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Abstract

The free radical theory of aging proposes that reactive oxygen species (ROS)-induced accumulation of damage to

cellular macromolecules is a primary driving force of aging and a major determinant of lifespan. Although this

theory is one of the most popular explanations for the cause of aging, several experimental rodent models of

antioxidant manipulation have failed to affect lifespan. Moreover, antioxidant supplementation clinical trials have

been largely disappointing. The mitochondrial theory of aging specifies more particularly that mitochondria are

both the primary sources of ROS and the primary targets of ROS damage. In addition to effects on lifespan and

aging, mitochondrial ROS have been shown to play a central role in healthspan of many vital organ systems. In this

article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and

dysfunction in aging and healthspan, including cardiac aging, age-dependent cardiovascular diseases, skeletal

muscle aging, neurodegenerative diseases, insulin resistance and diabetes as well as age-related cancers. The crosstalk

of mitochondrial ROS, redox, and other cellular signaling is briefly presented. Potential therapeutic strategies to improve

mitochondrial function in aging and healthspan are reviewed, with a focus on mitochondrial protective drugs, such as

the mitochondrial antioxidants MitoQ, SkQ1, and the mitochondrial protective peptide SS-31.
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Introduction

Denham Harman first proposed the free radical theory

of aging in 1956, suggesting that free radical-induced ac-

cumulation of damage to cellular macromolecules is a

primary driving force of aging and a major determinant of

lifespan [1]. This theory, however, is a highly simplified

view of the role of reactive oxygen species (ROS) in the

biology of aging. There are a number of sources of intra-

cellular ROS in mammals, including NADPH oxidases

(NOX), mitochondria, xanthine oxidase, monoamine oxi-

dase, and nitric oxide synthase. The term ROS itself,

encompasses numerous species that range from highly re-

active (OH.) to longer-lived and membrane permeant

(H2O2). Under normal conditions, ROS are maintained at

the physiological levels by several endogenous antioxidant

systems, including superoxide dismutatase (SOD), cata-

lase, glutathione peroxidases, and glutathione reductase

(GR). Other antioxidant systems involving thiol-disulphide

oxidoreductase systems include the cytosolic proteins

thioredoxin (TRX) and glutaredoxin (GRX). These anti-

oxidant systems are complex, located in different cellular

compartments and are often redundant or complementary

in various conditions. Physiological levels of ROS interact

with redox state and play a role in mediating cell signaling,

while pathological levels of ROS can result in oxidative

damage to cellular components and activate several cell

death pathways (Figure 1). The close interrelationship of

redox balance to oxidative stress has in recent years be-

come a more prominent aspect of the free radical theory

of aging and has been the subject of several reviews [2-4].

Based on the free radical theory of aging, several scien-

tists have attempted to increase lifespan by genetic ma-

nipulation of antioxidant system components, however,

the results have generally been conflicting. In Caenor-

habditis elegans, single or double SOD mutants have a

normal lifespan, while mitochondrial SOD2 mutants

(single or double with cytoplasmic SOD1) increased life-

span [5]. In Drosophila melanogaster early results were

confounded by uncontrolled genetic background effects.

Later analyses suggested that over-expression of catalase,
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SOD1, or SOD2 using the genes’ native promoters does

not increase life span [6,7], but that when tissue-specific

or conditional transgenic overexpression systems were

used, elevated SOD2 did result in substantial life span

increases [8]. It has also been suggested that the largest

lifespan extensions were seen in backgrounds with

shorter lifespan or under redox stress [3]. In transgenic

mice, the overexpression of endogenous antioxidants, in-

cluding CuZnSOD (SOD1, cytoplasmic), MnSOD (SOD2,

mitochondrial), catalase, or combination of CuZnSOD/

catalase and CuZnSOD/MnSOD failed to extend mouse

lifespan [9-11]. While SOD1 knockout mice exhibit 30%

shorter lifespan, the fact that their major cause of death

is hepatocellular carcinoma and the absence of lifespan re-

duction in SOD1 heterozygous mice suggest the shorten

lifespan in SOD1 knockout may not be due to accelerated

aging. While complete deletion of SOD2 cause neonatal

death, SOD2 heterozygous mice and SOD3 both shown

normal lifespan. However, it is notable that in many dis-

ease models or when under environmental stress, the

same transgenic overexpression mice may be healthier

than their wild-type counterparts, and the converse for

antioxidant under-expressing mice (reviewed by [12]).

