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Mammalian mitochondrial permeability transition pore (MPTP), across the inner and outer

membranes of mitochondria, is a nonspecific channel for signal transduction or material

transfer between mitochondrial matrix and cytoplasm such as maintenance of Ca2+

homeostasis, regulation of oxidative stress signals, and protein translocation evoked by

some of stimuli. Continuous MPTP opening has been proved to stimulate neuronal

apoptosis in ischemic stroke. Meanwhile, inhibition of MPTP overopening-induced

apoptosis has shown excellent efficacy in the treatment of ischemic stroke. Among of

which, the potential molecular mechanisms of drug therapy for stroke has also been

gradually revealed by researchers. The characteristics of multi-components or multi-

targets for ethnic drugs also provide the possibility to treat stroke from the perspective of

mitochondrial MPTP. The advantages mentioned above make it necessary for us to

explore and clarify the new perspective of ethnic medicine in treating stroke and to

determine the specific molecular mechanisms through advanced technologies as much

as possible. In this review, we attempt to uncover the relationship between abnormal

MPTP opening and neuronal apoptosis in ischemic stroke. We further summarized

currently authorized drugs, ethnic medicine prescriptions, herbs, and identified

monomer compounds for inhibition of MPTP overopening-induced ischemic neuron

apoptosis. Finally, we strive to provide a new perspective and enlightenment for ethnic

medicine in the prevention and treatment of stroke by inhibition of MPTP overopening-

induced neuronal apoptosis.

Keywords: ischemic stroke, mammalian mitochondrial permeability transition pore, mitochondrial apoptosis,

ethnic medicine, prescription, monomer composition

INTRODUCTION

The mitochondrial permeability transition pore (MPTP) complex is a non-specific and -selective

channel composed of multiple proteins, which is voltage-dependent and spans cytoplasm, outer

mitochondrial membrane (OMM), inner mitochondrial membrane (IMM), and mitochondrial
matrix. Excessive MPTP opening has been reported in relation to myocardial ischemia reperfusion
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injury (Morciano et al., 2017), hepatic ischemia-reperfusion injury

(Panel et al., 2019), traumatic brain injury (Hånell et al., 2015),

premature aging (Zhou et al., 2019), and Parkinson’s disease

(Ludtmann et al., 2018). However, its structural composition of

MPTP (Baines and Gutiérrez-Aguilar, 2018) and detailed regulatory

mechanism in ischemic stroke are still poorly understood. To our
knowledge, current evidences support the fact that MPTP is

composed of voltage-dependent anion channel (VDAC) across

the OMM, adenine nucleotide translocator (ANT) in the IMM,

and cyclophilin D (CypD) in the mitochondrial matrix, which is

responsible for sensing intracellular environmental oxidative stress

injury, inflammatory cascade, pH imbalance, and ion disorders such
as Ca2+ and Mg2+ ions in response to tissue ischemia (Kalani et al.,

2018; Briston et al., 2019). These adverse factors, alone or together,

can force persistent and irreversible MPTP opening beyond the

range of physiological regulation, and thus inducing mitochondria-

dependent apoptotic events. In addition, cytoplasmic hexokinase II

(HK II) attached to VADC, the peripheral benzodiazepine receptor
(PBR) on OMM and creatine kinase responsible for ATP

production may be involved in the formation or regulation of

MPTP (Zamzami and Kroemer, 2001). Possibly as a component of

IMM and binding partner of CypD, the phosphate carrier (PiC) of

mitochondria is responsible for the supply of inorganic phosphates

required by ATP synthesis during oxidative phosphorylation of

mitochondria (Brenner and Moulin, 2012; Bernardi et al., 2015;
Solesio et al., 2016). However, whether PiC has a positive or negative

effect on the structure and function of MPTP, it is still a matter of

debate and disagreement. Figure 1 illustrates the canonical

molecular composition of MPTP.

In recent years, several other members involved in MPTP

regulation responsible for cell fate decision have also been

identified in succession. As one of the core components of

IMM, RNAi-targeted silencing of the spastic paraplegia 7 gene

blocked signal transmission between OMM and mitochondrial

matrix by indirectly associating VDAC with CypD in the matrix,

thereby abrogating overloaded Ca2+ and immoderate ROS

evoked mitochondrial membrane potential (MMP) decline and
MPTP-dependent cell death (Shanmughapriya et al., 2015).

Except for the re-confirmation that ANT was the basic intimal

component of MPTP, researchers had also found that other

CypD-dependent components were involved in the composition

of MPTP. Although the species destined for existence had not yet

been identified, the authors suggested that PiC such as the
Slc25a3 or F1FO ATP synthase may be involved, which still

needed to be explored in a reasonable and rigorous in vivo and in

vitro experiment (Karch et al., 2019). Further encouraging

evidence suggested that F-ATP synthase was involved in the

formation of MPTP, sensing Ca2+ concentration and

subsequently mediating MPTP opening (Urbani et al., 2019).
As the structure and functions of MPTP are gradually clarified,

great quantities of studies have declared that abnormal MPTP

conditions play a critical role in regulating cell fate in a variety of

diseases. The VDAC has virtually no barrier effect on small

molecules with molecular weights less than 5 kDa to circulate

freely in the cytoplasm and mitochondrial matrix (Bonora and

Pinton, 2019). As an intermediate bridge, ANT can interact
directly with VDAC and CypD. And that is, ANT can alter

OMM and IMM permeability by regulating VDAC and CypD,

thus mediating the exchange of substances in the cytoplasmic

matrix and the mitochondrial matrix (Chinopoulos, 2018). In a

mouse model of heart failure, it had been substantiated that

increased mitochondrial matrix Ca2+ caused by Ppif gene
(encoding the synthesis of CypD protein) deficiency

contributed to the remission of heart failure symptoms (Elrod

et al., 2010). By further silencing CypD gene with in vitro siRNA

and shRNA techniques on primary human pulmonary artery

endothelial cells, and in vivo CypD knockout mice, evidence of

CypD deficiency had been shown to promote angiogenesis,

which may be partly due to increased mitochondrial matrix
Ca2+ and nicotinamide adenine dinucleotide (NADH), activation

of NAD+-dependent deacetylase sirtuin 1 (SIRT1) and serine-

threonine kinase Akt signaling (Marcu et al., 2015). Evidence

suggested that induced pluripotent stem cells (iPSCs) derived

hepatocyte toxicity caused by valproic acid was associated with

MPTP opening dependent mitochondrial apoptotic pathway (Li
et al., 2015).

Causality Between Abnormal MPTP
Opening and Apoptosis in Ischemic Stroke
Abnormalities of MPTP state are bound to trigger cellular

dysfunction in ischemic stroke. We will briefly summarize the

factors and related molecular mechanisms of MPTP opening-

induced apoptosis after ischemic stroke. A large number of
previous reports have shown that stroke-evoked decreased MMP,

excessive mitochondrial reactive oxygen species (mtROS) (Zorov

et al., 2014), endoplasmic reticulum stress (ERS), and excitatory

amino acid toxicity all stimulated MPTP opening (Prentice et al.,

Abbreviations: AIF, apoptosis-inducing factor; Apaf-1, apoptotic protease

activating factor 1; ATF6, activating transcription factor-6; Bcl-2, B-cell

lymphoma 2; BDNF, brain-derived neurotrophic factor; BrdU, 5-bromo-20-

deoxyuridine; CHOP, C/EBP homologous protein; c-IAP1, cellular inhibitor of

apoptosis 1; CREB, cyclic AMP response element binding protein; EndoG,

endonuclease G; ERK, extracellular signal-regulated protein kinases; GFAP,

glial fibrillary acidic protein; GluR1, glutamate receptor 1; GRP78, glucose

regulator protein 78; HBMECs, human brain microvascular endothelial cells;

HIF-1a, hypoxia-inducible factor-1 alpha; IkBa, nuclear factor of kappa light

polypeptide gene enhancer in B-cells inhibitor, alpha; ICAM-1, intercellular cell

adhesion molecule-1; IDH2, isocitrate dehydrogenase 2; IRE1, inositol-requiring

protein 1; Keap1, Kelch-like ECH-associated protein 1; MAP-2, microtubule-

associated protein-2; MCAO, middle cerebral artery occlusion; Mfn2, mitofusin-

2; MMP-2, matrix metalloproteinase-2; MPTP, mitochondrial permeability

transition pore; NeuN, neuron-specific nuclear; NMDAR1, N-methyl-D-

aspartate receptor 1; NQO1, NAD(P)H, quinone oxidoreductase-1; Nrf2,

nuclear factor erythroid-2-related factor 2; OCRs, oxygen consumption rates;

OGD/R, oxygen glucose deprivation/reperfusion; OMM, outer mitochondrial

membrane; PAF, platelet activating factor; PARP, poly ADP-ribose polymerase;

PCN, primary cortical neurons; p-eIF2a, phospho-eIF2a; PERK, protein kinase

RNA-like ER kinase; p-GSK-3b, phospho-glycogen synthase kinase-3b; PHN,

primary hippocampal neurons; Pim-1, proto-oncogene serine/threonine-protein

kinase; PKA, protein kinase A; p-PDK1, phosphoinositol-dependent kinase-1;

PTEN, phosphatase and tensin homolog deleted on chromosome 10; Puma, p53

up-regulated modulator of apoptosis; SIRT3, silent mating type information

regulation 2 homolog 3; STAT3, signal transducer and activator of transcription

3; TBARS, thiobarbituric acid reactive substances; TGF-b1, transforming growth

factor; b-III-tubulin, microtubule element of the tubulin family; XBP-1, X-box-

binding protein-1; ZO-1, zonula occludens-1.
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2015), leading to mitochondrial edema, increased membrane

permeability, corrupted cristae structure of IMM, and neuronal

apoptosis. Notably, as the second messenger, Ca2+ is a stimulus of

MPTP opening and also could be a landmark event after MPTP

opening. However, from the actual effect, increased Ca2+ and
depressed matrix Mg2+ and Mn2+ could all contribute to MPTP

opening. In turn, evidence had announced that instantaneously

MPTP opening could cause increased Ca2+ in microdomain of

astrocytes, which was closely related to maintaining mitochondrial

energy supply and stress response (Agarwal et al., 2017). The

otherwise MPTP opening-prone factors are as following. Declined

matrix PH, caused by protonation of histidine residues or loss of
ANT and CypD signaling, could trigger MPTP to tend to shut

down. Conversely, the increased matrix PH forces MPTP opening

with its maximum openness at about 7.3 (Wang et al., 2016;

