rupture

Shrunken mitochondria, mitochondrial membrane
condensation, mitochondria crista reduction, and

outer mitochondrial membrane rupture, and
mitochondria fragment

Signaling
pathway

Pyroptosis pathway:
caspase1-dependent pyroptosis

and caspase1-independent
pyroptosis

Apoptosis pathway: extrinsic pathway
(receptor-mediated) and intrinsic

pathway (mitochondria-mediated);
p53-mediated apoptosis pathway

Necroptosis pathway and
TNF pathway

Ferroptosis pathway and p53 pathway

Inhibitors VX765 (Chen Y. et al., 2022) Z-VAD FMK (Yu et al., 2022) Necrostatin-1 (Dong et al.,
2022)

Ferrostatin-1 (Liu et al., 2020c), liproxstatin-1 (Fan
et al., 2021), DFO (Shen et al., 2022)

Key regulators GSDMD, caspase-1/4/5/11,
IL-1β, and IL-18

Fas/TNFR/TRAILR, caspase-3/8/9,
Bax/Bcl-2, Cyt C, and APAF-1

RIP1, RIP3, MLKL, and
Fas/TNFR

GPX4, JAK, SLC7A11, ACSL4, FPN, p53, and
NADPH oxidase

Mitochondrial
dysfunction

ROS and Ca2+ overload Cyt C releases, BAX/BAK, and Bcl
family protein interact

ROS burst, Drp1 activation,
and mitochondrial fisson

Mitochondrial lipid peroxidation and Ca2+

overload

FIGURE 3

The mechanism of mitochondrial dysfunctions induced PANoptosis and ferroptosis during CI/RI. Mitochondria play essential roles in pathological
conditions after ischemic stroke and reperfusion. During ischemia, oxygen–glucose deprivation will cause ATP consumption and the bind of death
ligands to death receptors on the membrane. Na+/K+ ATPase pump failure that induces depolarization of neuronal membranes and extreme release
of glutamate, burst of ROS, free radical damage, Ca2+ homeostasis disorder and EAA toxicity, etc. Iron was released into the brain parenchyma,
which accelerates lipid ROS accumulation and ferroptosis via Fenton reaction. The extracellular death ligands bind to death receptors, which
triggers the recruitment of FADD or TRADD to induce apoptosis and necroptosis, respectively. These mechanisms cause mitochondrial dysfunctions
such as formation of mPTP, burst of mtROS, mitochondrial Ca2+ overload and mtDNA damage, which could execute different cell death pathways.

proteins like tBID (truncated active BID) (Letai et al., 2002), and
BAX will accumulate in the mitochondria (Edlich et al., 2011;
Schellenberg et al., 2013; Todt et al., 2015). BAX/BAK commits the
release of soluble proteins-Cyt C, which activates the downstream
caspase cascade (Wei et al., 2001).

Most Cyt C resides within mitochondrial cristae and is
regulated by cristae junctions (van der Laan et al., 2016).
Mitochondria, the dynamic organelles, can constantly undergo
fission cycles and fusion by mitochondrial fission protein Drp1
(Frank et al., 2001; Bhola et al., 2009) to remodel mitochondrial

cristae, which has been proposed to facilitate Cyt C release. Mdivi-
1 is a Drp1 inhibitor that prevents mitochondria division and
Bax-mediated MOMP during apoptosis (Tanaka and Youle, 2008;
Nhu et al., 2021). Cyt C also induces tumor gene p53. Recent
investigations show that the p53 protein can defect MOMP by
forming an inhibitory complex with the Bcl-2 family protein,
leading to Cyt C release (Bakthavachalam and Shanmugam, 2017).
Meanwhile, MOMP causes the release of proteins, including
the second mitochondria-derived activator of caspase (SMAC)
and OMI/HTRA2 that block the caspase-7/9 inhibitor X-linked
inhibitor of apoptosis protein (XIAP), facilitating apoptosis
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TABLE 2 Therapeutic strategy by targeting mitochondrial dysfunctions to inhibit cerebral ischemia/reperfusion injury (CI/RI).