Several clinical trials using antioxidant supplementa-

tion in various study populations have been performed

during the last three decades and the results are often

equivocal or conflicting. Meta-analyses of large numbers

of individual reports are often required to reach conclu-

sions, however these too vary. A large scale analysis of

68 randomized trials including 232,606 participants from

general population or patients with heterogeneous dis-

eases have reported no effect of antioxidant supplements

on overall mortality, or even a significant increase in

mortality in subjects receiving beta carotene, vitamin A,

and vitamin E [13]. A recent widely cited meta-analysis

including 50 randomized controlled trials with 294,478

participants showed no evidence to support the use of

vitamin and antioxidant supplements for prevention of

cardiovascular diseases [14]. In contrast, a recent meta-

analysis of seven studies on the risk of Alzheimer’s dis-

ease showed that dietary intakes of vitamin E, vitamin C,

and beta carotene can lower the risk of AD [15]. In spite

of extensive study it remains clear that there is no con-

sensus and/or those effects are disease-dependent.

Review

Mitochondrial free radical theory of aging

The lack of anti-aging effect with antioxidant supple-

ments led Harman to modify his original theory to spe-

cify mitochondria as both the primary sources of ROS

and the primary targets of ROS damage [16]. One of the

features of the mitochondrial free radical theory is the

central role that mitochondria play in generation of ROS

from the electron transport chain, production of en-

ergy (ATP), and the numerous potential feedback loops

in regulation of mitochondrial and cellular function,

in which redox state and ROS might create ‘vicious

cycles’ (Figure 2). These include mutations or deletions
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Figure 1 Illustration of the continuum of oxidative stress in health and pathology. The redox stress pathway emphasizes the signaling role

of oxidative stress and focuses on reversible regulation and depends on the interaction between cellular components and the redox environment of the

cell. In contrast, prolonged or high oxidative stress leads to structural changes in proteins, lipids, and DNA that are generally more irreversible. These

represent two points along the continuum of how oxidative stress may contribute to aging phenotypes. Modified from Marcinek and Siegel [120].
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in mtDNA, which can result in damaged proteins, includ-

ing important components of the electron transport chain

that are encoded by mtDNA, as well as balances in

mitochondrial redox state, including glutathione (GSH/

GSSG) and nicotinamide dinucleotides. Even these are

intertwined, as NADPH is used by glutathione reductase

to regenerate glutathione (GSH) from oxidized glutathione

(GSSG) (Figure 2). NADPH is also in equilibrium with

NADH within mitochondrial through the activity of nico-

tinamide nucleotide transferase (NNT, also called mito-

chondrial NAD(P) transhydrogenase). The redox balance

of NAD/NADH is the key regulator of the sirtuin histone

deacetylases, including mitochondrial SIRT3. The latter

has been shown to play a key role in the acetylation state

of cyclophilin D, which in turn plays an important role in

control of the mitochondrial permeability transition pore

(mPTP) and apoptosis (Figure 2).

The revised mitochondrial free radical theory suggests

that failures of antioxidants to extend murine lifespan or

failure of antioxidant supplements in clinical trials might

be explained by poor distribution of antioxidants to

mitochondria, and proposes that antioxidants targeted to

mitochondria might be beneficial for lifespan extension.