Šileikytė and Forte, 2019). The formation of disulfide by oxidation

on ANT dimer, oxidized pyridine nucleotides such as NAD+ and

NADP+ all favor MPTP openness. Conversely, all the factors that
inhibit MPTP opening may have a promising future in treating

ischemic stroke. Ligands targeting VADC, ANT, CypD (Matsumoto

et al., 1999), and TSPO/PBR targets have shown better inhibition of

MPTP opening. Moreover, antioxidants such as propofol,

metabolites such as glucose and creatine, coenzyme Q, glutamate,

or Ca2+ chelators could limit MPTP opening (Zamzami and

Kroemer, 2001; Brenner and Moulin, 2012).
It is well known that onset of ischemic stroke causes neurons

to produce exorbitant mtROS, ERS, Ca2+ overload, and neuronal

toxicity induced by excitatory amino acids. After that, neurons

would raise the alarm of MMP decline, mitochondrial edema,

elevated MMP and other signs of MPTP opening, which will

eventually drive mitochondrial contents such as Cyto-c to be
discharged into the cytoplasm and trigger apoptotic events. The

results of in vivo animal evaluation have intimated that both

transient and permanent cerebral ischemic insults can cause

damage to mitochondrial ultrastructure of neuron, such as the

appearance of swollen and condensate mitochondria, as well

elevated matrix density caused by deposition of electron-dense

material (Solenski et al., 2002). An ischemia-induced ROS

elevation can favor MPTP opening, which in turn can lead to a
subsequent surge in ROS production and a vicious cycle (Zorov

et al., 2014). Therefore, inhibition of neuronal apoptosis by

blocking MPTP opening would be a potential and promising

strategy in the treatment of ischemic stroke. Further extensive in

vivo and in vitro experimental evidence also suggested a positive

effect of this therapy. In rat models of ischemic stroke, blocking

MPTP opening by cyclosporine A had been shown to reduce
infarcted volume of ischemic brain tissue (Matsumoto et al.,

1999). As a ligand targeting CypD, pre-administration of

cyclosporine A can protect primary rat neurons from OGD/R

injury, involved mechanisms may be related to maintain

mitochondrial integrity and inhibit MPTP opening-induced

apoptosis by up-regulating Parkinson’s disease-associated
protein DJ-1 (Tajiri et al., 2016). Further, the water-soluble

coenzyme Q10 had been shown to protect the accumulation of

glutamate-induced HT22 hippocampal neuron damage by

inhibiting mitochondrial fragmentation and MPTP opening-

induced apoptosis (Kumari et al., 2016). Furthermore, evidence

had shown that intervention of MPTP opening inhibitor can

reduce the expression of VDAC, manifesting by increased MMP,
ATP supply, and improved cerebral ischemia injury symptoms

in an in vitro rat model of MCAO (Wang et al., 2019a). The

above evidence all conveys that ischemic stroke induced MPTP

opening may be a factoid of neuronal apoptosis. Any measures to

inhibit MPTP opening could repress cell apoptosis, thus

exhibiting the role of anti-ischemic brain protection.
Explosive evidence corroborated that a sudden insult of

ischemic stroke may break the balance between the anti-

apoptotic and pro-apoptotic members of B-cell lymphoma-2

FIGURE 1 | Canonical mitochondrial MPTP molecular structure. Conventional MPTP complex is composed of VDAC, ANT, and CypD. Other factors could also

stimulate MPTP opening.
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(Bcl-2) family, which may aggravate stroke condition. The results

of ischemic stroke models with Bax gene knockout in vivo and in

vitro showed that the improved ischemic neuron injury and

decreased neuronal apoptosis were related to the decreased

cytoplasmic Ca2+, which was a relatively upstream signal

regulating the apoptosis of ischemic neurons (D’Orsi et al.,
2015). A great deal of evidence has declassified such a fact that

anti-apoptotic Bcl-2 and Bcl-xL can inhibit MPTP opening,

whereas pro-apoptotic Bax and Bak proteins can stimulate

MPTP opening (D’Orsi et al., 2017). Results from in vitro

model of ischemic stroke in rats have shown that increased

Bax/Bcl-2 ratio in ischemic insult could irritate MPTP opening,
which may cause increased neuronal apoptosis (Andrabi et al.,

2017; Andrabi et al., 2019). Actually, members in Bcl-2 family

could also regulate two potential MPTP opening stimuli: Ca2+

homeostasis and energy metabolism of neurons (D’Orsi et al.,

2017; Peña-Blanco and García-Sáez, 2018). The increased

permeability caused by the formed Bax/Bak dimer on OMM
contributed to the release or transfer of pro-apoptotic Cyto-c,

Smac/Diablo and HtrA2/Omi from the mitochondrial matrix to

cytoplasm (Arnoult et al., 2003). Further rat models of focal

cerebral ischemia also demonstrated that overexpressed Bcl-2

protein could inhibit the rise of Cyto-c in cytoplasm, thereby

preventing the occurrence of apoptotic DNA fragmentation

events mediated by the transfer of AIF from mitochondria to
nucleus (Zhao et al., 2004). While pro-apoptotic Bcl-xS-induced

apoptosis via Bak also induced the exudation of mitochondrial

Cyto-c, the formation of apoptosome composed of Cyto-c, Apaf-

1 and Caspase-9, and the Caspase apoptotic cascade

(Lindenboim et al., 2005; Zhang Q. et al., 2019). Visually

breaking news, Bak/Bax macropores contribute to the outflow
of mitochondrial contents such as Cyto-c and mitochondrial

DNA into the cytoplasm, and thereafter inducing caspase-

dependent cell apoptosis (McArthur et al., 2018). Amusingly,

evidence also suggested that ROS and ERS could directly activate

Bak/Bax-dependent apoptosis, showing condensed and

hyperchromatic nucleus, loss of MMP, reduced Bcl-2,

increased activation of Caspase-3/-9, PARP, and overexpressed
Bak and Bax proteins (Seervi et al., 2018). Therefore, the

formation of Bak/Bax macropores in mitochondrial OMM may

serve as a hub for MPTP opening-induced mitochondrial

apoptosis. Other factors involved in the regulation of MPTP

opening after cerebral ischemia have also been reported.

Accumulation of p53 in mitochondria has been corroborated
to target CypD, leading to MPTP opening and neuronal

apoptosis, which is independent of the formation of Bak/Bax

macropores (Vaseva et al., 2012). It has been reported that

activation of neuron mitochondrial cannabinoid receptor 1

after cerebral ischemia can help inhibit Ca2+ overload-induced

MPTP opening and apoptosis (Cai et al., 2017). Another

potential target involved in regulating mitochondrial MPTP in
ischemic stroke was mitochondrial uncoupling protein 2 (UCP-

2). Highly expressed UCP-2 has been demonstrated to inhibit

apoptosis by activating redox signaling, evidenced by decreased

ROS production, increased MMP and cleaved Caspase-3 protein

expression (Mattiasson et al., 2003; Mehta and Li, 2009). The

above analysis indicates that ischemic stroke is accompanied by

an inevitable event of MPTP over-opening and apoptosis.

Although the basic structure of MPTP has not yet been

drastically uncovered and recognized. But a number of factors

that regulate MPTP opening during the course of ischemic stroke

have been exposed in the public eye. In the future, plenty of basic
studies should be conducted to elucidate the molecular

composition of MPTP and its relationship with ischemic

neuron apoptosis. Meanwhile, natural product inhibitors

targeting MPTP opening-evoked neuronal apoptosis are also

worthy of further research in the treatment of ischemic stroke.

PROGRESS IN STROKE PREVENTION
AND TREATMENT BY REGULATING
MITOCHONDRIAL MPTP STATUS IN
ETHNIC MEDICINE

Ischemic stroke, which accounts for 71% of stroke, is the second
and the first leading cause of death and disability worldwide and

in China, respectively (Wu S. et al., 2019). In 2016, there were 9.5

million ischemic stroke patients worldwide, while in 2017, 2.7

million people died of ischemic stroke (Campbell et al., 2019).

Although intravenous thrombolysis, antiplatelet aggregation,

and anticoagulant therapy (Smith et al., 2019; Stoll and
Nieswandt, 2019) could be used for the delivery of stroke

therapies, but many apoplexy sequelae, characterized by

ischemic contralateral or bilateral limb behavior disorders,

memory decay, logopathy, dysphagia, and mood irritability

(Zhao et al., 2016; Hou et al., 2020), have not yet cure.

However, the ethnic medicine has manifested significant

clinical efficacy in alleviating above unbearable symptoms or
sequelae of stroke. In recent years, the mechanisms of action of

drugs have also been gradually revealed. Remarkably, some of

them, such as Danhong injection and Naoxintong capsule

(Haiyu et al., 2016; Liu M. et al., 2016; Xu et al., 2020), have

been officially approved by the China Food and Drug

Administration (CFDA) and are bringing good news to stroke
patients around the world. Next, we summarized the current

officially authorized products, clinically effective traditional

Chinese medicine (TCM) prescriptions, ethnic drugs, and

effective monomer components based on literature review,

trying to clarify the molecular mechanisms of natural products

inhibiting neuronal apoptosis and improving ischemic brain

from the perspective of mitochondrial MPTP.

Authorized Products for Stroke
Improvement by Regulating Mitochondrial
MPTP
With the policy guidance and inclination, as well as the

accelerated modernization of TCM, tens of thousands of

individuals dedicated to clinical and scientific research
positions are gradually devoting themselves to the drug

development and mechanism exploration of traditional

medicine to prevent major diseases, such as stroke. Most
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ethnic drugs for treatment of ischemic stroke have the function

of activating blood circulation to remove blood stasis or clear

collaterals. NaoShuanTong capsule (Zhang H. et al., 2019),

ShenQi Fuzheng injection (Cai et al., 2016), ShengMai

injection (Yang et al., 2016), and PeiYuan TongNao capsule

(Bai J. et al., 2019) have been reported to significantly improve
the symptoms of ischemic stroke with few adverse events. In

recent years, some antiapoptotic protective effects of cerebral

ischemia have also been reported, such as XueShuanTong

injection (Li et al., 2009) and QianCao NaoMaiTong mixture

(Lu et al., 2016).

Most, such as Cerebralcare Granule® (Sun et al., 2010),
DanHong injection (Xu J. et al., 2017; Li M. et al., 2018), and

AnGong NiuHuang wan (Wang G. et al., 2014; Tsoi et al., 2019),

can inhibit ischemia-evoked neuronal apoptosis by regulating

bcl-2 family members. As a prescription commonly used in

Tibetan medicine to treat ischemic sequelae, our research

group proved that the anti-cerebral ischemia effect of ErShiWei
ChenXiang pills may be related to its regulation of Bcl-2 family,

inhibition of apoptosis, and increase of energy supply (Hou et al.,

2020). While regulating Bcl-2 family members, AnNao tablets

(Zhang et al., 2020) and YiQi FuMai powder injection (Cao et al.,

2016; Xu Y. et al., 2017) may also be involved in inflammation

and mitochondrial autophagy to maintain mitochondrial MMP

and energy production. In addition, both TongXinLuo's
regulation of AKT/ERK signaling (Yu et al., 2016; Cheng et al.,

2017) and XingNaoJing injection's regulation of the PI3K-AKT

pathway (Zhang Y. et al., 2018) ultimately contributed to the

regulation of Bcl-2 and the inhibition of ischemic neuron

apoptosis. In addition to the Bcl-2 family, it was reported that

Zhenlong Xingnao capsule (Wei X. et al., 2019) and
NaoLuoTong capsule (Bai M. et al., 2019) could also be

through the regulation of NF-кB to confine ischemia induced

inflammatory cascade process. Of course, multiple mechanisms

of drugs have also been reported against ischemic neuron

apoptosis. QingKaiLing injection could simultaneously inhibit

oxidative stress, activation of NLRP3 inflamosome and AMPK

signaling pathway, and thus inhibiting neuronal apoptosis
(Cheng et al., 2012). PienTzeHuang capsule suppressed the

inflammatory and apoptotic cascade of ischemia by regulating

AKT/GSK-3b and the Bcl-2 family (Zhang X. et al., 2018). As a

fatal blow to the body, disregardful ischemic stroke induced

hypoimmunity was also one of the main culprits of exacerbating

stroke. Noteworthy, XueSaiTong (Li et al., 2019) and Danggui-
Jakyak-San (Kim et al., 2016) may mediate inflammatory

responses by regulating STAT3 signaling pathway, and

enhance immune function of the body, which were helpful to

reduce symptoms of brain injury after ischemia. The above

officially certified drugs’ information and specific mechanisms

of action are shown in Supplementary Table 1, and Tables 1 and

2. Through in-depth comparative analysis, we found that
although the above drugs prevailing in the market have good

clinical efficacy, most of their active ingredients, in vivo

pharmacokinetic parameters, and potential targeted organ

toxicity have not been well evaluated. Importantly, the further

regulation of apoptosis still has good research value and

prospect. Although there is no direct evidence that they

regulate MPTP to inhibit ischemic neuron apoptosis, their

effect on members of the Bcl-2 family makes MPTP a potential

target for anti-stroke drugs.