Cell deaths Interventions Model Subjects Mitochondrial
associated

targets

Functions References

Pyroptosis Idebenone OGD/R and
tMCAO

PC12 cells, BV2
cells, and rat

mtDNA and mtROS Idebenone suppresses activation of NLRP3 and
ameliorates NLRP3-mediating damage in I/R.

Peng et al., 2020

Medioresinol OGD, tMCAO bEnd.3 cells,
BMVECs, and

mice

mtROS MDN decreases mtROS through PPARα/GOT1 axis and
ameliorate the pyroptosis and ischemic brain injury.

Wang Y. et al.,
2021

Umbelliferone MCAO/R Rat ROS/TXNIP UMB protects focal cerebral ischemic through the
inhibition of TXNIP/NLRP3 inflammasome and

activation of PPAR-γ.

Wang et al., 2015

Apoptosis miR-668 inhibitor tMCAO/R Rat Drp1, mtROS,
Bax/Bcl-2

The miR-668 inhibitor prevents neuronal apoptosis in
CI/RI by modulating mitochondrial function and

regulating NLRP3 signaling.

He and Zhang,
2020

Candesartan OGD/R PC12 cells Bax Candesartan inhibits apoptosis by downregulation of Bax
and cleaved caspase-3 in OGD/R-PC12 cells.

Ding et al., 2022

Edaravone
dexborneol

Four-vessel
occlusion
(4-VO)

Rat Bax/Bcl-2 Edaravone-Dexborneol alleviates cerebral ischemic injury
via reduction of apoptosis and neuron damage.

Zhang W. et al.,
2022

Tong-Qiao-Huo-
Xue-Decoction

formula

MCAO Rat Bax/Bcl-2 TQHXD protects neurons from I/R damage and prevents
apoptosis.

Yuan et al., 2022

CsA BBCAO/R Rat Bax/Bcl-2 CsA decreases Bax/Bcl-2 ratio as well as caspase-3
activation.

Fakharnia et al.,
2017

Necroptosis CsA BBCAO/R Rat mPTP CsA inhibits mPTP opening and reduces RIP1 and RIP3
levels.

Fakharnia et al.,
2017

Infliximab tMCAO Rat Mitochondrial
membrane potential

Infliximab ameliorates endothelial necroptosis and
reduces mitochondrial damage, cytoplasm transparency,

and BBB permeability.

Chen et al., 2019

rhTrx-1 MCAO C57BL/6 mice Mitochondrial
membrane potential

rhTrx-1 provides neuroprotection in IS-induced
microglial neuroinflammation by inhibiting RIPK1

expression

Jiao et al., 2020

Ferroptosis UBIAD1 MCAO/R,
OGD/R

Rat, primary
neurons

Mitochondrial
protein complexes

UBIAD1 modulates I/R-mediated ferroptosis by restoring
mitochondrial dysfunctions and enhances antioxidative

capacities.

Huang et al., 2022

FtMt MCAO/R Mice FtMt FtMt protects against CI/RI-induced ferroptosis. Wang P. et al.,
2021

Ferrostatin-1 t-BHP treatment PC12 cells Mitochondrial
membrane potential,
ATP production, and

mtROS

Ferrostatin-1 reverses ferroptosis-induced mitochondrial
dysfunctions

Wu C. et al., 2018

(Bock and Tait, 2020). Even in the absence of caspase activity, cells
usually die following BAX/BAK-dependent MOMP, which releases
mtDNA by mitochondrial inner membrane permeabilization
(MIMP) and then activates cGAS-STING signaling during
apoptosis (Riley et al., 2018). Elevated levels of mtROS also
induces cell oxidative stress and destroy the cellular structure and
MOMP. ROS are involved in both caspase-dependent and caspase-
independent pathways, which is an important bridge between these
two apoptosis types (Chen C. et al., 2020). The extrinsic pathway
is activated at the plasma membrane by death receptor ligands
binding to their related receptors, interacting with the pro-caspase-
8 and forming a death-induced signaling complex (DISC), leading
to activation of caspase-8 and activate pro-caspase-3/7. Caspase-8
is the crosstalk to the mitochondrial pathway (Datta et al., 2020).

