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Mitochondrial oxidative capacity and NAD+

biosynthesis are reduced in human sarcopenia
across ethnicities
Eugenia Migliavacca et al.#

The causes of impaired skeletal muscle mass and strength during aging are well-studied in

healthy populations. Less is known on pathological age-related muscle wasting and weakness

termed sarcopenia, which directly impacts physical autonomy and survival. Here, we com-

pare genome-wide transcriptional changes of sarcopenia versus age-matched controls

in muscle biopsies from 119 older men from Singapore, Hertfordshire UK and Jamaica.

Individuals with sarcopenia reproducibly demonstrate a prominent transcriptional signature

of mitochondrial bioenergetic dysfunction in skeletal muscle, with low PGC-1α/ERRα sig-

nalling, and downregulation of oxidative phosphorylation and mitochondrial proteostasis

genes. These changes translate functionally into fewer mitochondria, reduced mitochondrial

respiratory complex expression and activity, and low NAD+ levels through perturbed NAD+

biosynthesis and salvage in sarcopenic muscle. We provide an integrated molecular

profile of human sarcopenia across ethnicities, demonstrating a fundamental role of altered

mitochondrial metabolism in the pathological loss of skeletal muscle mass and function in

older people.
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L
oss of muscle mass and strength is a fundamental feature of
aging. Both muscle mass and muscle strength decline
between 3 and 8% per decade after midlife, with rates

accelerating after age 60 years1. Age-related muscle decline is
driven by lifestyle, endocrine, nutritional, and cellular causes that
are well-studied in healthy older populations2,3. Preclinical and
human studies comparing young and aged individuals suggest
that chronic low-grade inflammation4, loss of anabolic signaling
through GH/IGF-1 (ref. 5), lower protein intake and vitamin D
insufficiency6 contribute to a loss of muscle plasticity during
aging. Systemic signals cross-talk with intrinsic mechanisms,
which compromise muscle quality at the cellular level through
impaired anabolic signaling which reduces protein synthesis,
increased myosteatosis, cycles of myofiber denervation and
innervation, altered cellular quality control by autophagy, loss of
regenerative potential through stem cell dysfunction, and per-
turbed bioenergetics7–9. Efficient skeletal muscle bioenergetics
largely relies on metabolic flexibility in mitochondria and robust
mito-hormesis to integrate mitochondrial function with the rest
of the cell and the organism10,11. Mitochondrial function in
skeletal muscle declines during aging, concomitant with a
decrease in exercise and physical activity2,12. Aged muscle fibers
have an impaired capacity to oxidize metabolic fuels in mito-
chondria, and previous studies have implicated reduced skeletal
muscle mitochondrial biogenesis, expression of mitochondrial
respiratory complex subunits, mitochondrial respiration, and
ATP levels13,14. Excessive free radical production by the electron
transfer chain and altered reactive oxygen species detoxification
have been suggested to cause cumulative damage during aging,
leading to the impairment of mitochondrial function through
mitochondrial protein oxidation and mutations within mtDNA15.
In addition, work in model organisms has demonstrated that
aging impairs mitochondrial dynamics16, and the ability to repair
or recycle damaged mitochondria through the mitochondrial
unfolded protein response (UPRmt) and mitophagy17,18.

While the molecular processes associated with the average
functional decline of muscle in the healthy population have been
well studied, little is known about the pathological state of sar-
copenia, the pathological muscle wasting and weakness of the old
age recently assigned an ICD-10 disease code due to its negative
impact on physical function, quality of life, and survival6,19–21.
Sarcopenia is defined clinically by low muscle mass and func-
tional impairments of mobility and muscle strength, using
population cutoffs which define the subset of the older population
with the highest risk of physical dysfunction22,23. Sarcopenia
predicts future disability and mortality19,24, and associates with
high healthcare costs25. Prevalence estimates of sarcopenia vary
according to the age group, operational definition used and
clinical setting, ranging from 2 to 20% in community dwelling
older people and up to 33% among patients in long term care26.
Recognized influences contributing to the variability between
older individuals include age, gender, developmental plasticity,
fixed genetic factors, physical activity, nutrition, and co-
morbidities6,19,27,28, but much variation remains unexplained.
Standardization of the clinical definition now provides an
opportunity to characterize the molecular “signature” of sarco-
penia in older people.

Here, we report a novel multi-ethnic study comparing the
genome-wide transcriptomic profiles of skeletal muscle biopsies
from older men diagnosed with sarcopenia with age-matched
controls using high coverage RNA sequencing (MEMOSA—
Multi-Ethnic Molecular determinants of Sarcopenia). For the first
time we demonstrate that mitochondrial bioenergetic dysfunction
is the strongest molecular signature of sarcopenia in three distinct
ethnic populations, with major impairments of oxidative phos-
phorylation, mitochondrial dynamics, and mitochondrial quality

control through the UPRmt. Mechanistically, this associates with
the downregulation of an ERRα/PGC-1α/NRF1 regulatory mod-
ule, lower NAD+ levels and alterations of mitochondrial
respiratory complex protein expression and activity in human
sarcopenia.

Results
Twenty community-dwelling sarcopenic men of Chinese descent
and 20 age-matched controls were recruited in Singapore (Sin-
gapore sarcopenia study, SSS, mean age 71.5 years); SSS findings
were validated using existing cohorts in the UK (Hertfordshire
sarcopenia study, HSS) and Jamaica (Jamaica sarcopenia study,
JSS) (Supplementary Table 1). Sarcopenia was defined based on
harmonized consensus clinical definitions of the AWGSOP (SSS)
or EWGSOP (HSS/JSS)26, using skeletal muscle mass evaluation
by DXA measurement of appendicular lean body mass index
(ALMi), grip strength, and gait speed (Supplementary Table 2).
Genome-wide transcriptome was profiled on vastus lateralis
muscle biopsies using high coverage total RNA sequencing with
>70 million reads per sample (Supplementary Data 1).