Several lines of evidence have supported the mitochon-

drial theory of aging. One of the most direct experimental

evidence for the role of mitochondrial ROS in longevity

was shown in mice overexpressing catalase targeted to

mitochondria (mCAT), which resulted in a significant me-

dian and maximal lifespan extension in two independent

lines of C57Bl6 mice [17]. Interestingly, similar overex-

pression of catalase targeted to peroxisome (pCAT), its

normal location within the cell, or nuclear localization

(nCAT) had modest and non-significant effects on murine

lifespan. This indicates that mitochondrial localization of

the catalase is key to lifespan extension in this model [17].

Consistently, mitochondria-targeted antioxidant SkQ1 has

been shown to prolong the lifespan of inbred male mice in

specific pathogen free (SPF) condition and outbred mice

and dwarf hamster in conventional or outdoor cages [18].

Additional evidence for the involvement of mitochon-

drial ROS in aging comes from observations of mice

with a targeted mutation of the p66Shc gene. These mice

display reduced ROS generation and increased resistance

to ROS-mediated apoptosis and thereby have a pro-

longed lifespan [19]. Further studies have shown that

P66Shc is a mitochondrial redox enzyme located in the

mitochondrial intermembrane space, which produces

H2O2 from electron leakage during oxidative phosphoryl-

ation [20]. Phosphorylated p66Shc was later shown to accu-

mulate within mitochondria to activate mitochondrial

Ca2+ response, and subsequently induce apoptosis [21].

Further evidence supporting the role of mitochondria in

aging was demonstrated using mice with homozygous mu-

tation in exonuclease domain of the mitochondrial poly-

merase gamma (PolgaD257A/D257A , abbreviated Polgm/m).

These mice were susceptible to accumulation of

mtDNA point mutations and deletions with age [22,23].

They have shortened lifespan (maximal lifespan ap-

proximately 15 months) and display many phenotypes

of ‘accelerated aging’, including kyphosis, graying and

loss of hair, anemia, osteoporosis, sarcopenia (loss of

muscle mass), and presbycusis (age-related hearing loss)

[22]. Interestingly, the ‘premature’ aging-like phenotype

in these mice showed good correlation with the accu-

mulation of mtDNA deletions but not with the burden

of mtDNA point mutations [24]. Moreover, the accumula-

tion of mtDNA damage has been shown to increase

apoptosis [23] and age-dependent cardiomyopathy and

Figure 2 Interdependences of mtROS, nicotinamide nucleotides, and SIRT3: ROS-Induced ROS Signaling. Modified from Dai et al. [93].
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oxidative damage in the Polgm/m mouse heart was atten-

uated by mCAT [25].

In spite of these ‘attractive’ aspects of the mitochondrial

free radical theory of aging, there remain many unsolved

questions. Damage to mitochondrial DNA has been

shown to increase with age, even more so than nuclear

DNA [26]; however, it is necessary to distinguish point

mutations from deletions; for example, it has been argued

that the former do not [27] whereas the latter do correlate

with lifespan of mice [24] This may be related to the

fact that mitochondria have multiple copies of DNA,

providing protection from heteroplasmic mutations.

Recent improvements in DNA sequencing methods

have also revealed the surprising result that age-related

increases in mtDNA point mutations in human brains

are primarily DNA transitions, whereas oxidative dam-

age is expected to produce an excess of G ➔ T transver-

sions [28]. Deletions, however, appear to accumulate

and expand in the population of mtDNA during aging

and some pathologies and it appears likely that mito-

chondrial respiratory failure only occurs with high loads

of mtDNA deletion, such as has been observed in

muscle fibers, intestinal crypts, and substantia nigra

neurons (see review [29]). Finally, there is an increasing

awareness that low levels of mitochondrial ROS may be

‘hormetic’ by inducing endogenous antioxidant defenses

to prevent oxidative stress induced in pathological

states and that mitochondrial ROS may be an important

mediator of cell signaling (see section below).

The mitochondrial free radical theory has led to a

focus on development and refinement of drugs to specific-

ally target ROS specifically in the mitochondria of cells.

The most common approach is based on delivery of

known redox agents to the mitochondrial matrix by con-

jugation to delocalized cations (such as the triphenyl-

phosphonium ion (TPP+)), including MitoQ and SkQ1

[30,31]. The Szeto-Schiller (SS) peptides represent a dif-

ferent chemical approach to reduce mitochondrial ROS.