4.3. Mitochondrial dysfunctions and
necroptosis

Necroptosis is morphologically characterized by electron-
lucent cytoplasm, cell swelling, shrinking of organelles, cell
membrane rupture, dilation of the perinuclear space and spilling
of intracellular damage-associated molecular patterns (DAMPs)
out of the cell (Kaczmarek et al., 2013), which can trigger
an inflammatory response (Chen et al., 2019; Miyake et al.,
2020). RIPK1-RIPK3-MLKL necrosome is essential in necroptosis
through mitochondria (Zhe-Wei et al., 2018; Zhou et al., 2018).

TNF-α (tissue necrosis factor-alpha) binds to TNFR on
cell surface and transmits death signals via RIPK1 and RIPK3,
forming RIPK1-RIPK3-MLKL necrosome. RIPK3 and MLKL
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phosphorylation upregulate phosphoglycerate mutase family
member 5 (PGAM5) expression on the mitochondrial membrane.
PGAM5 can increase CypD phosphorylation, which obligated
endothelial cells to undergo necroptosis by augmenting mPTP
opening. Blocking the RIPK3-PGAM5-CypD signal pathways
can suppress mPTP opening and interrupt necroptosis (Zhou
et al., 2018). PGAM5 enters the cytoplasm to collaborate with
Drp1 (Feng et al., 2020), which inhibits glutathione production
and disrupts mitochondrial metabolism, leading to reduced free
radical removal capacity and increased mtROS (Wang et al., 2012;
Zhou et al., 2018; Xiao et al., 2020). Moreover, the necrosome
can also affect metabolic enzymes glutamate dehydrogenase
1 (GLUD1), glycogen phosphorylase (PYGL), and pyruvate
dehydrogenase (PDH) to promote the production of mtROS
(Zhang et al., 2009; Han et al., 2018; Yang et al., 2018; Zhao
et al., 2021). In turn, the released mtROS can facilitate the RIPK1
autophosphorylation and RIPK3 recruitment, which are critical for
necroptosis (Schenk and Fulda, 2015; Zhang Y. et al., 2017).

4.4. Mitochondrial dysfunctions and
ferroptosis

Ferroptosis is characterized morphologically by abnormal
mitochondrial architecture, including mitochondrial
fragmentation, shrunken mitochondria, rupture of OMM and
vanished mitochondrial cristae (Xie et al., 2016; Miyake et al.,
2020; Wang H. et al., 2020). Abnormal mitochondrial architecture,
including mitochondrial fragmentation, shrunken mitochondria
and rupture of the mitochondrial outer membrane, and vanished
mitochondrial cristae, is regarded as the typical morphological
characteristic of ferroptosis.

Currently, whether mitochondria have an impact on ferroptosis
remains a controversial research topic. Furthermore, recent
nervous system studies have revealed that the burst of lethal mtROS
and the accumulation of lipid peroxidation products affect proteins
related to iron metabolism in the mitochondrial membrane, which
is the main reason to mediate ferroptosis in neurons (Gao and
Chang, 2014; Xie et al., 2016; Liu et al., 2020a,b). Meanwhile, iron
overload, one of the mechanisms of ferroptosis, has been shown to
trigger mPTP opening and necroptosis by ROS accumulation (Tian
et al., 2020).

Mitochondria are vital in ferroptosis induced by the lack
of cysteine. Cysteine deprivation induces the decomposition
of glutamine (Gln), a non-essential amino acid that serves
as the major respiratory fuel for energy production and lipid
biosynthesis. Gln drives the hyperpolarization of MMP and feeds
the tricarboxylic acid (TCA) cycle (Gao et al., 2019), thereby
increasing mitochondrial respiration by ETC in consequence,
augmenting levels of mitochondrial ROS to initiate the Fenton
reaction (Gao et al., 2019; Bock and Tait, 2020). Additionally,
increased mtROS induced by Gln facilitates the overload of
mitochondrial Ca2+ (Maher et al., 2018) and the mPTP opening,
causing dissipation of the mitochondrial transmembrane potential
and subsequent ATP depletion (Bernardi and Di Lisa, 2015; Ying
and Padanilam, 2016; Novgorodov et al., 2018). Furthermore,
the mitochondrial VDACs were proved to be a potential target
of erastin by decreasing 19m (Yagoda et al., 2007). Opening

VDACs leads to an increase in MMP, and then mtROS generates
(Yagoda et al., 2007; DeHart et al., 2018). Mitochondrial ferritin
(FtMt), an iron-storage protein, has been reported to protect
mitochondria from iron-induced oxidative damage, presumably
through the chelation of potentially harmful excess free iron (Nie
et al., 2005; Gao and Chang, 2014). It also participates in the
regulation of iron distribution between cytosol and mitochondrial
contents. FtMt has been shown to significantly inhibit the cellular
labile iron pool (LIP) level, ROS and subsequent ferroptosis by the
Fenton reaction (Yarmohammadi et al., 2021; Boag et al., 2022).