Mitochondrial dysfunction is the major transcriptional hall-
mark of sarcopenic muscle. Case–control analysis in SSS
revealed a strong perturbation of muscle gene expression in
sarcopenic participants where 179 genes encoding 150 proteins
and 29 noncoding RNAs were altered in sarcopenic muscle with
false-discovery rate (FDR) < 10% (Fig. 1a; Supplementary Data 2).
This sarcopenic signature was enriched in downregulated genes,
out of which 133 genes were annotated under the mitochondrion
gene ontology term (Fig. 1b, green ticks). Independent mRNA
gene expression validation of 80 selected genes using nanoString
nCounter demonstrated tight correlation with RNAseq data
(Supplementary Fig. 1a; Supplementary Data 3), and confirmed
lower expression of mitochondrial function genes in sarcopenic
muscle (Fig. 1c). Network and gene ontology analysis of down-
regulated genes distinguished several clusters linked to mito-
chondrial respiratory chain complexes, oxidative phosphorylation
and mitochondrial translation (Fig. 1d, e). Mitochondrial altera-
tions were also confirmed as the strongest signature in sarcopenic
muscle in pathway enrichment analyses using CAMERA (Fig. 2a,
b; Supplementary Data 4). Mitochondrial respiratory chain, TCA
cycle regulator, and oxidative phosphorylation gene sets were
repressed in sarcopenic muscle with highly significant FDRs
(<10E−10). Gene sets affected by age-related neurodegenerative
diseases such as Alzheimer disease were also downregulated in
sarcopenic muscle (Fig. 2a), but the enrichment of these gene sets
was caused by regulators of mitochondrial function (Supple-
mentary Fig. 1b) that are also altered during neurodegeneration29.
Mitochondrial function in skeletal muscle declines throughout
the life course through impaired mitochondrial biogenesis,
expression of mitochondrial respiratory complex subunits,
mitochondrial respiration, and ATP levels during aging2,12. To
uncouple the pathological drivers of sarcopenia from the general
effect of aging on mitochondrial function, we adjusted the
genome-wide RNAseq analyses for age. Age-adjustment slightly
decreased the statistical significance of the differentially expressed
genes (Supplementary Fig. 1c), but the rank of genes differentially
expressed in sarcopenic muscle was highly conserved (Supple-
mentary Fig. 1d, Spearman rank correlation rs= 0.95). Mito-
chondrial function and oxidative phosphorylation remained the
strongest downregulated hallmarks of sarcopenic muscle in age-
adjusted pathway enrichment analyses (Supplementary Fig. 1e).
Thus, mitochondrial energy production is the strongest tran-
scriptional signature of sarcopenia and pathological muscle
dysfunction.
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Altered signaling through ERRα and PGC-1α in sarcopenic
muscle. The pathway enrichment analyses of sarcopenic muscle
also revealed lower expression of the transcriptional networks
regulated by the ERRα nuclear receptor (gene name ESRRA) and
the PGC-1α transcriptional coactivator (PPARGCA1) (Fig. 2a),
while the mRNAs of the energy sensor AMP-activated kinase
(AMPK) and its downstream targets were not changed during
sarcopenia (Supplementary Fig. 2a–c). mRNA levels of PGC-1α
and ERRα were reduced in sarcopenic muscle (Fig. 2c), and
downstream targets including TFAM30 were also downregulated
(Fig. 2c, d). In addition, the promoters of the genes down-
regulated in sarcopenic muscle were highly enriched in ERRα and
nuclear respiratory factor 1 (NRF1) binding sites (Fig. 2e, f). The
transcriptional regulators ERRα and NRF1 and their coactivator
PGC-1α have been widely demonstrated to regulate mitochon-
drial gene expression in rodents and humans30,31. In particular,
overexpression of PGC-1α or ERRα is sufficient to induce the
expression of genes controlling mitochondrial activity and to
trigger functional benefits on oxidative phosphorylation and ATP
generation. Thus, reduced transcriptional activity of ERRα and of
PGC-1α-dependent transcription factors in sarcopenic muscle
may contribute to the global mitochondrial alterations observed
in sarcopenia.

Perturbed mitochondrial dynamics and UPRmt in sarcopenic
muscle. Expression profiles of genes controlling mitochondrial
dynamics through fusion and fission were lower in sarcopenic
individuals, both through single gene and pathway enrichment
analyses (Fig. 2g; Fig. S2d). Our protein association network
analysis of genes with altered expression in sarcopenic muscle
also revealed a particularly striking node containing mitochon-
drial ribosomal protein (MRP) genes (Fig. 1d). Many genes
encoding both the small and large subunits of the mitochondrial
ribosome were downregulated in sarcopenic muscle (Fig. 2h;
Supplementary Fig. 2e), demonstrating that sarcopenia associates
with specific deficits of mitochondrial protein synthesis. MRPs
are also important to balance mito-nuclear communication dur-
ing aging and regulate a protective mitochondrial UPRmt
important for the regulation of health span and longevity in
preclinical models32. Interestingly, many genes controlling the
UPRmt were strongly downregulated in the muscle of sarcopenic
participants, including those encoding the mitochondrial heat-
shock proteins, the protease CLPP and their transcriptional
effectors UBL5, ATF4, and CHOP/DDIT3 (Fig. 2i; Supplementary
Fig. 2f). Thus, inefficient UPRmt activation during sarcopenia
fails to compensate the lower production of mitochondrial pro-
teins and their damage induced by oxidative stress10,17.
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Fig. 1 RNA sequencing of human skeletal muscle in SSS. a Volcano plot of differentially expressed genes in skeletal muscle of sarcopenic vs. age-matched

healthy older people. p-values were calculated using moderated t-statistic. The 133 genes downregulated and 46 genes upregulated in sarcopenic muscle

using a false-discovery rate (FDR) < 10% are represented in green. b Heatmap showing the 179 genes differentially expressed from (a) with FDR < 10%.

Genes belonging to the cellular component GO term “mitochondrion” (GO:0005739) are labeled with a green tick. c Validation of gene expression

changes in sarcopenic muscle of SSS for selected genes using quantitative mRNA profiling by nanoString nCounter; mRNA expression values are

normalized to ten stable housekeeping genes. n= 40 muscle samples analyzed with a two sided t test. d Network representation of the protein-protein

interactions of genes differentially regulated in sarcopenic muscle at FDR < 10% using STRING. Nodes with an interaction score > 0.9 are represented and

colored by biological function. e Gene ontology enrichment of the genes regulated in sarcopenic muscle. Pie-chart represents the % of differentially

expressed genes, *p < 0.05 and **p < 0.01 based on hypergeometric distribution tests. In a, b, d, e, n= 19–20 muscle samples per group from SSS

participants.
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Sarcopenia has a common transcriptional profile across eth-
nicities. The prevalence of sarcopenia differs by country26, but
potential differences in etiology across ethnic groups have been
little studied. To confirm the prominent role of mitochondrial
alterations in human sarcopenia observed in the SSS cohort, we
used preexisting cohorts of Caucasian (HSS, UK) and Afro-
Caribbean (JSS, Jamaica) men with sarcopenia. Gene-set enrich-
ment analysis following high coverage RNA sequencing of sar-
copenic and control muscle confirmed that mitochondrial
bioenergetic dysfunction is a strong signature of sarcopenia in all
cohorts/ethnicities (Fig. 3a), including lower oxidative phos-
phorylation, mitochondrial respiratory ETC and TCA cycle at
FDR < 10E−04 and 10% in HSS and JSS, respectively (Fig. 3a).
Gene sets controlling mitochondrial function were also con-
sistently depleted in participants with low ALMi (Fig. 3b) and low
muscle function (Fig. 3c) in HSS and JSS cohorts. Together,
transcriptomic analyses in the three independent cohorts con-
firmed a prominent contribution of genes controlling mito-
chondrial energy production and oxidative phosphorylation in
maintaining muscle mass and function in older individuals of
different ethnicity.