Prescription and Molecular Mechanisms in
Regulating MPTP Openness of Ischemic
Stroke
Clinical experience has proved that TCM has excellent efficacy in

treating stroke, which can be seen in Huangdi Neijing. But at

bottom it is the cold, hot, warm, cool, and other characteristics of
drugs to balance the imbalance of Yin and Yang in the body

under the condition of disease. In ischemic stroke, a variety of

exogenous pathogens and dysfunction of the viscera can lead to

poor blood flow or blood stasis, resulting in cerebral ischemia or

hypoxia (Hou et al., 2020). Therefore, the clinic mainly focuses

on promoting blood circulation to remove stasis, replenishing Qi
to nourish blood, and nursing viscera. Extensive clinical and in

vivo and in vitro studies have confirmed that prescriptions

SiJunZi decoction (Yang et al., 2019), ShengMai san (Li et al.,

2013), and YangYin TongNao granules (Wang et al., 2019f) have

a significant effect on ischemic stroke. Of course, the regulation

of oxidative stress and inflammatory response are also common

mechanisms of prescription in the treatment of ischemic brain
injury. The antioxidant and anti-inflammatory activities of

ShengNaoKang decoction (Chen et al., 2014) could contribute

to the inhibition of apoptosis and the alleviation of ischemic

brain injury. Other studies have reported that HuangLian JieDu

decoction (HJD) could inhibit ischemic neuron apoptosis by

regulating PI3K/AKT and HIF-1a/VEGF (Zhang Q. et al., 2014).
Further metabolomics (Zhu et al., 2018) and systemic

pharmacology (Wang P. et al., 2019) studies have revealed that

its anti-ischemic protective effect may also involve the Bcl-2

family such as Bak. Regulating vascular function and increasing

cerebral blood flow supply is another effective strategy for stroke

treatment. Abundant evidence demonstrated that BuYang

HuanWu decoction (BHD) could increase cerebral blood by
regulating HIF-1a/VEGF-related signaling pathways (Chen

et al., 2019). Improving the mitochondrial ATP supply has also

been shown to be an effective treatment for stroke. BHD has been

reported to improve ischemic brain injury by reducing

glutamate-mediated excitatory amino acid toxicity, resulting in

enhanced ATP supply and weakened apoptosis (Wang et al.,
2011). At the same time, the improved synaptic ultrastructure by

BHD also contributed to the recovery of cerebral ischemia

sequelae (Pan et al., 2017). Similarly, ShenGui SanSheng san

could also improve the efficiency of citric acid cycle to improve

the brain energy deficit after ischemia (Luo et al., 2019).

Interestingly, as a cell-sensing oxygen sensor, most studies

have also reported evidence of other TCM prescriptions
regulating HIF-1a to inhibit apoptosis and inflammation in

treatment of stroke, such as XueFu ZhuYu decoction (Lee

et al., 2011) and TaoHong SiWu decoction (Yen et al., 2014).

Members of the Bcl-2 family are also potential targets for

prescription inhibition of apoptosis to improve ischemic brain

injury. XiaoXuMing decoction (Lan et al., 2014), ShuanTongLing
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TABLE 1 | The in vivo mechanism underlying the inhibition of MPTP opening-induced neuronal apoptosis by authorized drugs in the treatment of ischemic stroke.

Agents Objects Gender Weight

(g)

Animal

model

Dose Time periods Mechanisms References

XueShuanTong

injection

SD Both 270–

320

MCAO (2 h)/

R (46 h)

25 mg/kg, i.p. Pretreatment for 5 min and 12/

24/36 h after MCAO

Caspase-1/3↓, TUNEL-positive neurons↓ Li et al.,

2009

Cerebralcare

granule

Mongolian

gerbils

Male 65–90 MCAO (0.5

h)/R (5 d)

0.4 and 0.8 g/kg,

i.g.

3 h after the reperfusion, 5 d,

q.d.

Bcl-2↑; leukocyte adhesion↓, fluorescence intensity of DHR↓, albumin leakage↓,

Caspase-3↓, Bax↓, TUNEL-positive neurons↓

Sun et al.,

2010

AnGong

NiuHuang wan.

SD Male 250–

280

MCAO (1.5

h)/R (24 h)

0.065, 0.125,

and 0.25 g/kg,

i.g.

Pretreatment 3 d, q.d., and 1

d, q.d. after reperfusion

Bcl-2↑; Bax↓, Caspase-3↓, TUNEL-positive neurons↓ Wang G.

et al., 2014

SD Male 260–

280

MCAO (2 h)/

R (22 h)

257 mg/kg, i.g. Single dose before reperfusion Bcl-2↑, ZO-1↑, claudin-5↑, eNOS↑; Bax↓, p47phox↓, iNOS↓, 3-NT↓, MMP-2↓,

MMP-9↓, iNOS↓

Tsoi et al.,

2019

QingKaiLing

injection

KM/

C57BL/6

Male 25–28/

25–30

MCAO (1.5

h)/R (28 h)

3 ml/kg, i.v. 4 h after reperfusion, and once

every 12 h, three times

Procaspase-12↑; Caspase-3↓, p-eIF2a↓, ROS↓, Ca2+↓, TUNEL-positive neurons↓ Cheng

et al., 2012

DangGui

Jakyak san

SD Male —— pMCAO (28

d)

50, 100, and 200

mg/kg, i.g.

24 h after surgery, 28 d, q.d. STAT3↑, Pim-1↑, GSH↑, SOD↑, CAT↑; MDA↓, Caspase-3↓, PARP↓, NT↓, 4-HNE↓ Kim et al.,

2016

YiQi FuMai

powder

injection

C57BL/6J Male 18–22 pMCAO (24

h)

1.342 g/kg, i.p. Single dose after pMCAO

onset

cerebral blood flow↑, Bcl-2↑; Caspase-12↓, GRP78↓, CHOP↓, ATF-4/6↓, p-eIF2a/

eIF2a↓, XBP-1↓

Cao et al.,

2016

SD Male 280–

300

tMCAO (1.5

h)/R (24 h)

0.957 g/kg, i.p. Single dose after tMCAO onset Bcl-2↑, cytosolic Drp1↑; Bax↓, cleaved Caspase-9↓, mtDrp1↓, total p-Drp1 and

Drp1↓

Xu Y. et al.,

2017

TongXinLuo SD Male 200–

220

MCAO (1.5

h)/R (24 h)

0.4, 0.8, and 1.6

g/kg, i.g.

Pretreatment for 3 d, b.i.d.,

and after MCAO for 1 d, b.i.d.

p-PTEN/PTEN↑, p-PDK1/PDK1↑, p-AKT/AKT↑, p-Bad/Bad↑, p-c-Raf/c-Raf↑;

cleaved Caspase-3↓, TUNEL-positive neurons↓

Yu et al.,

2016

SD Male 240–

270

MCAO (1.5

h)/R (14 d)

0.1 g/kg, i.g. Pretreatment for 5 d and 14 d

after MCAO, q.d.

Connexin 43↓, Calpain II↓, Bax↓, cleaved Caspase-3↓, TUNEL-positive neurons↓ Cheng

et al., 2017

QianCao

NaoMaiTong

mixture

SD 180–

200

MCAO (2 h)/

R

2.7, 5.4, and

10.8 ml/kg

Pretreatment for 28 d Bcl-2/Bax↑, SOD↑, CAT↑, BDNF↑, ICAM-1↑, NGF↑, MDA↓, IL-6↓ Lu et al.,

2016

DanHong

injection

SD Male 250–

280

MCAO (1 h)/

R (24 h)

4 ml/kg, i.p. 4 h after MCAO claudin-5↑, occludin↑, ZO-1↑, Bcl-2↑; Bax↓, Caspase-3↓, MMP-9↓, PAI-1↓, P-

selectin↓

Li M. et al.,

2018

XingNaoJing

injection

SD Male 250–

280

MCAO (2 h)/

R (24 h)

5, 10, and 15 ml/

kg, i.p.

24 h after reperfusion Bcl2/Bax↑, p-PI3K/PI3K↑, p-AKT (308 and 473)/AKT↑, p-eNOS/ eNOS↑, NO↑, p-

PI3K/AKT↑

Zhang Y.

et al., 2018

PienTzeHuang

capsule

SD Male 240–

260

MCAO (1.5

h)/R (24 h)

180 mg/kg, i.g. Pretreatment 4 d before

MCAO

NeuN↑, mtCyto-c↑, Bcl-xl↑, p-AKT↑, p-GSK-3b↑; IL-1b↓, IL-6↓, TNF-a↓, cytosolic

Cyto-c↓, Bax↓, p53↓, cleaved Caspase-3/9↓, TUNEL-positive neurons↓

Zhang X.

et al., 2018

XueSaiTong C57BL/6 Male 20–25 MCAO (45

min)/R (14 d)

15 µg/g, i.v. Immediately after reperfusion,

14 d, q.d.

arginase-1↑, CD206↑, CD206/Iba-1↑, IL-10↑, TGF-b1↑; IL-1b↓, p-STAT3/STAT3↓,

CD16↓, CD16/Iba-1↓, iNOS↓, TUNEL-positive neurons↓

Li et al.,

2019

NaoLuoTong

capsule

Wistar Male 250–

280

MCAO (2 h)/

R (22 h)

75, 150, and 300

mg/kg, i.g.

Pretreatment for 7 d, q.d. Bcl-2↑, NGF↑; TNF-a↓, IL-1b↓, IL-6↓, Bax↓, Caspase-3↓, ICAM-1↓, NF-kBp65↓ Bai M. et al.,

2019

ZhenLong

XingNao

capsule

Wistar Male 200–

250

MCAO (1.5

h)/R (24 h)

125 and 250 mg/

kg, i.g.