During CI/RI, mitochondrial dysfunctions play essential
roles in pathological conditions in PANoptosis and ferroptosis,
as previously stated (Figure 3). The mtROS burst, mtDNA
defects, mPTP formation, mitochondrial Ca2+ overload and
iron dyshomeostasis are central parts of cell death. It has
been demonstrated that mitochondrial dysfunctions are closely
associated with various PCDs in the pathophysiological process of
CI/RI, and therefore the rational use of these mechanisms in the
biomedical field to address mitochondria as the target for drug
development and therapeutic strategies to ameliorate PCD in IS
could be a promising option.

5. Therapeutical potential of
targeting the mitochondrial
dysfunctions against CI/RI in
ischemic encephalopathy

Mitochondrial dysfunctions are the main feature seen
during the initiation of stroke pathophysiology. Consequently,
targeting mitochondria dysfunctions represents a promising
strategy to attenuate CI/RI-induced diseases (Carinci et al., 2021).
Interventions that directly target mitochondrial dysfunctions by
alleviating different cell death during CI/RI are summarized in the
present review (Table 2).

Idebenone is a well-appreciated mitochondrial protectant in
cerebral ischemia and reperfusion. Peng et al. (2020) found that
mitochondrial dysfunctions in OGD/R leads to accumulation of
oxidized mtDNA and mtROS generation, dramatically augments
inflammation in BV2 and PC12 cells. Idebenone inhibits the
process and attenuates cerebral inflammatory injury in ischemia
and reperfusion by dampening NLRP3 inflammasome activity.
MicroRNAs (miRNAs) are a group of small non-coding RNA
molecules that regulate gene expression at the post-transcriptional
level. The miR-668 expression level has been reported to be altered
under ischemic conditions in cell culture and animal models
(Chun et al., 2018). The miR-668 inhibition prevents neuronal
apoptosis in CI/RI by modulating mitochondrial functions such as
reduction of Drp1 and melioration of the expression of Bax/Bcl-
2 protein (He and Zhang, 2020). CypD is a prominent mediator
of mPTP, which leads to mitochondrial swelling and dissipation
of MMP on necroptosis, autophagy, and apoptosis beyond CI/RI.
Cyclosporine-A (CsA) is a potent inhibitor of CypD. Fakharnia
et al. (2017) found that CsA reduces necroptosis markers, RIP1 and
RIP3. Furthermore, the Bax/Bcl-2 ratio and caspase-3 activation,
as the executioner of apoptosis, noticeably decreases by CsA
pretreatment (Fakharnia et al., 2017). It suggests that CsA-mediated
CypD inhibition may provide a promising therapeutic potential

Frontiers in Cellular Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fncel.2023.1191629
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-17-1191629 May 18, 2023 Time: 12:59 # 13

She et al. 10.3389/fncel.2023.1191629

for protecting against CI/RI-mediated mitochondrial dysfunctions.
UBIAD1 is a newly identified antioxidant enzyme that acts on
the Golgi apparatus membrane and mitochondria (Nakagawa
et al., 2010; Mugoni et al., 2013). Upregulated UBIAD1 protects
against brain tissue damage and neuronal death by rescuing the
morphology and bio functions of the mitochondria and Golgi
apparatus in CI/RI, thus alleviating I/R-mediated lipid peroxidation
and ferroptosis (Huang et al., 2022). Moreover, the rescue of
impaired mitochondrial as a possible mechanism of regulating
ferroptosis neuronal death is a potential treatment strategy for IS.
FtMt is a key mitochondrial iron storage protein that protects cells
from iron-dependent oxidative damage rather than being directly
related to cellular iron levels (Nie et al., 2005). Mice lacking FtMt
experience more severe brain damage and neurological deficits,
accompanied by typical molecular features of ferroptosis after
CI/RI. Conversely, FtMt overexpression reverses these changes,
which limits CI/RI-induced iron overload and iron-dependent lipid
peroxidation and suppresses ferroptosis in the penumbra (Wang P.
et al., 2021). FtMt may be a potential therapeutic target in ischemic
stroke.