Role of other molecular processes in human sarcopenia.
Beyond mitochondria, other signatures contributed to the mole-
cular perturbations of human sarcopenic muscle. In particular,
ribosome and translation ontologies were overrepresented in the
genes downregulated in sarcopenia (Fig. 2a; Supplementary
Fig. 2g). Altered muscle protein synthesis has been widely asso-
ciated with low muscle mass in older people33, through a state of
anabolic resistance where anabolic hormones and dietary amino

acids fail to efficiently promote mTOR signaling and contractile
protein synthesis in myofibers34. As a sign of altered protein
anabolism, mTOR signaling was repressed in sarcopenic muscle
(FDR= 1.2E−02; Supplementary Fig. 2g), but to a much lesser
extent than oxidative phosphorylation (FDR < 10E−10; Supple-
mentary Fig. 1b). Myofiber denervation and altered neuromus-
cular junction (NMJ) morphology have been proposed as cellular
causes of muscle dysfunction during aging8. Strikingly, none of
the transcriptional signatures of denervation detected in rodent
models were observed in our study (Supplementary Fig. 2h). Sets
of genes controlling neuromuscular processes, NMJ structure and
acetylcholine receptor signaling were not deregulated in sarco-
penic muscle across the three cohorts (Supplementary Fig. 2i, k,
l), suggesting that neuromuscular dysfunction is not a major
transcriptional mechanism of human sarcopenia. Chronic low-
grade inflammation has also been proposed to contribute to
sarcopenia through systemic cytokine changes and local targeted
responses in skeletal muscle35. However, the transcriptional
profiles of sarcopenic muscle did not detect inflammatory
responses or perturbed signaling through typical pro-
inflammatory signaling pathways like JAK/STAT and NFκB in
SSS and HSS (Supplementary Fig. 2j, k). JSS revealed a weak
inflammatory response in sarcopenic muscle (Supplementary
Fig. 2l), suggesting that inflammation may associate with sarco-
penia only in a specific subset of people.

Muscle mass and strength drive the molecular phenotype of
sarcopenia. To further understand the contribution of muscle
mass and function, we performed a genome-wide association of
muscle gene expression to ALMi, grip strength and gait speed as
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Fig. 2 Mitochondrial dysfunction is the major transcriptional change during sarcopenia in SSS. a Gene-set enrichment analysis of sarcopenic vs control

muscle using CAMERA and the C2 curated gene set collection from MSigDB. Gene sets are ordered according to the significance of their enrichment; only

gene sets with an FDR < 0.1% and a gene overlap < 75% are represented. White arrows highlight gene sets linked to the transcriptional regulation of

mitochondrial function; gray arrows highlight gene sets linked to protein synthesis. b Enrichment plot for the oxidative phosphorylation gene set

“Mootha_VOxPhos; M18264”. c mRNA expression of transcriptional regulators of mitochondrial function in SSS sarcopenic vs. control muscle.

d Enrichment plot for PGC-1α target genes and ERRα target gene set (“Mootha_PGC1a; M9788” and “Stein_ESRRa_Up; M18491”). e Transcription factor

binding site enrichment of the 4 kb promoters of genes regulated in sarcopenic muscle at FDR q-value < 0.05. x-axis represents the MsigDB transcription

factor gene sets that passed the significance threshold. f ERRα and NRF1 binding motif in the proximal and distal regions flanking the transcriptional start

site (TSS) of the genes regulated in sarcopenic muscle at FDR q-value < 0.05. Benjamini Hochberg-corrected median-adjusted q-values were computed by

performing 1000 hypergeometric test permutations. g–i mRNA expression of genes regulating mitochondrial dynamics (g), mitochondrial ribosomal

protein genes (h), and UPRmt genes (i) in SSS sarcopenic vs. control muscle. In c, g–i, nominal p values of the moderated t-statistic are reported. For all

panels, n= 19–20 muscle samples per group from SSS participants.
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continuous variables (Fig. 4a). The expression of 318 genes
encoding 276 proteins and 42 noncoding RNAs were associated
with ALMi at FDR < 10%. In contrast, muscle gene expression
associations with grip strength and gait speed were weaker with
only 7 and 9 genes, respectively, associated at a nominal p value <
0.001 but FDR > 10%. A large number of genes regulated in

sarcopenic muscle were also among the most associated with
ALMi and grip strength, but not with gait speed (Fig. 4a, black
dots). At the pathway level, mitochondrial function was the
strongest biological process associated with muscle mass and
muscle function as continuous variables (Fig. 4b). In particular,
genes positively correlated with ALMi and grip strength were
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strongly enriched for TCA cycle, oxidative phosphorylation and
mitochondrial respiratory chain gene sets (FDRs < 10E−10).
These gene sets related to mitochondrial bioenergetics were also
modestly enriched in genes positively associated to gait speed
(FDR < 10%). Thus, genes controlling mitochondrial function
positively associated with all continuous parameters of sarcope-
nia. Pathway enrichment analyses also confirmed positive asso-
ciation of ALMi and grip strength with ERRα and PGC-1α
transcriptional networks (Fig. 4b, gray arrows), and with gene sets
regulating branched-chain amino acid metabolism, ribosomal
function and translation (Fig. 4b, white arrows). Together, these
results demonstrate that all clinical parameters used to diagnose
sarcopenia contribute to the molecular profiles of sarcopenic
muscle, with the strongest contribution from low muscle mass
followed by grip strength and gait speed.