These aromatic-cationic tetrapeptides are targeted to

cardiolipin on the inner mitochondrial membrane, and

they have been shown to modulate electron flux in the

electron transport chain and increases ATP produc-

tion, while reducing electron leak and inhibiting exces-

sive ROS production [32]. These mitochondria-targeted

antioxidants are discussed in greater detail later (see section

Mitochondrial protective strategies as potential therapeutics

for aging-related diseases).

Mitochondrial signaling and the theory of mitohormesis

Apart from generating detrimental oxidative damage,

ROS have numerous crucial biological roles in signaling

and stress response (reviewed in [33-35]). Emerging

evidence suggests that oxidative stress might promote

longevity and metabolic health through the concept of

mitochondrial hormesis (mitohormesis). The mitohorm-

esis theory hypothesizes that low levels of oxidative stress

induced by either caloric restriction, exercise [36], or other

stimuli may trigger adaptive responses that improve over-

all stress resistance, probably through increased endogen-

ous antioxidant defense, which may eventually reduce

chronic oxidative damage [37] and subsequently achieve

lifespan extension. This concept is supported by a study in

C. elegans demonstrating that inhibition of respiration in-

creases mitochondrial ROS production and significantly

increases lifespan via mitochondrial ROS mediated activa-

tion of HIF-1 [38]. Low dose of oxidative stress induced

by dietary restriction, especially glucose restriction, has

been shown to preferentially induce mitochondrial metab-

olism and extend lifespan in various model organisms, in-

cluding Drosophila melanogaster [39] and Caenorabditis

elegans [40]. For instance, glucose restriction in C. elegans

extends lifespan by inducing mitochondrial respiration

and increasing oxidative stress, and this AMPK-dependent

lifespan extension is abolished by pre-treatment of antioxi-

dant N-acetyl cysteine, suggesting that oxidative stress is

required for lifespan extension of dietary restriction [40].

Although the evidence of hormesis in lifespan regulation

in mammalian models is still lacking, considerations

should be taken when developing antioxidant therapy.

The theory of mitohormesis could have important

translational implications as an ideal antioxidant therapy

might be one that prevents oxidative damage induced

under pathological conditions without interfering with

ROS needed for hormesis and cellular signaling. We

speculate that the targeted expression of catalase in mito-

chondria (mCAT) might be such an example, as there are

beneficial effects of mCAT in aging and several disease

models with negligible adverse effects (Table 1). Key to

this may be that the Km of the catalytic activity of catalase

is >10 mM, so that this enzyme is less likely to be effective

at the lower intracellular H2O2 concentrations that may

be involved in signaling or hormesis [41,42].

Mitochondrial oxidative stress in healthspan

Cardiac aging

Increasing evidence suggests that abnormal mitochondrial

ROS (mtROS) production and detoxification contributes

to mitochondrial dysfunction and cardiomyopathy in

old age (reviewed in [35,70,71]). An age-dependent re-

duction in cardiac mitochondrial oxidative phosphoryl-

ation function is related to the decline in mitochondrial

state 3 respiration (maximal stimulated respiration) due

to diminished activity of electron transport complexes I

and IV (both have subunits encoded by mtDNA), while

complexes II, III, and V are relatively unaffected (see

review [72]). Impaired electron transport chain function

is directly related to elevated electron leakage and gen-

eration of mtROS. Since the heart has a high metabolic
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Table 1 Mitochondrial targeted genetic and pharmacological manipulations on aging and healthspan

Animal models Description Aging phenotypes Healthspan phenotypes

Genotypes mCAT Overexpression of catalase targeted to
mitochondria

18% extension of lifespan [17]. Attenuated
cardiac aging [43], aging-related sarcopenia [17],
presbyacusis [44], and cancer incidence [45].