Pretreatment 14 d, q.d. T-AOC↑, T-SOD↑, Bcl-2↑, Bcl-2/Bax↑; Caspase-3↓, NF-кB↓, p38↓, Bax↓, MDA↓,

GABA↓, Glu↓, Tau↓

Wei X. et al.,

2019

ErShiWei

ChenXiang pills

SD Male 260–

300

MCAO (2 h)/

R (24h)

1.33 and 2.00 g/

kg, i.g.

Pretreatment 14 d, q.d. Bcl-2↑, CaMK II↑; Bax↓, cleaved Caspase-3↓, Cyto-c↓, ATF4↓, c-Jun↓, TUNEL-

positive neurons↓

Hou et al.,

2020

AnNao tablets SD Male 250–

270

MCAO (2 h)/

R (7 d)

300, 600, and

1,200 mg/kg, i.g.

1 h after reperfusion, 1 d or 7

d, q.d.

Drp1↑, OPA1↑, PINK1↑, Parkin↑, Bcl-2↑, Bcl-2/Bax↑; Bax↓ Zhang et al.,

2020

↑, upgrade; ↓, downgrade.
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(Mei et al., 2017), and GuaLou Guizhi decoction (Zhang Y. et al.,

2014) all have the potential to regulate the Bcl-2 family and

inhibit caspase-dependent mitochondrial apoptosis, which has a

similar mechanism to that of MuXiang You fang (Zhao et al.,

2016) reported in our previous study. In addition to the Bcl-2

family, DiHuang YinZi (Hu et al., 2009) and DiDang tang

(Huang et al., 2018) could also inhibit the generation of Ca2+

and improve MMP to inhibit the apoptosis of ischemic neurons

by regulating the ERK signaling pathway. It has also been

reported that HouShiHei san (Chang J. et al., 2016) could

regulate PI3K/Akt signaling to inhibit the apoptosis of

ischemic neurons. The specific mechanisms in vivo and in vitro

of the above prescriptions are shown in Table 3.
The above evidence indicates that most TCM prescriptions

could more or less improve mitochondrial morphology and

respiratory function by inhibiting neuronal Ca2+ overload

through anti-oxidative stress and anti-inflammatory.

Meanwhile, we note that most of them also regulates many

members of the Bcl-2 family to inhibit ischemic neuron

apoptosis. We, therefore, see the potential of drugs to
indirectly inhibit MPTP opening to improve ischemic neuron

apoptosis. Nevertheless, the unclear drug distribution of target

organs and the intricate network of interactive targets should still

drive us to further study.

Herbal Extracts and Molecular
Mechanisms in Regulating MPTP
Openness of Ischemic Stroke
The overall concept of TCM and the characteristics of treatment

based on syndrome differentiation of ethnic medicine determine

that prescriptions from diversified drug sources are mainly used

in the treatment of diseases. The purpose is to comprehensively

consider the functions of viscera to exorcize evil spirits while

strengthening the body, and finally cure diseases. However, in

addition to conventional prescriptions mentioned above, people

have also discovered that the individual application of certain

herbs also has the potential to treat diseases. Based on recent
literature reports, most of them exhibit outstanding antioxidant

effects, such as methanol extract of Artemisia absinthium (Bora

and Sharma, 2010) and Colebrookea oppositifolia Smith

(Viswanatha et al., 2018). As the most sensitive hippocampal

neuron to ischemic invasion, studies have shown that Moringa

oleifera seed extract could promote hippocampal nerve
regeneration, enhance synaptic plasticity and cholinergic

function to treat ischemic stroke (Zeng et al., 2019). More

interestingly, Gynostemma pentaphyllum extract could protect

OGD/R-induced rats isolated hippocampal slices damage by

inhibiting neuronal Ca2+ overload and mitochondrial oxidative

stress-induced MPTP opening (Schild et al., 2009), which may

help to inhibit the MPTP opening-activated mitochondrial
apoptotic cascade event. At the same time, herbs could regulate

the expression level of anti-apoptotic and pro-apoptotic proteins

of Bcl-2 family and inhibit mitochondrial apoptosis in the

treatment of hypoxia brain injury. The specific in vivo and in

vitro mechanisms of reported herbs for ischemic stroke

treatment by inhibiting mitochondrial MPTP opening-induced
neuronal apoptosis are shown in Tables 4 and 5. Figure 2 shows

pictures of 16 representative herbs. It is world-renowned that

superior immune enhancement of plant polysaccharides could

prevent and cure many diseases. Previous investigations reported

TABLE 2 | The in vitro mechanism underlying the inhibition of MPTP opening-induced neuronal apoptosis by authorized drugs in the treatment of ischemic stroke.

Agents Cell lines Model Dose Time periods Mechanisms References

TongLuo

JiuNao

injection

BMECs of

SD rats

OGD (95% N2 and

5% CO2 6 h)/R

(74% N2, 21% O2,

and 5% CO2, 6 h)

2 ml/ml Before OGD, the

neurons were incubated

6 h in drug treatment

and then equilibrated

OGD

VEGF↑, MMP↑; LDH↓, Ca2+↓, cytosolic Cyto-c↓, NMDAR1↓,

PAF↓

Li et al.,

2014

QianCao

NaoMaiTong

mixture

SH-SY5Y OGD (N2, 1 h)/R

(24 h)

0.5, 1, 5,

10, 50,

100 and

200 mg/

ml

Pretreatment for 2 h and

during reperfusion period

Caspase-3/8↓, neuronal apoptosis under flow cytometry↓ Lu et al.,

2016

YiQi FuMai

powder

injection

PC12 OGD (5% CO2,

94% N2, and 1%

O2, 12 h)

100, 200,

and 400

mg/ml

during OGD period Bcl-2↑; neuronal apoptosis under flow cytometry↓, Caspase-

3↓, cleaved Caspase-3↓, Caspase-12↓, CHOP↓, GRP78↓,

ATF-4/6↓, p-eIF2a/eIF2a↓, XBP-1↓, Hoechst 33342 positive

neurons↓

Cao et al.,

2016

PCN of

embryonic,

16–18-d

SD rats

100 mM H2O2 for

12 h

100, 200,

and 400

mg/ml

6 h before and during

H2O2 treatment

ATP↑, MMP↑; Bcl-2↑, Bcl-xl↑, cytosolic Drp1↑, cytosolic

PKCd↑; Bax↓, Bak↓, Caspase-3↓, cleaved Caspase-3↓,

mtROS↓, PKCd↓, neuronal apoptosis under flow cytometry↓,

intracellular ROS↓, p-Drp1/Drp1↓, mtDrp1↓, mtPKCd↓

Xu Y. et al.,

2017

DanHong

injection

PCN of

embryonic,

14-d C57

BL/6 mice

OGD (95% N2 and

5% CO2, 6 h)

0.01,

0.03, 0.1,

0.3, and 1

ml/ml

During OGD period LDH↓, ROS↓, Ca2+↓, neuronal apoptosis under flow

cytometry↓

Xu J. et al.,

2017

XingNaoJing

injection

HBMECs OGD (5% CO2,

85% N2, and 10%

H2, 3 h)/R (24 h)

1.5 and

2.5 ml/ml

Pretreatment for 1 h and

during reperfusion period

p-eNOS/eNOS↑, MMP↑, NO↑; cleaved Caspase-3/Caspase-

3↓, neuronal apoptosis under flow cytometry↓

Zhang Y.

et al., 2018

↑, upgrade; ↓, downgrade.
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the anti-ischemic effects of Ganoderma lucidum polysaccharides

(GLP) (Zhou et al., 2010), Lycium barbarum polysaccharide

(LBP) (Wang T. et al., 2014; Zhao et al., 2017b), Panax

notoginseng polysaccharides (PNP) (Dong et al., 2014), and
Cistanche deserticola polysaccharides (CDP) (Liu et al., 2018)

were associated with anti-oxidant activity and the regulation of

Bcl-2 family members to maintain mitochondrial function and

morphology. Furthermore, Achyranthes bidentata polypeptides

(ABP) (Shen et al., 2010), astragalosides (Chiu et al., 2014), and

phenolic acid extracts derived from Sargentodoxa cuneata (Bai

M. et al., 2019) and Salvia miltiorrhiza (Hou et al., 2016; Yang
et al., 2018; Wei Y. et al., 2016) also have potential anti-ischemic

stroke effects. In conclusion, although the clinical treatment of

ischemic stroke with a single herb is rare, a large number of

definitive in vitro and in vivo and clinical reports are sufficient to

support further studies. However, the mechanism of some herbs

with better efficacy proved by experiments is still in the

preliminary stage, and the ischemic brain protection

mechanism of anti-neuronal apoptosis is worthy of further
exploration. More promisingly, some ethnic herbs for stroke

prevention, such as Tibetan medicine saffron (Ochiai et al., 2007)

and Mongolian medicine Eerdun Wurile (Gaowa et al., 2018),

have also been gradually reported in recent years. In the early

stage, our research group also revealed that the anti-hypoxia

brain protection effect of the Tibetan medicine Rhodiola

crenulata was related to the regulation of the HIF-1a/
microRNA 210/ISCU1/2(COX10) signal pathway to improve

mitochondrial energy metabolism, inhibit oxidative stress and

mitochondrial apoptosis (Wang et al., 2019c). Although the

medication law of ethnic medicine for prevention and

TABLE 3 | The in vivo and in vitro mechanism underlying the inhibition of MPTP opening-induced neuronal apoptosis by TCM prescriptions in the treatment of ischemic stroke.

In vivo study

Agents Objects Gender Weight

(g)

Animal

model

Dose Time periods Mechanisms References

DiHuang YinZi Wistar Both 320–

350

MCAO (1

h)/R (10 d)

6 and 12 g/

kg, i.g.

30 min after

MCAO, 10 d,

q.d.

synaptophysin↑, ERK↑; LDH↓, TUNEL-

positive neurons↓

Hu et al.,

2009

XueFu ZhuYu

decoction

Wistar Male 250–

300

MCAO (1

h)/R (24 h)

1.5 and 3.0

g/kg, i.g.

Pretreatment

for 14 d, q.d.

cleaved Caspase-3↓, HIF-1a↓, TNF-a↓,

iNOS↓

Lee et al.,

2011

BuYang

HuanWu

decoction

ICR Male 17–22 MCAO (30

min)/R (14

d)

0.5 and 1.0

g/kg, i.g.

2 h after

reperfusion,

14 d, b.i.d.

glucose metabolism↑, BrdU↑; ROS↓,

TUNEL-positive neurons↓, CD11b↓

Wang et al.,

2011

ShengNaoKang

decoction

SD Male 280–

320

MCAO (2

h)/R (24 h)

0.7, 1.4, and

2.8 g/kg, i.g.

Pretreatment

for 6 d and 1

d after

reperfusion,

q.d.