Mitochondrial bioenergetics is low in human sarcopenic
muscle. To further understand how the mitochondrial tran-
scriptomic signature affects muscle bioenergetics during sarco-
penia, the expression of all genes encoding the five mitochondrial
respiratory complex subunits (Fig. 5a) was mapped in SSS sar-
copenic vs. control muscle. Mitochondrial complex genes were
downregulated in sarcopenic muscle across the five complexes
(Fig. 5b), translating to a global reduction in the protein
expression of active subunits of mitochondrial respiratory
complexes (Fig. 5c). NDUFA9, SDHa, UQCR2, and ATP5a,
representing complexes I, II, III, and V, respectively, were
downregulated by 44–51% in sarcopenic muscle (Fig. 5d).
Enzymatic assays on mitochondria isolated from muscle biopsies
demonstrated functional deficits of mitochondrial activity in
sarcopenia (Fig. 5e). In particular, the enzymatic activity of
complexes I–IV was lower in sarcopenic muscle (Fig. 5e) and the
activity of all complexes correlated positively with ALMi (Sup-
plementary Fig. 3a). The activity of the two mitochondrial TCA
cycle enzymes citrate synthase (CS) and succinate dehydrogenase
(SDH) were strongly reduced in sarcopenic muscle (Fig. 5e),
confirming that a global alteration of oxidative metabolism and
energy production is perturbed in human sarcopenic muscle.
Reduced complex activity was linked to lower amounts of mito-
chondria as it was not affected when normalized to CS activity
(Supplementary Fig. 3b). The expression of other mitochondrial
proteins such as CS and PORIN1 was also lower in sarcopenia
(Fig. 5f, g), as expected from the downregulation of the ERRα/
PGC1α/NRF1/TFAM network which controls both the amount
and bioenergetic activity of mitochondria31. Thus, sarcopenia
arises from a general bioenergetic deficit which differs mechan-
istically from primary mitochondrial myopathies caused by
decreased activity of a specific complex. Nevertheless, the global
bioenergetic deficit observed in sarcopenia can directly influence
muscle contraction and performance which rely both on the
amount and activity of mitochondria2,3.

NAD+ levels are low in human sarcopenic muscle. Intracellular
levels of NAD+ have emerged as a major regulator of oxidative

mitochondrial metabolism in health and disease36, leading to the
possibility that they could contribute to the mitochondrial sig-
nature of sarcopenic muscle. In gene-set enrichment analysis,
genes of the NAD metabolic process GO term were repressed in
sarcopenia vs. control in SSS, HSS, and JSS (Fig. 6a). To confirm
this signature, we measured NAD+ levels in remaining muscle
biopsies of SSS as NAD+ levels can be detected on small amounts
of muscle (Supplementary Fig. 4a) and are 99% correlated using
biochemical and mass spectrometry assays (Supplementary
Fig. 4a, b). Muscle NAD+ levels were decreased by 32% in sar-
copenics vs. controls (Fig. 6b), and correlated positively with
ALMi, grip strength, gait speed, and complex I activity (Fig. 6c).
To understand the mechanisms underpinning reduced muscle
NAD+ in sarcopenia, we analyzed the mRNA expression of the
enzymes controlling NAD+ biosynthesis and salvage, and of
NAD+ consuming enzymes (Supplementary Fig. 4c–f). Sarco-
penic muscle had reduced expression of NMNAT1 and NAMPT,
two rate-limiting enzymes of NAD+ biosynthesis and salvage
(Fig. 6d and Supplementary Fig. 4c). Similar trends were observed
in the JSS cohort as well as in independent cohorts where sar-
copenia was defined based on chronological age37 (Supplemen-
tary Fig. 5). In contrast, no increase in the expression of NAD+

consuming enzymes such as CD38 (Fig. 6e, f), PARPs (Supple-
mentary Fig. 4e) or sirtuins (Supplementary Fig. 4f) was observed,
suggesting that reduced NAD+ levels in human sarcopenia pri-
marily result from inability to synthesize and recycle NAD+.
Thus, human sarcopenia is driven by a major mitochondrial
deficit detected both transcriptionally and functionally, for
which reduced levels of NAD+ in muscle impair metabolic
homeostasis and contribute to functional decline by altering
muscle bioenergetics.

Discussion
Aging is a multifactorial process with many overlapping phy-
siological and molecular perturbations. Previous reports com-
paring skeletal muscle in elderly people and young adults have
identified mechanisms that drive muscle aging without distinc-
tion for the mechanisms that specifically lead to pathological
decline and physical disability38–41. With the recent recognition
of sarcopenia as a specific pathological disorder under ICD-10
code M62.84 (ref. 21), a few candidate genes and pathways linked
to pathological muscle aging have been deconvoluted through
candidate-based approaches42. In the MEMOSA multicenter
study, we report the first integrated molecular profile of human
sarcopenia across ethnicities by comparing the muscle tran-
scriptome in older people with physical disability to healthy
controls of the same age group using genome-wide transcrip-
tional profiling and functional validation. Our work establishes
important advances in the mechanistic understanding of sarco-
penia pathophysiology by characterizing the mechanisms leading
to physical disability, and provides a unique resource for the
identification of novel molecular targets and biomarkers to pre-
vent sarcopenia and promote skeletal muscle health in older
individuals.

Fig. 3 The transcriptional downregulation of mitochondrial bioenergetics in people with sarcopenia and low physical function is replicated in the HSS

and JSS cohorts. Gene-set enrichment analysis on muscle RNA expression in the discovery cohort (SSS) and two replication cohorts of different ethnicity

(HSS and JSS) using CAMERA and the C2 curated gene set collection from MSigDB. a Sarcopenia vs. control in SSS, HSS, and JSS cohorts. b Low

appendicular lean mass index vs. control in SSS, HSS, and JSS cohorts. c Low muscle function (grip strength or gait speed) vs. control in SSS, HSS, and JSS

cohorts. In the left panels, gene sets are ordered according to the significance of their association in the SSS cohort; only gene sets with an overlap between

sets <75% and an FDR < 1% in SSS and at least one other cohort are reported. The significance threshold of 10% FDR is represented by dashed gray lines

and FDRs smaller than 10E−10 are trimmed. Right panels represent the enrichment plots for the “Mootha VOXPHOS” oxidative phosphorylation gene sets

in the HSS and JSS cohorts (MSigDB reference M18264). For all panels, n= 39 (SSS and JSS) and n= 40 (HSS) muscle samples per cohort were stratified

in the different phenotypes as described in Supplementary Table 2.
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The molecular signatures of sarcopenia vs. healthy older people
revealed low mitochondrial bioenergetic capacity as the dominant
signal in the transition from physiological to pathological muscle
aging across ethnic groups. Oxidative phosphorylation and
mitochondrial energy homeostasis were the most perturbed
biological processes associated with sarcopenia in all ethnicities,
with bioenergetic alterations spanning across all mitochondrial