Protect against cardiac hypertophy and heart failure [46]

Reduce Aβ toxicity and oxidative injury, and extends the
lifespan of Aβ PP overexpressing mice [47]

Protective against mitochondrial ROS production and
subsequent dopaminergic neuron degeneration in
MPTP-induced Parkinson’s disease model [48]

Attenuate lipid-induced insulin resistance in skeletal
muscle [49]

Polgm/m Homozygous mutation of mitochondrial
polymerase gamma D257A

‘Accelerated aging’: sarcopenia, graying and
alopecia, kyphosis, presbyacusis, anemia [22,23],
age-dependent cardiomyopathy [25]

Aggravate heart failure in response to Angiotensin II [46]

p66shc Targeted mutation of the p66Shc gene Extension of lifespan. Reduction of ROS and
apoptosis [19]

Attenuate Angiotensin II induced LV hypertrophy and
cardiomyocytes apoptosis; reduce oxidative damage in
cardiac progenitor cells, cardiomyocytes and endothelial
cells in diabetes [19,21,50,51]

SIRT3-/- SIRT3-deficient mice Accelerated cardiac aging, age-dependent
increase in mitochondrial swelling due to
increased mPTP opening [52]

Early-age onset of hypertrophy associated with fibrosis

Abolish CR effect in reduction of oxidative
damage, protection of cochlear neurons and
prevention of presbycusis [53]

Increased mortality after transverse aortic constriction [52]

Pharmacological
treatments

SS-31 Mitochondrial protective tetrapeptide Reverse age-related muscle weakness and
muscle energy deficits [54]

Attenuation of Angiotensin II induced cardiac hypertrophy
and Gαq overexpression induced heart failure [55]

Ameliorate cardiac dysfunction after tranverse aortic
constriction [56]

Improve systolic function ischemic HF model [57,58]

Attenuate cardiac I/R injury [59,60]

Protect against renal I/R injury [61]

Prevent high fat diet induced insulin resistance in skeletal
muscle [62]

Attenuation of diabetic retinopathy [63]

Protective against ALS in SOD1 mutant mice [64] and
Parkinson’s diseases in MPTP model [65]

MitoQ Ubiquinone (antioxidant) conjugated
with TPP+

Reduction of blood pressure and cardiac hypertrophy in
spontaneous hypertensive rats [66]

SkQ Plastoquinone conjugated with TPP+ Prolonged lifespan. Attenuation of age-related
decline in immunity. Protective against baldness
and lordokyphosis in aged mice [18,67]

Attenuate heart arrhythmia, I/R injury, myocardial infarction,
and kidney ischemia [68]

Delayed tumor development in p53-deficient mice [30]

Protect against cataract and retinopathy in OXYS rats [69]
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demand and is rich in mitochondria, it produces ROS

within mitochondria as a byproduct of oxidative phos-

phorylation and is, therefore, especially susceptible to

oxidative damage. It has been shown that mitochondrial

production of ROS significantly increases in the heart

with advanced age [73].

The Framingham Heart Study and the Baltimore Lon-

gitudinal Study on Aging (BLSA) demonstrate that aging

is associated with increased prevalence of left ventricular

hypertrophy and decline in diastolic function (measured

by the ratio of early to late ventricular filling (E/A) by

Doppler echocardiography) in otherwise healthy individ-

uals. Left ventricular (LV) wall thickness increases and

maximal exercise capacity decreases with age in both

sexes, indicative of LV hypertrophy, while systolic func-

tion is relatively preserved at rest (reviewed in [74,75]).

Cardiac aging in murine models closely recapitulates

those seen in humans [76], including cardiac hyper-

trophy (Figure 3A), a modest decline in systolic function

(%FS, Figure 3B), a significant decline in diastolic func-

tion measured by Ea/Aa (Figure 3C), and worsening of

the myocardial performance index (that is, an increased

fraction of systole was spent during ineffective isovolu-

mic contraction and relaxation, Figure 3D) [43]. The

proportion of mice with diastolic dysfunction and left

atrial dilatation also significantly increased with age [43].