SOD↑; GSH-Px↑, Caspase-3↓, MDA↓,

iNOS↓, TNOS↓

Chen et al.,

2014

TaoHong SiWu

decoction

Wistar Male 250–

300

MCAO (1

h)/R (24 h)

0.7 g/kg, i.g. Pretreatment

for 14 d, q.d.

cleaved Caspase-3↓, HIF-1a↓, iNOS↓, TNF-

a↓

Yen et al.,

2014

HuangLian

JieDu tang

SD Male 300–

350

MCAO (2

h)/R (72 h)

2.7 g/kg, i.g. Single dose

and

pretreatment

for 24 h

p-PI3K/PI3K↑, p-AKT/AKT↑, HIF-1a↑,

EPO↑, VEGF↑, BrdU↑; LDH↓, TUNEL-

positive neurons↓

Zhang Q.

et al., 2014

XiaoXuMing

decoction

SD Male 250–

280

MCAO (1.5

H)/R (24 h)

60 g/kg, i.g. Pretreatment

for 3 d, t.i.d.

mtBcl-2↑, mtCyto-c↑, cytoplasmic Bax↑,

cytoplasmic c-IAP1↑; mtbroken cristae↓,

cleaved Caspase-3/9↓, p53↓, mtp53↓,

mtBax↓, cytoplasmic Smac↓, cytoplasmic

Cyto-c↓, TUNEL-positive neurons↓

Lan et al.,

2014

GuaLou Guizhi

decoction

SD Male 280–

300

MCAO (2

h)/R (7 d)

14.4 g/kg, i.g. Posttreatment

for 7 d, q.d.

NeuN↑, MAP-2↑, Bcl-2↑; GFAP↓, Bax↓,

TUNEL-positive neurons↓

Zhang Y.

et al., 2014

MuXiang You

fang

SD Male 260–

300

MCAO (2

h)/R (48 h)

58, 116, and

232 mg/kg,

i.g.

Posttreatment

for 3 d, q.d.

Bcl-2↑, Bcl-2/Bax↑; Bax↓, Cyto-c↓,

Caspase-3/7/9↓

Zhao et al.,

2016

ShuanTongLing SD Male 250–

280

MCAO (1.5

h)/R (24 h)

5.7 and 17.2

ml/kg, i.g.

Pretreatment

for 7 d, q.d.

SIRT1↑, Bcl-2↑; TNF-a↓, IL-1b↓, Ac-p53↓,

Bax↓

Mei et al.,

2017

In vivo study

Agents Cell

lines

Model Dose Time

periods

Mechanisms References

DiDang tang PC12 OGD

(95% N2

and 5%

CO2, 0.5–

2.5 or 2–

10 h)

12.5,

25, and

50 mg/

ml

After the

OGD

induced

PC12 cell

model for

24 or 48 h

Bcl-2/Bax↑; Ca2+↓, MMP↓, GRP78↓, p-IRE1/IRE1↓, p-PERK/PERK↓, p-

eIF2a/eIF2a↓, p-Bad/Bad↓, ATF-6↓, Cyto-c↓, cleaved PARP↓, neuronal

apoptosis under flow cytometry↓

Huang

et al., 2018

↑, upgrade; ↓, downgrade.
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treatment of ischemic stroke is bound to limit the scope of

effective single herbal medicine. But optimistically taking the

long view, such a gradual herbal medicine research model should

be warranted.

Monomers and Molecular Mechanisms in
Regulating MPTP Openness of Ischemic
Stroke
As research continues, massive active ingredients for treating

stroke have been identified from herbal medicines. According to

literature reports, we summarized 29 monomer compounds that
may target to inhibit mitochondrial MPTP overopening-induced

neuronal apoptosis, including alkaloids, flavonoids, terpenoids,

and phenolic acids. Figure 3 shows the structure information of

these potential compounds. Tables 6 and 7 list the specific brain

protective mechanisms of monomer compounds against

ischemia-induced neuronal apoptosis. Notably, some of these

compounds have been shown to regulate MPTP to improve

ischemic stroke. The anti-oxidant and anti-inflammatory effects

of hydroxy safflor yellow A (HSYA) and carboxyatractyloside
could help to inhibit ischemia-induced MPTP opening and play

a protective role against cerebral ischemia (Ramagiri and

Taliyan, 2016). The anti-hypoxic effect of kaempferol was

related to inhibition of mitochondrial fission, maintenance of

mitochondrial integrity and function, and therefore repressing

MPTP opening-induced apoptosis (Wu B. et al., 2017). In vivo
and in vitro experiments showed that the protective effect of

gallic acid (GA) on cerebral ischemia against apoptosis might be

TABLE 4 | The in vivo mechanism underlying the inhibition of MPTP opening-induced neuronal apoptosis by herbal medicine in the treatment of ischemic stroke.

Agents Objects Gender Weight

(g)

Animal

model

Dose Time periods Mechanisms References

Curcuma oil SD Male 200–

225

MCAO

(1 h)/R

(24 h)

250

mg/kg,

i.p.

Single dose

and

pretreatment

for 0.5 h

Bcl-2↑, MMP↑; MPO↓, nitrite↓, nitrate↓, iNOS↓, nNOS↓, e NOS↓,

peroxynitrite↓, ROS↓, Ca2+↓, Cyto-c↓, p53↓, cleaved Caspase-3,

Bax↓, TUNEL-positive neurons↓, neuronal apoptosis under flow

cytometry↓

Dohare

et al., 2008

Hawthorn

extract

SD Male 300–

320

MCAO

(1.25

h)/R (3

or 24 h)

100

mg/kg,

i.g.

Pretreatment

for 15 d, q.d.

Bcl-xL↑, Foxp3↑, pSTAT-3/STAT-3↑; IL-10↑; MPO↓, TNF-a↓, IL-6↓,

IL-1b↓, ICAM-1↓, CD3+ & CD8+ positive cells↓, TUNEL-positive

neurons↓

Elango and

Devaraj,

2010

Rosa

laevigata

Michx

SD Male 250–

300

MCAO

(2 h)/R

(24 h)

50,

100,

and

200

mg/kg,

i.g.

Pretreatment

for 7 d, q.d.

Bcl-2↑, SOD↑, GSH↑, MMP↑; MDA↓, T-NOS↓, NO↓, iNOS↓, MMP-

9↓, p53↓, Apaf1↓,Fas↓, Fasl↓, Bax↓, Bid↓, Cyto-c↓, cleaved

Caspases-3/8/9↓, NF-kB↓, COX-2↓, TNF-a↓, IL-1b↓, IL-4↓, IL-6↓,

p-JNK↓, p-ERK↓, p-p38↓, TUNEL-positive neurons↓

Zhang et al.,

2013

PNP Wistar Male 250–

300

MCAO

(2 h)/R

(22 h)

50,

100,

and

200

mg/kg,

i.g.

Pretreatment

for 7 d, q.d.

Bcl-2/Bax↑; cleaved Caspase-3↓, TUNEL-positive neurons↓ Dong et al.,

2014

LBP ICR Male 20–25 MCAO

(2 h)/R

(24 h)

10, 20,

and 40

mg/kg,

i.g.

Pretreatment

for 7 d, q.d.

Bcl-2↑; Bax↓, Cyto-c↓, Caspases-3/9↓, cleaved PARP-1↓, TUNEL-

positive neurons↓

Wang T.

et al., 2014

Rhizoma

Pinelliae

Pedatisectae

SD Male 250–

300

MCAO

(2 h)/R

(24 h)

5, 10,

and 20

mg/kg,

i.g.

Pretreatment

for 7 d, b.i.d.

SOD↑, Bcl-2↑; Bax↓, MDA↓, TNF-a↓, IL-1 b↓, TUNEL-positive

neurons↓

Ye et al.,

2016

Clinacanthus

nutans Lindau

Long-

Evans

Male —— MCAO

(0.5 h)/

R (24 h)

10–60

pg, icv;

24 mg/

kg, i.p.

Single dose

and 30 min

after MCAO;

pretreatment

for 1 h or

posttreatment

for 3–24 h

PPAR-g↑, C/EBPb↑, 14-3-3ϵ↑, p-Bad↑, Bad↑, Bcl-2↑; cleaved

Caspase-3↓, PARP↓

Wu J. et al.,

2017

Spatholobi

Caulis extract

SD Male 240–

260

MCAO

(0.75

h)/R (7

d)

100

and

200

mg/kg,

i.g.

Pretreatment

for 3 d and

posttreatment

for 7 d, q.d.

BDNF↑, b-III-tubulin↑, ROS↓, GFAP↓, cleaved PARP↓, cleaved

Caspases-3↓, p-p38↓, p-JNK↓, TUNEL-positive neurons↓

Park et al.,

2018

Radix

Scrophulariae

aqueous

extract

KunMing

mice

Male 18–22 MCAO

(2 h)/R

(22 h)

2.4 g/

kg, i.g.

Pretreatment

for 7 d; q.d.

Bcl-2↑, SOD↑, MDA↓, NO↓, Bax↓, p-ERK1/2↓, p-P38↓ Meng et al.,

2018

↑, upgrade; ↓, downgrade.
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related to inhibition of oxidative stress response, Ca2+ and ROS

overproduction-evoked MPTP opening, and the transfer of

mitochondrial Cyto-c to the cytoplasm, and thus increasing

mitochondrial ATP supply and MMP (Sun et al., 2014). The

authors further illuminated that GA could inhibit MPTP-
induced apoptosis by regulating ERK-CypD axis, which may

make GA a natural MPTP opening inhibitor for treating

ischemic stroke (Sun et al., 2017). Earlier studies have reported

that the anti-oxidative stress and apoptotic properties of trans

resveratrol (Agrawal et al., 2011) and resveratrol (Narayanan

et al., 2015) may lead to a protective effect against ischemia.

Subsequently, studies confirmed that OGD/R induced bEND3
cerebrovascular endothelial cell edema was associated with

monocyte chemoattractant protein and intracellular Ca2+

overload, while resveratrol could maintain mitochondrial

MMP by inhibiting ROS and elevated Ca2+ ions, thus

improving hypoxic brain edema (Panickar et al., 2015).

Excitingly, recent study has further demonstrated that the anti-
anoxic brain protection of preadministrated resveratrol may be

related to consolidating mitochondrial tolerance to anoxia and

increasing VDAC level and energy synthesis (Khoury et al.,

2019). However, on the contrary, picroside II could interdict

release of pro-apoptotic factor Endo G into the nucleus driven by

MPTP opening, ROS production and VDAC1 protein expression

(Li S. et al., 2018). Therefore, it is worth further focus on VDAC,

one of the main components of MPTP, as an interesting target

for stroke treatment.
In vivo and in vitro studies have shown that oxysophoridine

could regulate Bcl-2 family members, and thereby counteracting

mitochondria-mediated apoptosis. Meanwhile, it was possible to

suppress Ca2+ overload of neurons and maintain mitochondrial

MMP by anti-oxidative stress and inhibiting the toxicity of

neuronal excitatory amino acids (Chen et al., 2013; Wang

et al., 2013; Zhao et al., 2013). Oxysophocarpine could also
limit hypoxia-induced neuronal apoptosis by inhibiting Ca2+ and

increasing MMP (Zhu et al., 2014). Further studies have shown

that the inhibitory effect of apoptosis was related to anti-

inflammatory and down-regulation of MAPK signaling

pathway (Zhao et al., 2017a). Similarly, aloperine (Ma et al.,

2015), matrine, and oxymatrine (Zhao et al., 2015a; Zhao et al.,
2015b; Liu Y. et al., 2019) may have the same protective effect

against ischemic neuron apoptosis. As a reversible selective

inhibitor of true cholinesterase, huperzine A has been shown

to inhibit mitochondrial complexes I–IV, a-ketoglutarate

TABLE 5 | The in vitro mechanism underlying the inhibition of MPTP opening-induced neuronal apoptosis by herbal medicine in the treatment of ischemic stroke.