respiratory complexes both at the level of expression and activity.
We also detected transcriptional signatures of altered mTOR sig-
naling, translation, and protein synthesis in human sarcopenia,
consistent with the role of anabolic resistance in the decline of
muscle mass and strength during aging33,34. In contrast, neuro-
muscular dysfunction was not enriched in the transcriptional sig-
nature of sarcopenia while high inflammatory signaling was
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restricted to some but not all cohorts of human sarcopenia. These
mechanisms described in preclinical muscle aging models4,8,35 may
influence sarcopenia through nontranscriptional mechanisms or in
patient subgroups, but our data point them away from primary
hallmarks of human sarcopenia. The molecular footprints of

sarcopenia in skeletal muscle were most strongly influenced by
muscle mass and strength, with more modest contributions from
gait speed, perhaps diluted by other mechanisms which influence
this multifactorial measurement of mobility and quality of life. The
ability to preserve high oxidative phosphorylation also positively
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associated with high muscle mass, grip strength, and gait speed as
independent continuous analyses. Thus, our findings establish
altered mitochondrial bioenergetic capacity through low oxidative
phosphorylation as a strong and prominent determinant of the
transition to disability in aged skeletal muscle.

At the molecular level, mitochondrial alterations in sarcopenia
involve the perturbation of a transcriptional module with reduced
expression or activity in sarcopenic muscle of the transcriptional
regulators ERRα and NRF1 and their coactivator PGC-1α. These
transcriptional regulators have been widely demonstrated to reg-
ulate mitochondrial gene expression in rodents and humans30,31.
In particular, overexpression of PGC-1α or ERRα is sufficient to
induce the expression of genes controlling mitochondrial function
and to trigger functional benefits on oxidative phosphorylation and
ATP generation. Thus, the downregulation of PGC-1α and ERRα
target gene expression networks in sarcopenic muscle implies
reduced transcriptional activity of ERRα and possibly of other PGC-
1α-dependent transcription factors which may explain the global
mitochondrial dysfunction observed in sarcopenia. Interestingly,
perturbed NRF1 signaling was only detected through the tran-
scriptional downregulation of its direct target genes, but its
expression level was not affected by sarcopenia. In contrast, both the
expression and transcriptional efficiency of PGC-1α and ERRα on
their target promoters was reduced in sarcopenia. This observation
is consistent with a priming function of low-PGC-1α/ERRα sig-
naling in reducing oxidative phosphorylation and initiating patho-
logical muscle decline as they act cooperatively through direct

binding of PGC-1α to ERRα on target promoters and through a
feed-forward loop where ERRα or PGC-1α activate the expression
of their own promoters31. Translational mechanisms also over-
lapped with this transcriptional regulation as a large cluster of
MRPs was downregulated in sarcopenia and likely contributed to
the decreased protein expression of mitochondrial respiratory chain
subunits. MRPs are also important to balance mitonuclear com-
munication during aging and regulate a protective mitochondrial
UPRmt important for the regulation of healthspan and longevity in
preclinical models32. The expression of UPRmt genes (including
mitochondrial heat-shock proteins, proteases and the downstream
transcriptional response regulating mitohormesis from the nucleus)
was low in sarcopenic muscle. Thus, inefficient UPRmt activation
during sarcopenia fails to compensate the altered production of
respiratory chain subunits and the damage to mitochondrial pro-
teins induced by oxidative stress10,17. We also detected molecular
signatures indicating altered mitochondrial dynamics through
fusion and fission in sarcopenic muscle. The regulation of mito-
chondrial dynamics has been linked to the control of muscle
metabolism and plasticity in preclinical models of muscle pathology
and aging11. Interestingly, genetic loss of function of Mfn2 and
Opa1 in mice is sufficient to cause sarcopenia43–45, suggesting that
the down regulation we observed in sarcopenia could be causal in
the loss of muscle mass and strength.

NAD+ decline during aging is well documented in preclinical
models and has recently emerged in humans where skin and brain
NAD+ decreases across the lifespan46. Although our NAD+ results
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require further validation as they were analyzed in a subset of
individuals with sufficient amounts of remaining muscle biopsy
from SSS, the reduction of skeletal muscle NAD+ levels in people
with sarcopenia links for the first time NAD+ levels to an age-
related pathology in humans and provides the first proof-of-
principle of altered NAD+ biosynthesis in human skeletal muscle.
Low amounts of mitochondria in human sarcopenia could poten-
tially contribute to reduced NAD+ levels given the high mito-
chondrial NAD+ concentration, but mitochondria only represent
5–10% of myofiber volume47 and NAD+ is also abundant in larger
cellular compartments48, which most likely also accounts for the
sarcopenic NAD+ phenotype. Another possibility is that perturbed
mitochondrial activity could induce the NAD+ depletion by alter-
ing metabolic fluxes. However, low NAD+ is a causal mechanism
for mitochondrial perturbations in age-related pathologies in model
organisms49–51. Reduced NAD+ levels in skeletal muscle of aged or
Nampt deficient mice alter mitochondrial bioenergetics and impair
muscle mass, strength and endurance49,50,52,53, suggesting that low
NAD+ levels in sarcopenic people could directly contribute to
impaired mitochondrial activity and sarcopenia progression in
humans. Importantly, new therapeutic strategies have emerged to
restore NAD+ levels in muscle by administration of dietary NAD+

precursors such as NR or NMN46,53,54, and the conversion of these
precursors to NAD+ bypasses the rate limited enzyme NAMPT,
which is downregulated in by sarcopenia. Combined with the
demonstration that these interventions are safe and increase NAD+

levels in early human clinical testing46,55,56, our study creates the
mechanistic basis to test the clinical efficacy of NAD+ precursors on
muscle strength and physical function in older people with sarco-
penia. More broadly, our work also highlights that nutritional and
pharmacological mitochondrial therapeutics should be considered
for the management of sarcopenia. This can be achieved by stabi-
lizing the mitochondrial machinery by targeting cardiolipin57,
promoting the elimination of damaged mitochondria by mitophagy
with the natural molecule Urolithin A18,58, or targeting energy
sensors like AMPK, PPARs, and sirtuins which converge on PGC-
1α signaling30. The established benefits of physical activity on
mitochondrial efficiency in aged skeletal muscle2,47,59 also suggest
that exercise programs to improve sarcopenia should maximize
mitochondrial adaptations that enhance bioenergetic coupling.
Collectively, the MEMOSA study results provide a genome-wide
molecular resource of mechanisms and biomarkers of pathological
muscle aging across ethnicities. Our work establishes loss of mito-
chondrial oxidative capacity as a major mechanism of sarcopenia
which can be assessed non-invasively using 31P imaging as a bio-
marker60, and provides a strong rationale for intervention trials
targeting muscle mitochondrial bioenergetics to manage sarcopenia
in older people.