In conclusion, we have discussed the therapeutic potential of
targeting mitochondrial dysfunctions on PCDs in IS or CI/RI and
the associated mechanisms. New therapeutic strategies that target
mitochondrial dysfunctions may be used to mitigate the devastating
effects of CI/RI.

6. Conclusion and perspective

As stated above, mitochondrial dysfunctions highlight the
essential role of cell death during CI/RI, providing us with a
more comprehensive and profound understanding of pathogenesis
of which is associated with mitochondrial oxidative stress,
Ca2+ overload, iron dyshomeostasis, mtDNA defects and MQC
disruption, eventually triggering programmed cell deaths (Giorgi
et al., 2018). Emerging researches have indicated that mitochondrial
molecules such as mPTP, FtMt, proteins of MQC, Bax/Bcl-2 might
be the crosstalk between mitochondrial dysfunctions and PCD
pathways. These markers have diagnostic or prognostic values for
patients with IS.

Furthermore, the study of mitochondrial dysfunctions is
conducive to developing potential molecular therapeutic strategies
that target CI/RI. The natural inhibitors or small molecules
modifying mitochondrial dysfunctions are of high efficacy for the
treatment and prevention of the cell death pathways (Egawa et al.,
2017). For example, CsA, a potent inhibitor of CypD and mPTP,
could decrease Bax/Bcl-2 ratio as well as caspase-3 activation for
apoptosis intervention, while it also reduces RIP1 and RIP3 levels
to suppress necroptosis (Fakharnia et al., 2017). Currently, stem
cells have shown the ability to transfer mitochondria to the injured
cells, which helps to protect mitochondria and revive cell energetics
(Sarmah et al., 2018). Additionally, traditional Chinese medicine
(TCM) acts as a promising candidate in breaking the vicious
cycle between mitochondrial dysfunctions and PCD pathways,
improving the quality of life of the stroke patients. It provides a
multiple-target approach rather than a single-target approach and
thus can target multiple pathways involved in CI/RI at once. Taken
together, further studies targeting mitochondrial dysfunctions will
provide novel opportunities for the treatment of IS.

However, some limitations exist in the current studies. Firstly,
the molecular mechanisms underlying mitochondria-targeted cell
death pathways has not been fully elucidated. Secondly, under
different pathological injury states of IS, the role of mitochondria
is dissimilar. Additionally, the activation of molecular executioner
signatures of pyroptosis, apoptosis, necroptosis, and ferroptosis
are not required simultaneously in an individual cell for a cell
death process to fit (Gullett et al., 2022), which remains optimal
time window of intervention unclear. Thirdly, current studies
might be limited by the lack of clinical tests to assess the status
of mitochondrial dysfunctions. Besides, other clinical biomarkers
have poor sensitivity and specificity to predict the outcome of
CI/RI.

Consequently, further studies are recommended to develop
novel and targeted mechanisms centered on the mitochondrial
dysfunctions to improve prognosis in patients with CI/RI. Genome,
transcriptome, proteome, epigenome sequencing techniques and
radiomics can identify the molecular heterogeneity that reveals
the crosstalk between mitochondrial dysfunctions and PCDs in a
patient-specific manner. Meanwhile, investigating the expression of
PCDs markers as well as mitochondrial morphological changes and
dysfunctions at different phases of functional recovery after CI/RI
can provide valuable insights into best time-window of treatment
for CI/RI. Furthermore, we anticipate that in clinical trials,
combining ultrasound, CT, serum markers and other technologies
can effectively improve the diagnostic accuracy of mitochondrial
dysfunctions in the early stage, and guide the clinical treatment.
We hold the view that the in-depth study of mitochondrial
dysfunctions-induced PANoptosis and ferroptosis would provide
new perspectives, potential therapeutic targets for ischemic stroke
and other ischemia-induced diseases of CNS.
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