Agents Cell lines Model Dose Time periods Mechanisms References

ABP PHN of

embryonic,

18-d SD

rats

OGD (NMDA insult,

0.5 h)/R (24 h)

1 µg/ml Pretreatment for

12 h and during

OGD/R period

MMP↑; Bax↓, Caspase-3↓, ROS↓ Shen et al.,

2010

GLP PCN of

neonatal SD

rats (<24 h)

OGD (5% CO2 and

95% N2, 2 h)/R (24 h)

0.1, 1.0,

and 10.0

mg/ml

Pretreatment for

0.5 h and during

OGD/R period

Bcl-2↑; cleaved Caspases-3/8/9↓, Bax↓ Zhou et al.,

2010

Astragalosides PC12 OGD (5% CO2 and

95% N2, 5 h)/R (24 h)

1, 100,

and 200 g/

ml

During reperfusion

period

MMP↑, p-p38/p38↑,; fragmented DNA↓, LDH↓, Caspase-3/9/

12↓, cleaved Caspases-3/9↓, ROS↓, LC3–11↓, Bip↓, neuronal

apoptosis under flow cytometry↓,

Chiu et al.,

2014

Clinacanthus

nutans Lindau

PCN of

embryonic,

15.5-d Balb/

c mouse

OGD (0.02–0.1% O2,

5% CO2, 10% H2,

and 85% N2, 0.5 h)/R

(4–24 h)

6.25 mg/ml Pretreatment for 1

h and during

OGD/R period

14-3-3ϵ↑, C/EBPb↑, PPAR-g↑, p-Bad↑, Bcl-2↑, MMP↑; cleaved

Caspase-3↓, PARP-1↓

Wu J. et al.,

2017

LBP PHN of

neonatal SD

rats (<24 h)

OGD (5% CO2 and

95% N2, 2 h)/R (24 h)

10, 20,

and 40

mg/L

During reperfusion

period

MMP↑, IkB-a↑, LDH↓, ROS↓, Ca2 +
↓, IL-6↓, TLR4↓, NF-kB↓,

Hoechst 33342 positive neurons↓, TUNEL-positive cells↓

Zhao et al.,

2017b

Spatholobi

Caulis

extract

SH-SY5Y A-24 h etoposide

insult

25 and 50

mg/ml

Pretreatment for 6

h and co-culture

with etoposide for

24 h

MMP↑; cleaved PARP↓, p-p53↓, cleaved Caspase-3↓,

Caspase-3/7↓, p-JNK/JNK↓, p-p38 /p38↓, TUNEL-positive

neurons↓, neuronal apoptosis under flow cytometry↓

Park et al.,

2018

Radix

Scrophulariae

aqueous

extract

PC12 OGD (5% CO2 and

95% N2, 2 h)/R (24 h)

6.25,

12.50,

25.00, and

50.00 µg/

ml

Pretreatment for

24 h

Bcl-2↑, SOD↑, GSH-Px↑, CAT↑, MMP↑; LDH↓, MDA↓, NO↓,

Bax↓

Meng et al.,

2018

CDP PC12 OGD (5% CO2 and

95% N2, 4 h)/R (24 h)

0.05, 0.50,

and 5.00

mg/ml

During reperfusion

period

CAT↑, GSH-Px↑, T-AOC↑, MMP↑, DJ-1↑; ROS↓, LDH↓, MDA↓,

Ca2+↓, neuronal apoptosis under flow cytometry↓,

Hoechst33342 positive neurons↓

Liu et al.,

2018

Scutellaria

barbata D.

Don extract

PC12 OGD (1% O2, 5%

CO2, and 94% N2, 6

h)/R (18 h)

0.1–0.8

mg/ml

Pretreatment for

12–48 h

p-PI3K/ PI3K↑, p-AKT/AKT↑, p-PI3K↑, p-AKT↑, Nrf2↑, SOD↑,

GSH↑, MMP↑, Ki67 positive cells↑,Cycin D1↑, Cyclin E↑;

MDA↓, Bax↓, cleaved Caspase-3↓, Bid↓, neuronal apoptosis

under flow cytometry↓

Wang et al.,

2019e

Aglaia odorata

Lour. extract

PC12 OGD (5% CO2 and

95% N2, 4 h)/R (24 h)

5, 10, and

50 ng/ml

During OGD/R

period

MMP↑, Caspase-3↑, PARP↑, Bcl-2↑; LDH↓, cleaved PARP↓,

cleaved Caspase-3/9↓, Bax↓, p53↓, Puma↓, mtROS↓, AO/EB

and Hoechst 33258 positive neurons↓

Wang et al.,

2020

↑, upgrade; ↓, downgrade.
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dehydrogenase, and MMP decline after ischemia, which helps to

eliminating excessive ROS and Ca2+ (Zheng et al., 2008).

Considering the short in vivo half-life of tetramethylpyrazine, a

novel compound containing tetramethylpyrazine and carnitine

structures was synthesized. Further in vivo and in vitro results
also confirmed that its anti-hypoxic brain protective effect was

related to anti-oxidative stress and anti-inflammatory, ultimately

maintaining the morphology and function of neurons and

inhibiting neuronal apoptosis (Wang et al., 2017). Of course,

there are other natural compounds that antagonize ischemia-

infuriated morphological and functional disorders of brain
mitochondria by regulating oxidative stress signals such as

leonurine (Loh et al., 2010) and neferine (Wu C. et al., 2019).

Flavonoids resisting oxidative stress may drive the recovery of

ischemia attacked neuron mitochondrial function, evidenced by

increased mitochondrial biosynthesis and respiration, dampened

Ca2+ production, and mitochondria edema, such as icariside II
(Feng et al., 2018), as well quercetin and epicatechin in flavonols

(Nichols et al., 2015). As an Nrf2 activator, mangiferin inhibited

the nuclear translocation of two subunits of NF-kB, p65 and p50,
and the superior antioxidant properties of mangiferin and morin

inhibited Ca2+ overload and improved mitochondrial MMP, thus

counteracting the lethal post-ischemic neuronal excitatory toxic

damage and cascade apoptosis (Campos-Esparza et al., 2009).

Other reports suggested that the protective effects of genistein

(Qian et al., 2012), isorhamnetin (Li et al., 2016), and vitexin (Cui

et al., 2019) against ischemia may involve both inflammation and

inhibition of neuronal apoptosis. Most terpenoids also have

antioxidant properties similar to those of alkaloids and
flavonoids, which helped maintain mitochondrial morphology

and respiratory function as well as ischemia-induced neuronal

apoptosis, such as bilobalide (Schwarzkopf et al., 2013) and

Swertiamain (Wang et al., 2019b). Studies have shown that the

treatment time window of asiatic acid can be maintained for at

least 12 h, which is related to the improvement of MMP and the
inhibition of mitochondrial Cyto-c release (Krishnamurthy et al.,

2009). The balanced redox effect of ginsenoside Rd may

contribute to the improvement of cerebral injury symptoms

(Ye et al., 2011a). Further evidence showed that Rd could

improve mitochondrial respiratory function and increase ATP

production by reducing ROS production, thereby maintaining
MMP and inhibiting neuronal apoptosis (Ye et al., 2011b), which

was similar to dehydrocostuslactone’s protection of rat

hippocampal slices from OGD/R-induced damage (Zhao et al.,

2018a). Astragalosides IV may maintain mitochondrial function

and inhibit OGD/R-induced cortical neuronal apoptosis by

regulating PKA/CREB signaling pathway (Xue et al., 2019). In

vivo and in vitro evidence suggested that Salvinorin A played an

FIGURE 2 | Representative herbal images that may inhibit ischemic neuron apoptosis by regulating MPTP. Sixteen herbs are shown here.
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anti-apoptotic and anti-hypoxia protective role in brain

involving the reduction of ROS and Ca2+ production in
cerebrovascular endothelial cells, the activation of AMPK/Mfn2

signaling pathway, and ultimately maintenance of mitochondrial

morphology and MMP (Dong et al., 2019). As an excellent

natural biological cross-linking agent and a specific inhibitor of
mitochondrial uncoupling protein 2 (UCP2), in vivo studies have

shown that genipin could improve mitochondrial energy

FIGURE 3 | Continued
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metabolism by inhibiting UCP2-SIRT3 signaling pathway to

mitigate oxidative stress injury and neuronal apoptosis after

hypoxic brain injury (Zhao B. et al., 2019).

Other compounds such as taurine (Zhu et al., 2016) and

echinacoside (Wei W. et al., 2019) could also regulate Bcl-2

family members through antioxidant stress, and inhibit

mitochondrial apoptosis to improve hypoxic brain injury.
Ischemic brain protection against neuronal apoptosis of phenolic

acid compounds tetrahydroxystilbene glucoside (Wang et al., 2009),

vanillin (Lan et al., 2019), curcumin (Zhang et al., 2017), and

apocynin (Connell et al., 2012) may also further involved in the

mechanism of anti-inflammatory, such as regulating the NF-kB and

JNK, or targeting SIRT1. The antioxidant activity of quinones
shikonin (Wang et al., 2010) and aloin (Chang R. et al., 2016),

with a similar anti-cerebral ischemia action of rhein in our previous

study (Zhao et al., 2018b), as well as phenylpropanoid compounds

cinnamtannin D1 and trans-cinnamaldehyde (Panickar et al., 2015;

Qi et al., 2016) from cinnamon might reduce the accumulation of

Ca2+ and ROS, thus improving MMP to exert anti-ischemic neuron

apoptosis. Through the above analysis of officially authorized drugs
for the treatment of ischemic stroke, ethnic drug prescription, herbs,

and monomer components, we found that most of them have the

effect of anti-oxidative stress. The inhibition of overloaded Ca2+ and

overproduced mtROS is the premise of drugs to reverse the decline

of MMP after ischemia, improve mitochondrial respiratory

function, and maintain the ATP supply of neurons. Although
apoptosis might be the ultimate destination of neurons after

ischemic stroke, we are pleasantly surprised to find that many

adverse factors after ischemia might drive mitochondrial MPTP

overopening. Meanwhile, we have previously discussed some

potential proteins or oligomers that may be involved in regulating

MPTP opening after cellular hypoxia, such as Bcl-2, Bax, Bcl-xL,

and oligomer Bax/Bak of the Bcl-2 family. Through reviewing
literatures, we also found that the above natural products could

directly or indirectly inhibit MPTP overopening after ischemia.