Methods
Singapore sarcopenia study. Totally, 20 Chinese male participants aged 65–79
years and 20 control participants of the same age/ethnic group without a diagnosis
of sarcopenia were recruited from two studies on healthy community-dwelling
older men in Singapore (Singapore Sarcopenia Group and Aging in a Community
Environment Study [ACES]). The National Healthcare Group Domain-Specific
Research Board (NHG DSRB) approved the study, reference number 2014/01304,
and each participant gave written informed consent. Self-reported ethnicity was
collected during the inclusion visit and weight and height were measured to the
nearest 0.1 kg and 1 cm, respectively. Total lean mass was measured through DXA
scanning (APEX Software version 4.0.1, Discovery Wi DXA system). A standar-
dized protocol was used to measure isometric hand grip with Jamar hand-held
dynamometer and the mean of 3 three attempts from the dominant hand was used
as the final measure. Gait speed was calculated from a timed 6-m walk. The
diagnosis of sarcopenia was based on AWGSOP definition61 that was defined as the
total appendicular lean mass normalized for height ≤ 7.00 kg m−2, evidence of
either low physical performance based on gait speed ≤ 0.8 m s−1 OR low muscle
strength based on hand grip < 26 kg. Semiopen muscle biopsies of the vastus
lateralis muscle were collected using a BioPinceTM (Angiotech) 16 G full core
biopsy needle with 3 adjustable stroke lengths (13 mm, 23 mm, and 33 mm) from

the 20 male participants and 20 aged matched controls, snap frozen in liquid
nitrogen and stored at −80 °C until further analysis.

Hertfordshire sarcopenia study. Totally, 105 healthy community dwelling older
men, 68–77 years old, who participated in the UK Hertfordshire Cohort Study were
prospectively recruited the HSS as previously described62. Inclusion criteria for the
HSS included the availability of birth records detailing birth weight and weight at 1
year. Men were excluded if they had a diagnosis of active ischemic heart disease,
myopathy, or neuromuscular conditions affecting the legs or a history of diabetes.
The Hertfordshire Research Ethics Committee approved the study under approval
number 07/Q0204/68 and each participant gave written informed consent. Weight
was measured once to the nearest 0.1 kg with floor scales (SECA, Hamburg,
Germany). A total of 40 Caucasian participants from HSS were randomly selected
for MEMOSA inclusion after stratification based on their sarcopenia phenotype
using the first EWGSOP algorithm22. Height was measured to the nearest 0.1 cm.
Total lean mass was calculated from body composition analysis by DXA (Hologic
Discovery, software version 12.5). A standardized protocol was used to measure
isometric grip strength with a Jamar dynamometer (Promedics, Blackburn, UK)63.
Gait speed was calculated from a timed 3-m walk. The diagnosis of sarcopenia was
based on the EWGSOP definition22 that was defined as the total appendicular lean
mass normalized for height ≤ 7.23 kg m−2, evidence of either low physical perfor-
mance based on gait speed ≤ 0.8 m s−1 or low muscle strength based on hand grip
< 30 kg. Semiopen muscle biopsies with a Weil–Blakesley conchotome were
obtained from participants after an overnight fast, as previously described62, snap
frozen in liquid nitrogen, and stored at −80 °C until further analysis.

Jamaica sarcopenia study. Totally, 40 male Afro-Caribbean participants aged
63–89 years were recruited through community-based (churches, community centers,
senior citizen clubs) screening using the snowballing method for referrals. The Uni-
versity of West Indies Research Ethics Committee approved the study under approval
number 180,10/11, and each participant gave written informed consent. All partici-
pants included in this study were from African origin based on self-report of at least
three grandparents of African origin. Weight was measured once to the nearest 0.1 kg
with floor scales (SECA, Hamburg, Germany). Height was measured to the nearest
0.1 cm with a stadiometer (SECA, Hamburg, Germany). Total lean mass was calcu-
lated from body composition analysis by DXA (GE Lunar Prodigy) Advance, Soft-
ware: Encore 2011, Version 13.60.033). A standardized protocol was used to measure
isometric grip strength with a Lafayette hand dynamometer (Lafayette Instrument
Company, Lafayette, Indiana). Gait speed was calculated from a 6-min walk test. The
diagnosis of sarcopenia was based on the EWGSOP definition22 as described above
for HSS. Vastus lateralis muscle biopsies were obtained using a 5mm Bergstrom
needle (Stille-Werner, Ronkonkoma, NY) after participants had been characterized.
Biopsies were obtained from the mid vastus lateralis muscle, about 12 cm above
patella on the anterolateral thigh, following a 12 h overnight fast, and after 24–36 h of
any structured exercise exposure. Muscle samples were separated, frozen in cooled
isopentane, and stored at −80 °C until analysis.

RNA extraction. Total RNA was extracted from muscle biopsies of HSS using the
mirVana miRNA Isolation Kit (Life Technologies) and from muscle biopsies of SSS
and JSS using the QIAzol Lysis Reagent (Qiagen) followed by miRNAeasy pur-
ification Kit (Qiagen). Frozen muscle samples were placed into 600 µl Lysis/
Binding buffer and homogenized using a Dispomix Homogenizer until all visible
clumps were dispersed. The isolation procedure was then performed according to
manufacturer’s instructions using the total RNA isolation protocol. RNA quantity
was measured with Ribogreen (Life Technologies) and RNA quality was checked
using the Standard Sensitivity RNA Analysis Kit on a Fragment Analyzer
(Advanced Analytical Technologies). All RNA samples were homogeneous and
passed quality control with 260/280 nm ratio > 1.8 and RIN scores > 7.

RNA sequencing. For each sample, 250 ng of total RNA was employed as starting
material for library preparation. Sequencing libraries were prepared using the
TruSeq Stranded Total RNA HT kit with the Ribo-Zero Gold module (Illumina),
followed by 13 cycles of PCR amplification with the KAPA HiFi HotStart
ReadyMix (Kapa BioSystems). Libraries were quantified with Picogreen (Life
Technologies) and size pattern was controlled with the DNA High Sensitivity
Reagent kit on a LabChip GX (Perkin Elmer). Libraries were then pooled at an
equimolar ratio and clustered at a concentration of 7 pM on paired-end sequencing
flow cells (Illumina). Sequencing was performed for 2 × 101 cycles on a HiSeq 2500
(Illumina) with v3 chemistry. The generated data were demultiplexed using Casava.
Reads were aligned to the human genome (hs_GRCh38.p2) using STAR64, and the
number of reads mapped within genes was quantified by HTSeq65 (version HTSeq-
0.6.1p1, mode union, strand reverse, quality alignment greater than 10). SSS
samples had a sequencing depth of 75–104 million reads per sample, of which
34–77 million reads where uniquely mapped. HSS and JSS had a sequencing depth
of 51–110 and 55–88 million reads per sample, respectively, out of which 38–84
million and 39–69 million were uniquely mapped.

mRNA differential expression & pathway enrichment analyses. All statistical
analyses data were performed using R version 3.3.3 and relevant Bioconductor
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packages (e.g., limma 3.30.13, edgeR 3.16.5). Unless otherwise stated, 40 samples
from each cohort were analyzed. For differential expression analysis, all samples
with more than 35 million uniquely mapped reads were included. One sample
(from the SSS cohort) which did not reach this threshold because of an abnormally
low percentage of uniquely mapped reads was excluded from the analysis. Dif-
ferentially expressed genes between control and sarcopenic samples were defined
using the limma package66. Briefly, after removing genes with a mean expression
lower than 20 reads, data were normalized by the trimmed mean of M-values
method as implemented in the edgeR function calcNormFactors67, and the
voomWithQualityWeights function was applied to model the mean-variance
relationship and estimate the sample-specific quality weights68. p Values were
corrected for multiple testing using the Benjamini–Hochberg method. The same
procedure was applied when characterizing the associations between gene
expression and the continuous or categorical parameters (ALMi, grip strength and
walking speed) used to define sarcopenia. Pathway enrichment analysis was per-
formed using CAMERA69, a competitive gene set test querying whether a set of
genes annotated in the Molecular Signatures Database (MSigDB)70 is enriched in
differentially expressed or continuously associated genes. MSigDB (http://software.
broadinstitute.org/gsea/msigdb/index.jsp) v5.2 collections H (hallmark gene sets),
C2 (curated gene sets), and C5 (GO gene sets) were used to perform pathway
analyses. To circumvent the absence of a mammalian UPRmt GO category, we
have created a custom mammalian UPRmt gene set using the lower organism
UPRmt GO:0034514 category and manual curation of the mammalian UPRmt
homologs based on published reviews17,71. To circumvent the redundancy of
several gene sets in public databases, we removed gene sets with a gene overlap
>75% from figure visualization (although these gene sets were still considered for
computation of FDRs). The overlap between 2 gene sets of different sizes was
defined as OL= 2 × c/(n+m) × 100, where n and m are the size of the 2 gene sets
and c is the genes in common, and the threshold of 75% was selected from a range
from 50 to 90% to maximize biological diversity while minimizing overlaps).

Network and gene ontology analyses. Protein interaction networks were gen-
erated with the 149 protein coding genes differentially regulated in sarcopenia
using STRING version 10 (http://string-db.org/), using all data sources, a con-
fidence score of 0.9, and the maximum number of interactors shown in the first
shell set to 5. The interaction network was colored manually based on biological
function of the proteins and the network connectivity was enriched at a p value <
1.0e−16 when compared to a random sampling of 149 proteins. In addition, the
unique identifiers of differentially expressed genes were used as an input for
functional analyses using Cytoscape (version 3.5.1). Genes differentially expressed
were used for functional enrichment analysis to decipher functionally grouped gene
ontology and biological process using ClueGO. pV correction was estimated using
a Bonferroni stepdown method. Results are presented as pie charts in Fig. 1e.

Transcription factor binding enrichment analysis. Molecular Signature Database
(MsigDB, http://software.broadinstitute.org/gsea/msigdb/), was used to identify the
transcription factor target gene sets significantly associated with the 179 differen-
tially expressed genes identified in Fig. 1a at an FDR < 0.05. Under MsigDB, the
C3 subcollection transcription factor targets containing 674 motif gene sets was
used for this analysis. To investigate the enrichment of ERRA and NRF1 binding
sites in distal and proximal regulatory regions of the 178 genes (excluding chr M)
associated with sarcopenia, we extracted their DNA sequence via UCSC table
browser using the hg38 human genome assembly. Sequence lengths interrogated
included 5 kb and 5–20 kb upstream/downstream of the transcriptional starting
site. Transcription factor binding site/motif enrichment analysis was performed as
previously described72 using the findMotifs.pl tool embedded within Homer, a tool
used for motif discovery and next generation sequencing analysis. Input sequences
were randomly scrambled and used as background sequences for enrichment
analysis. To ensure robustness of results, hypergeometric test was repeated 1000
times to compute Benjamini–Hochberg corrected median adjusted p value/q-
values.

Gene expression validation by nanoString nCounter. mRNA expression of 70
genes of interest selected based on upregulation or downregulation in sarcopenic
muscle or on biological relevance was validated using a customized nanoString
nCounter panel (Supplementary Data 5), a method orthogonal to sequencing,
based on the binding of probes directly to the mRNA. Each target gene was
detected using a pair of reporter and capture probes. Reporter probes carry a
unique color code that enables the molecular barcoding of the genes of interest.
The expression level of a gene is measured by counting the number of times the
color-coded barcode for that gene is detected. The experiment was performed from
100 ng total RNA, strictly following the manufacturer’s recommendations. Ten
genes, stably expressed in skeletal muscle, were selected based on their low coef-
ficient of variation in the RNAseq profiles of this study, and used as housekeeping
genes for normalization. Primary analysis was performed with the dedicated
nSolver software (nanoString).

Mitochondrial enzymatic activity. Mitochondrial enzyme and respiratory chain
complex activities were measured on mitochondrial fractions isolated from 15 to

30 mg of frozen muscle biopsies as previously described73,74, for all biopsies where
sufficient material remained after transcriptomic experiments. Briefly, tissues were
homogenized in 10 mM potassium phosphate buffer (pH 7.4) and mitochondrial-
enriched fractions collected after a 800g centrifugation were used for enzymatic
assays. Complex I activity was assessed by measuring rotenone-sensitive coenzyme
Q1-dependent NADH reduction. SDH and complex II activities were assessed by
measuring 2,6-dichlorophenolindophenol (DCPIP) reduction either in the absence
or in presence of coenzyme Q, respectively. Complex III activity was measured by
cytochrome C reduction. Complex IV activity was measured by assessing cyto-
chrome C oxidation. Citrate synthase activity was assessed by measuring DTNB
reduction at 412 nm in the presence of Acetyl-CoA and oxaloacetate. Enzymatic
activities were normalized to the amount of muscle analyzed for all samples with
remaining biopsy material (n= 38).