Furthermore, increased OMM permeability and collapsed

mitochondrial membrane structures are inhibited. Ultimately, the

integrity of the mitochondrial membrane and MMP are rescued,

thus inhibiting the vicious cycle of excessive Ca2+ and mtROS

production. As seen from the end results, caspase-dependent

apoptosis triggered by the release of mitochondrial contents such
as Cyto-c and AIF was blocked. Collectively, we have reason to

believe that mitochondrial MPTP may be a potential target of

natural products to inhibit neuronal apoptosis in treatment of

ischemic stroke. Among the mechanisms, there may also be

inflammation and oxidative stress signaling involved in MPTP

opening and apoptosis. We summarized the mechanisms by
which ethnic drugs may regulate MPTP to inhibit apoptosis of

ischemic neurons, as shown in Figure 4. Among them, the

mechanisms that have not been reported and elucidated still need

to be further probed.

CONCLUSION AND FUTURE PROSPECTS

The literatures on targeted improvement of mitochondrial MPTP

by ethnic medicine were reviewed systematically and purposefully.

We were ecstatic to accept the trend that balanced mitochondrial

MPTP was becoming a novel strategy for drug treatment of stroke

(Briston et al., 2019). First, we identified that the process of stroke

was associated with an abnormal over-opening of mitochondrial
MPTP. Any factors that induced insufficient blood supply to the

brain may lead to robust ROS, unbalanced intracellular Ca2+

homeostasis, decrease MMP, inflammation, and ERS. These

detrimental events were doomed to be fatal to mitochondria and

initiate changes in the three-dimensional conformation of

mitochondrial MPTP, which would in turn aggravate the

FIGURE 3 | The structural information of underlying compounds for regulation of MPTP opening to inhibit apoptosis in ischemic neurons. The structural formulae of

29 monomer compounds are shown in the figure.
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TABLE 6 | The in vivo mechanism underlying the inhibition of MPTP opening-induced neuronal apoptosis by monomeric compounds in the treatment of ischemic stroke.

Agents Objects Gender Weight

(g)

Animal model Dose Time periods Mechanisms References

Asiatic acid C57BL/

6

male 22–27 pMCAO 30, 75,

and 165

mg/kg,

i.g.

1 h before

and 3, 10,

and 20 h after

pMCAO

Cyto-c↓, BBB permeability (IgG)↓ Krishnamurthy

et al., 2009

Ginsenoside

Rd

SD male 270–

320

MCAO 50 mg/

kg, i.p.

30 min before

MCAO

MMP↑, aconitase↑, mitochondrial

complexes I-IV↑; ROS↓, lactate/pyruvate

ratio↓, cleaved Caspase-3, Cyto-c↓, AIF↓

Ye et al.,

2011b

Genistein C57/

BL6J

male 24–28 MCAO (1 h)/R (24 h) 2.5, 5,

and 10

mg/kg,

i.g.

Pretreatment

once daily for

2 w

SOD↑, GSH-Px↑, mitochondrial Cyto-c↑;

MDA↓, mtROS↓, cytosolic Cyto-c↓,

Caspase-3↓, TUNEL-positive neurons↓, p-

NF-kB p65 subunit↓, p-IkBa↓

Qian et al.,

2012

Oxysophoridine ICR male 20–25 MCAO (2 h)/R (24 h) 62.5,

125, and

250 mg/

kg, i.p.

Pretreatment

once daily for

1 w

SOD↑, GSH-Px↑, Bcl-2↑; MDA↓, Caspase-

3↓, Bax↓, TUNEL-positive neurons↓

Wang et al.,

2013

Echinacoside SD both 12–17 Permanent ligation of the left

CCA plus low oxygen

atmosphere (8% O2, 92%

N2) for 2.5 h

40, 80,

and 160

mg/kg,

i.p.

Every 12 h

after

operation, a

total of 4

times

SOD↑, GSH-Px↑, CAT↑, T-AOC↑, Bcl-2/

Bax↑; MDA↓, Caspase-3↓, TUNEL-positive

neurons↓

Wei W. et al.,

2019

Gallic acid SD male 250–

300

MCAO (2 h)/R (24 h) 25 and

50 mg/

kg, i.v.

20 min before

MCAO

MMP↑, mitochondrial Cyto-c↑; MDA↓,

ROS↓, cytosolic Cyto-c↓, TUNEL-positive

neurons↓

Sun et al.,

2014

SD male 250–

300

MCAO 50 mg/

kg

binding capacity of CypD and ANT-1↓,

MPTP openinng↓, p-ERK↓, Cyto-c↓,

cleaved Caspase-3/8/9↓

Sun et al.,

2017

Oxymatrine SD both —— Permanent ligation of the left

CCA plus low oxygen

atmosphere (8% O2, 92%

N2) for 2.5 h

30, 60,

and 120

mg/kg,

i.p.

Every 12 h

after

operation, a

total of 2

times

SOD↑, GSH-Px↑, CAT↑, T-AOC↑, Bcl-2/

Bax↑, MDA↓, Caspase-3↓, neuronal

apoptosis under flow cytometry↓

Zhao et al.,

2015a

Matrine ICR male 20–25 MCAO (2 h)/R (24 h) 7.5, 15,

and 30

mg/kg,

i.p.

Pretreatment

once daily for

1 w

SOD↑, GSH-Px↑, CAT↑, T-AOC↑, Bcl-2/

Bax↑, MDA↓, Caspase-3↓, neuronal

apoptosis under flow cytometry↓

Zhao et al.,

2015b

Taurine SD both —— Permanent ligation of the left

CCA plus low oxygen

atmosphere (8% O2, 92%

N2) for 2 h

30, 60,

and 120

mg/kg,

i.p.

Every 12 h

after

operation, a

total of 2

times

SOD↑, GSH-Px↑, T-AOC↑, Bcl-2/Bax↑,

ATP↑; LA↓; MPO↓, MDA↓, AIF↓, Cyto-c↓

Zhu et al.,

2016

HSYA Wistar male 220–

250

MCAO (1 h)/R (24 h) 8 mg/

kg, i.v.

After

reperfusion

GSH↑, CAT↑; MDA↓, TNF-a↓, MPTP

opening↓

Ramagiri and

Taliyan, 2016

Curcumin Wistar male 180–

200

MCAO/R 25 mg/

kg, i.p.

Bcl-↑, Sirt1↑, MMP ↑; p53↓, Bax↓, IL-6↓,

TNF-a↓, ROS↓

Zhang et al.,

2017

Picroside II Wistar male 240–

260

MCAO (2 h)/R (24 h) 20 mg/

kg, i.p.

15 min before

MCAO/R.

VDAC1↓, cytoplasmic and nuclear EndoG↓,

ROS↓, MPTP opening↓, TUNEL-positive

neurons↓

Li S. et al.,

2018

Rhein SD male 260–

300

MCAO (2 h)/R (72 h) 25, 50,

and 100

mg/kg,

i.g.

3 days

following

MCAO/R

SOD↑, GSH-Px↑, CAT↑, Bcl-2/Bax ratio↑;

MDA↓, Caspase-3/9↓, cleaved Caspase-3↓

Zhao et al.,

2018b

Genipin C57BL/

6

male 25–30 MCAO (1 h)/R (24 h) 50 mg/

kg, i.g.

Pretreatment

once daily for

3 d

ATP↑, SOD↑, GSH↑; UCP2↓, SIRT3↓,

NAD+/NADH↓, LDH↓, cleaved Caspase-3↓,

TUNEL-positive neurons↓

Zhao B. et al.,

2019

Swertiamain ICR male 20–25 MCAO (2 h)/R (24 h) 25, 100,

and 400

mg/kg,

i.p.

Pretreatment

once daily for

1 w

Bcl-2/Bax↑, SOD↑, GSH-Px↑, CAT↑,

GSH↑, nulcear Nrf2↑, HO-1↑, NQO1↑;

MDA↓, Keap1↓, cytoplasmic Nrf2↓, TUNEL-

positive neurons↓

Wang et al.,

2019b

↑, upgrade; ↓, downgrade.
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production of mitochondrial ROS, mitochondrial edema, the

booming cytoplasmic Ca2+, the decline of MMP, and the

reduction of ATP synthesis. To sum up, all these adverse

biological events that caused the loss of the function of

mitochondrial bilayer barrier would inevitably disrupt the

material transfer between mitochondrial matrix and cytoplasm.

Consequently, the activated mitochondrial dependent apoptosis

was triggered according to an inherent set of biological

TABLE 7 | The in vitro mechanism underlying the inhibition of MPTP opening-induced neuronal apoptosis by monomeric compounds in the treatment of ischemic stroke.

Agents Cell lines Model Dose Time periods Mechanisms References

Asiatic acid HT-22 OGD (5 h)/R (24

h)

1 and

10 µg/

ml

Posttreatment

for 24 h

MMP↑, Cyto-c↓ Krishnamurthy

et al., 2009

Tetrahydroxystilbene

glucoside

PCN of

neonatal SD

rats

OGD (5% CO2

and 95% N2, 2

h)/R (24 h)

25 µM Pretreatment

for 24 h

MMP↑, SIRT1↑, Bcl-2/Bax↑; LDH↓, ROS↓, p-JNK↓, iNOS↓,

nuclear p65↓, Ca2+↓, Hoechst 33258 positive staining↓

Wang et al.,

2009

Mangiferin and

Morin

PCN of

embryonic

SD rats

50 mM glutamate

plus 10 mM

glycine

1–104

nM

During and

after

glutamate

exposure

SOD↑, CAT↑, p-Akt↑, cytoplasmic p65↑, MMP↑;

Calpain↓, p-Erk1/2↓, nuclear p65↓, AIF↓, Bax↓, ROS↓

Campos-

Esparza et al.,

2009

Trans resveratrol PC12 OGD (5% CO2,

94% N2, and 1%

O2, 6 h)/R (24 h)

5, 10,

and 25

mM

24 h before/

post OGD

Bcl-2↑, GSH↑; Bax↓, HIF-1a↓, Caspase-3↓, ROS↓, LPO↓ Agrawal et al.,

2011

Oxysophoridine PHN of

neonatal SD

rats

OGD (2 h)/R (24

h)

5, 20,

and 80

mM

OGD (2 h)/R

(24 h)

Bcl-2/Bax↑; Caspase-3/8/9↓, Cyto-c↓, Hoechst-33342

fluorescence intensity↓

SOD↑, CAT↑, GSH-Px↑, MMP↑; NOS↓, glutamate↓, Ca2+↓,

MDA↓, NO↓

Chen et al.,

2013;

Zhao et al.,

2013

Gallic acid SH-SY5Y Hypoxia

(Na2S2O4, 2 h)/R

(2 h)

0.1, 1,

and 10

mM

Pretreatment

for 24 h

MMP↑, ATP↑, oxygen consumption↑; MDA↓, intracellular ROS↓,

mtROS↓, MPTP opening↓

Sun et al.,

2014

SH-SY5Y / 0.1, 1,

and 10

mM

24 h before

H2O2-induced

MPTP

opening

binding capacity of CypD and ANT-1↓, MPTP openinng↓, p-

ERK↓, Cyto-c↓, cleaved Caspase-3/8/9↓

Sun et al.,

2017

Oxysophocarpine PHN of

neonatal SD

rats

OGD (5% CO2,

and 95% N2, 2

h)/R (24 h)