Western blot. Western blots were performed using protein extracts remaining from
the enzymatic assay preparations. Protein concentration was determined by a
bicinchoninic acid (BCA) assay (Pierce #23227) and samples were prepared with 4x
LDS sample buffer (Novex #NP007). 30 μg protein per sample were resolved by
standard western blot procedure on 4–12% bis–tris protein gels (Novex
#WG1403BX10), and then transferred to PVDF membranes using the semi-dry
system from Life Technologies/Invitrogen. Membranes were cut based on molecular
ladder size to detect proteins of different size from the same membrane with different
antibodies. Detection was achieved using an OXPHOS antibody cocktail (Abcam
#ab110412, 1:1000), or antibodies against Porin1 (Abcam #ab15895, 1:1000), citrate
synthase (Abcam #ab96600, 1:1000), CD38 (R&D System #MAB24041, 2 μgml−1),
GAPDH (Abcam #ab37168, 1:5000) and HSC70 (Santa Cruz, sc-7298; 1:50000), with
the relevant secondary antibodies and using enhanced chemiluminescence (ECL;
Pierce #321016) detected by standard autoradiography with exposure time adjusted to
the expression of each protein. Complexes I–III and V were correctly detected in all
samples but complex IV was only detected in less than 20% of samples and was
excluded from the analysis. Films were scanned and quantified using Image J.

NAD+ quantification. NAD+ levels were measured in human muscle biopsies of
the MEMOSA study as previously described75, for all biopsies where sufficient
material remained after transcriptomic experiments. Briefly, 5 mg muscle tissue
from remaining biopsies was lysed in 200 μL 0.6 M perchloric acid and the
supernatant was diluted 250-fold in 100 mM Na2HPO4 pH 8.0. 100 μL of diluted
sample was combined with 100 μL reaction mix (100 mM Na2HPO4 pH 8, 2%
ethanol, 90 UmL−1 alcohol dehydrogenase, 130 mUmL−1 diaphorase, 10 μM
resazurin, 10 μM flavin mononucleotide, 10 mM nicotinamide), and the fluores-
cence increase (Ex 540 nm/Em 580) was measured over 10 min. NAD+ content
was calculated from a standard curve and normalized to tissue weight.

For optimization of NAD+ measurements and benchmarking using mass
spectrometry, frozen muscle biopsies (~2–50 mg) independent of the study were
extracted in 1300 µL of a cold mixture of methanol:water:chloroform in 5:3:5 (v/v).
Extracts were spiked with 60 µL of [U]−13C-NAD+ labeled biomass from home-
made yeast as internal standard, and kept cold throughout the procedure. Muscle
extracts were homogenized with 3 mm tungsten carbide beads using a tissue mixer
(Qiagen TissueLyser II) for 3 min at 20 Hz, followed by 20 min 1500 rpm shaking
at 4 °C in a thermo-shaker (Thermomixer C, Eppendorf). Samples were then
centrifuged 10 min 21,000 × g at 4 °C, and the upper polar phase was dried
overnight in a vacuum centrifuge at 4 °C and 5mbar, and then stored at −80 °C,
before analysis. Dry samples were reconstituted in 50 µL 60% (v/v) acetonitrile:
water, centrifuged for 2 min at 21,000 × g, and the supernatant was transferred into
a glass vial for hydrophilic interaction ultra high performance liquid
chromatography mass spectrometry (UHPLC-MS) analysis, in a randomized order.
The UHPLC consisted of a binary pump, a cooled autosampler, and a column oven
(DIONEX Ultimate 3000 UHPLC+ Focused, Thermo Scientific), connected to a
triple quadrupole spectrometer (TSQ Vantage, Thermo Scientific) equipped with a
heated electrospray ionization (H-ESI) source. Two microlitre of each sample were
injected into the analytical column (2.1 mm × 150 mm, 5 µm pore size, 200 Å
HILICON iHILIC®-Fusion(P)), guarded by a precolumn (2.1 mm × 20 mm, 200 Å
HILICON iHILIC®-Fusion(P) Guard Kit) operating at 35 °C. The mobile phase
(10 mM ammonium acetate at pH 9, A, and acetonitrile, B) was pumped at
0.25 mLmin−1 flow rate over a linear gradient of decreasing organic solvent
(0.5–16 min, 90–25% B), followed by re-equilibration for a total run time of 30 min.
The MS operated in positive mode at 3500 V with multiple reaction monitoring
(MRM) and in each scan event: scan width was 1 m/z and scan time was 0.05 s,
peak with for Q1 was 0.25 FWHM and for Q3 0.70 FWHM. The sheath gas was 20
arbitrary units, and the auxiliary gas was kept 15 arbitrary units. The temperature
of vaporizer was 280 °C and the temperature of the ion transfer tube was 310 °C.
The tube lens voltage and collision energy were individually optimized for each
fragment ion of NAD+ (664 > 428, 524). The software Xcalibur v4.1.31.9 (Thermo
Scientific) was used for instrument control, data acquisition and processing.
Positive ion mode extracted chromatograms using the MRM trace of NAD+ were
integrated. A calibration curve of NAD+ (Sigma) with 10 data points between 0.62
and 40 µM was used for quantification of NAD+ in biological samples, normalized
to internal standard. Dehydrated polar extracts were independently reextracted for
enzymatic NAD+ quantification using perchloric acid extraction as
described above.
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Data representation and statistics. Statistical methods for transcriptomic
experiments using two-tailed statistics and correction for multiple testing are
reported above. Data distributions were plotted as box-plots representing the 25th
percentile (1Q), the median, and 75th percentile (3Q), with whiskers extending
from the 1Q to the smallest value within 1.5*interquartile range (IQ= 3Q−1Q)
and from the 3Q to larger value within 1.5*IQ. Associations between two con-
tinuous variables were determined using Spearman rank correlations. Functional
validation of hypotheses on mitochondrial function generated from the tran-
scriptomic results were analyzed using one-tailed nonparametric Wilcoxon/
Mann–Whitney tests for mitochondrial complex expression and activity, or
parametric t statistics for NAD+ results, after assessing the distribution of the
variables with a Shapiro–Wilk normality test.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The unprocessed transcriptomic data of this study have been deposited in the Gene
Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) under accession numbers
GSE111006, GSE111010, GSE111016, and integrated in the series GSE111017. The
individual data points of all box plot figures are provided as Source Data. Other datasets
analyzed during the current study are available from the corresponding authors on
reasonable request. Due to ethical concerns, supporting clinical data cannot be made
openly available. The MEMOSA team can provide the data on request subject to
appropriate approvals, after a formal application to the Oversight Group of the different
cohorts through their respective corresponding author.
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