1, 2,

and 5

mmol/L

During

reperfusion

period

MMP↑; LDH↓, Ca2+↓, Caspase-3/12↓ Zhu et al.,

2014

Epicatechin and

Quercetin

PCN of

embryonic

CD1 mice

OGD (5% CO2,

5% H2, and 90%

N2, 5 min)/R (1.5

h)

0.1–10

mM

Pretreatment

for 24 h

OCRs↑, p-Akt/Akt↑, p-CREB/CREB↑, Bcl-2↑, PGC-1a↑, MT-

ND2 (complex I)↑, MT-ATP6 (complex V)↑, MMP↑; Ca2+↓, NOS↓

Nichols et al.,

2015

Aloperine PHN of

neonatal SD

rats

OGD (5% CO2,

and 95% N2, 2

h)/R (24 h)

25, 50,

and 100

mg/L

During

reperfusion

period

CAT↑, SOD↑, GSH-Px↑, T-AOC↑, MMP↑; LDH↓, Ca2+↓, MDA↓,

ROS↓, Hoechst 33342 positive staining↓

Ma et al.,

2015

Aloin PC12 OGD (5% CO2,

and 95% N2, 4

h)/R (24 h)

10, 20,

and 40

mg/ml

During OGD/R

period

MMP↑, Bcl-2↑, SOD↑; LDH↓, MDA↓, ROS↓, Ca2+↓, Bax↓,

Caspase-3↓, Hoechst 33342 positive staining↓, apoptosis under

flow cytometry↓

Chang R.

et al., 2016

Kaempferol PCN of 17-d

embryonic

rats

OGD (2 h) 10 mM Before OGD OCRs↑, p-Akt/Akt↑, MMP↑, p-Drp1/Drp1↑, ATG5↑, ATP↑, HK-

II↑, LC3 II/I ratios↑, mitochondrial Cyto-c/cytosolic Cyto-c↑;

ROS↓, Ca2+↓, SDH↓, apoptosis under flow cytometry↓, MPTP

openinng↓

Wu B. et al.,

2017

Dehydrocostuslactone hippocampal

slices of SD

rats

OGD (5% CO2,

and 95% N2, 0.5

h)/R (1 h)

1, 5,

and 10

µM

During OGD/R

period

LC3 II/I ratios↑, Bcl-2↑; LDH↓, Bax↓, Cyto-c↓, Apaf-1↓,

Caspase-3/7/9↓, p62↓

Zhao et al.,

2018a

Icariside II PC12 OGD (5% CO2,

and 95% N2, 2

h)/R (24 h)

12.5,

25, and

50 mM

Posttreatment

for 24 h

nuclear Nrf2↑, NQO-1↑, HO-1↑, Bcl-2/Bax↑, SIRT3↑, IDH2↑,
MMP↑; LDH↓, ROS↓, cytoplasmic Nrf2↓, Keap1↓, cleaved

Caspase-3↓, TUNEL-positive neurons↓

Feng et al.,

2018

Astragaloside IV PCN of 18-d

embryonic

SD rats

OGD (1% O2,

5% CO2, 3 h)/R

(24 h)

6.25,

12.5,

and 25

mmol/L

During OGD/R

period

p-PKA/PKA and p-CREB/CREB↑, ATP↑, MMP↑; LDH↓, cleaved

Caspase-3↓, ROS↓

Xue et al.,

2019

Oxymatrine PHN of

newborn SD

rats

OGD (5% CO2

and 95% N2, 2

h)/R (24 h)

0.2, 1,

and 5

µg/ml

During

reperfusion

period

MCL-1↑, Bcl-2↑, p-Akt↑, p-PI3K↑, p-GSK3b↑, MMP↑; LDH↓,

Ca2+↓, Caspase-3↓, NR2B↓ (NMDAR1), TUNEL-positive

neurons↓, neuronal apoptosis under flow cytometry↓

Liu Y. et al.,

2019

Salvinorin A HBMECs OGD (5% CO2

and 95% N2, 6

h)/R (24 h)

5 uM During

reperfusion

period

p-AMPK↑, Mfn2↑, ATP↑, MMP↑; ROS↓, Ca2+↓, apoptosis under

flow cytometry↓

Dong et al.,

2019

↑, upgrade; ↓, downgrade.
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procedures. And this process was regularly and strictly executed by
mitochondria-emitted apoptosis signal, and delivered step by step.

For instance, ischemia-induced MPTP opening leaded to the

translocation of Cyto-c from mitochondrial matrix into

cytoplasm, and binding with Apaf-1 and Caspase-9 to form

apoptosome, thereby activating caspase-dependent programmed

cell death pathways in ischemic/anoxic neurons. Secondly, we

found piece by piece that ethnic drug prescriptions, herbal
medicine, and monomer components could participate in

regulation of excessive MPTP opening induced-ischemic neuronal

apoptosis from different perspectives. We therefore concluded that

mitochondrial MPTP, a very considerably intermediate link in

apoptosis signaling, might be a novel target for natural products

in treatment of stroke.
However, by weighing the pros and cons, the following aspects

should be worthy to further optimization considering the anti-

apoptotic brain protection effect of ethnic drugs through regulation

of mitochondrial MPTP. First, the complexity and uncertainty of

active ingredients penetrating blood brain barrier (BBB). Current

methods for identifying active ingredients included high

performance liquid chromatography (HPLC), mass spectrum, gas
chromatography-mass spectrometer (GC-MS), or liquid

chromatograph-mass spectrometer (LC-MS). However, the key

problem lay in the selection and preprocessing of samples for

content determination: the original herbs or prescription extracted

by simple decoction, ultrasound or different proportions of organic
reagents, animal serum or brain tissue homogenate after

administration. Any test based on those ideas would simply

identify specific monomer compounds contained in certain

prescriptions or extracts. However, the premise of drug efficacy

was to achieve a certain concentration in target organs or tissues

such as specific brain regions to stimulate the transmission of anti-

apoptotic protective signals. Slightly regretfully, the qualitative or
quantitative identification methods mentioned above cannot

completely represent the concentration of drug enrichment in

cerebral ischemic regions. For this existing and confronting

problems, we proposed that a microdialysis device coupled

HPLC/MS would be a potential platform for screening active

ingredients (Reyes-Garcés et al., 2019) or changeable pH value of
brain microenvironment (Su and Ho, 2019). Moreover, distribution

concentrations of different small molecule drugs targeting distinct

brain regions could be dynamically presented in real time and in

vivo by an integrated platform of high resolution laser confocal

microimaging coupled with brain MS imaging (He et al., 2019; Liu

C. et al., 2019). Finally, a multi-dimensional image of drug

distribution in brain tissue was visually and stereoscopically
constructed. Second, the rationality of in vivo and in vitro

simulation of clinical stroke model in light of the complexity of

BBB tissue structure (Sweeney et al., 2019). Currently, diverse in

vivo stroke models for cerebral ischemia, or in vitro OGD/R-

FIGURE 4 | A panoramic view of natural products inhibiting MPTP opening-induced neuronal apoptosis in the treatment of ischemic stroke. Any adverse stimuli

after ischemic stroke could favor MPTP opening. However, natural products that inhibit MPTP opening could further prevent neuronal inflammation after ischemia,

oxidative stress injury, and mitophagy, and finally repress ischemic neuron apoptosis.
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induced hippocampal slices or different neuron injury models,

which were widely accepted and acquiescent, cannot reproduce

the scene of changes in brain tissue structure and the specific

molecular-mediated damage mechanisms yet. Therefore, the above

existing stroke models needed to be further discussed. However, it

was encouraging to note that our research group had successfully
established in vitro co-culture models of cerebrovascular endothelial

cell, astrocytes, and pericytes to simulate BBB (the data have not yet

been published), referring to the organ-like models of multiple

neurons co-culture or BBB previously reported (Bergmann et al.,

2018). Of course, through establishment of in vitro neurovascular

unit (NVU), we also strived to achieve real-time and rapid
evaluation of natural small molecule compounds passing BBB,

and to screen the quality markers of ethnic drugs and functional

protein targets on a coupled microfluidic chip-mass spectrometry

(MC-MS) platform (Wang et al., 2019d).

Third, the mechanisms of small molecular compounds acting on

mitochondrial MPTP to inhibit apoptosis after ischemic stroke were
unsophisticated. According to what we have learned, the

conventional means demonstrating the interrelationship between

drugs and MPTP were limited to the following. After intervention

with MPTP inhibitors or agonists, conventional western blot,

immunohistochemistry/fluorescence (Bonora et al., 2016), flow

cytometry, and qRT-PCR were employed to evaluate the effect of

drugs on changes in protein and gene expression that made up

MPTP, such as VDAC and ANT. In addition, gene editing such as

plasmids or viruses transfection of target gene vectors to overexpress

or silence the target gene, or to completely knock out or down the

target gene and observe the effect of drugs onMPTP were also some
popular molecular biology methods. Certain proteins or protein

complexes such as Bax/Bak dimerization, mtROS, oxidative stress,

and inflammatory factors could regulate MPTP opening-induced

cell apoptosis, thus providing indirect evidence for drug regulation

of MPTP. The more intuitive evidence might be to detect some of

triggering hallmarks after MPTP opening, such as mitochondrial
swelling, decreased MMP and ATP production, and detection of

fluorescent labeled cytoplasmic Ca2+ surge. However, none of the

above methods could provide direct evidence of drug-MPTP-

apoptosis. That is, it cannot be visualized that drugs confined

MPTP opening, and thus inhibiting cell apoptosis. The

deficiencies of the above mechanisms investigation included the
limited understanding of MPTP and the limitations of current

molecular imaging technologies. Therefore, more efforts were

needed to explore the molecular basis and regulatory mechanism

of MPTP. We also had reason to believe that the laser confocal high

intentionality live cell real-time imaging and analysis system would

FIGURE 5 | Conceptual flowchart of combined multiple techniques for MPTP regulation by natural products on apoptosis of ischemic neurons. Mitochondrial MPTP

is a novel target for the treatment of ischemic stroke. Determination of the distribution of natural products in distinct brain regions, reasonable in vivo and in vitro

stroke models, and advanced MPTP imaging technologies will be conducive to the development of ethnic drugs targeting MPTP.

Li et al. Ethnomedicine and MPTP in Apoptosis

Frontiers in Pharmacology | www.frontiersin.org March 2020 | Volume 11 | Article 35217

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


be a robust alternative for probing drug targeted regulation of

MPTP. Moreover, patch-clamp combined with two-photon living

cell imaging technology also had potential prospects for detection of

prophylaxis and treatment of ethnic drugs on post-stroke

mitochondrial MMP and Ca2+ or other ion levels (Kislin et al.,

2017; Wilson et al., 2018; Zhang et al., 2019c). In conclusion, we
were optimistic that abnormal opening of mitochondrial MPTP-

induced apoptosis would become a potential target for stroke

treatment by ethnic medicine. Further, we conceived and

constructed the systematic process and program of drugs

regulating mitochondrial MPTP to inhibit apoptosis in ischemic

stroke, as shown in Figure 5. However, objectively speaking, no
matter how many preclinical investigations were merely paving the

way for screening mitochondrial MPTP targeted candidates, clinical

trials with large samples and multi-center joint evaluation of the

clinical efficacy of candidates were still necessary to be carried out.
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