Data from our laboratory demonstrated that mCAT

greatly attenuated many of these cardiac aging pheno-

types (Figure 3A-D). The preserved cardiac aging pheno-

types in mCAT mice were accompanied by reductions of

age-dependent increases in mitochondrial protein car-

bonyls (Figure 4A) and mtDNA deletions (Figure 4B),

suggesting prevention of mitochondrial oxidative dam-

age as a mechanism of the cardiac aging protection. The

success of mCAT protection in cardiac aging and the in-

ability to confer similar protection by overexpression of

peroxisomal catalase or the non-targeted antioxidant

N-Acetyl Cysteine [55] underscores the importance of

mitochondrial specificity in antioxidant intervention.

Given the complexity of the systems involved, it is likely

that mitochondrial dysfunction and aberrant ROS pro-

duction may contribute to aging through both direct

damage to cellular macromolecules and interference

with normal signaling and energetics. There is an age-

dependent increase in electron leakage and superoxide

production. This makes a positive feedback between

complex I inhibition and mitochondrial ROS production,

as well as the more classical vicious cycle of mitochon-

drial DNA mutation and protein damage amplifying

ROS (Figure 2). The effect of mitochondrial ROS in sig-

naling and energetics may be a critical factor in cardiac

(and other organ system) aging.

As discussed above, mice with homozygous mutation

of mitochondrial polymerase gamma (Polgm/m) have

substantial increases in mtDNA mutations and dele-

tions with age [22,23], shortened lifespan and exhibit

several progeroid phenotypes, and developed cardiomy-

opathy in middle age (13 to 14 months) [22,25]. Middle

age Polgm/m mice display cardiac hypertrophy (Figure 3E)

and impaired systolic and diastolic function (Figure 3F-G)

to an extent that is more severe than wild-type (WT) mice

aged 24 to 30 months. Interestingly, mCAT partially res-

cues the mitochondrial damage and cardiomyopathy in

Polgm/m mice (Figure 3E-H), supporting the role of mito-

chondrial ROS and mtDNA damage as part of a vicious

cycle of ROS-induced ROS release (Figure 2) [25]. An in-

teresting study shows that endurance exercise can prevent

both skeletal muscle and cardiac progeroid phenotypes

in Polgm/m mice [77]. The beneficial effect of exercise is

thought to be mediated by the augmented level of mito-

chondrial biogenesis seen with exercise in these mice,

which contributes to the preserved mitochondrial and,

subsequently, organ function. Exercise induces ROS,

and ROS stimulates upregulation of PGC1α [78], which is

the master regulatory molecule in mitochondrial biogen-

esis and is known to improve endogenous antioxidant sys-

tems. The beneficial effect of exercise in this scenario is

indeed a good example of mitochondrial hormesis men-

tioned above.

Cardiovascular diseases

Separate from the intrinsic decline in cardiac function

during healthy aging mentioned above, old age is associ-

ated with an exponential increase in the prevalence of

hypertension, stroke, coronary heart disease, and heart

failure, especially in people aged over 65 years. Increased

oxidative stress has been implicated in the pathogenesis

of cardiovascular diseases, including hypertension, ath-

erosclerosis, cardiac hypertrophy due to cardiac aging or

pressure overload, cardiac ischemia-reperfusion injury,

as well as cardiac failure. As in cardiac aging, a defi-

ciency of mitochondrial energetics has been documented

in human and experimental animals with heart failure

[79]. Mechanisms may include mitochondrial biogenesis

that does not keep up with the increasing demand (see

review [80]), mitochondrial uncoupling and decreased

substrate availability [81], and increased mitochondrial

DNA deletions [46]. Mutations of genes encoding mito-

chondrial enzymes have been shown to be associated

with various forms of idiopathic hypertrophic and di-

lated cardiomyopathies [82]. Mitochondrial DNA dele-

tions have been found in experimental models of heart

failure [83]. Studies on human hearts using 31P NMR

spectroscopy indicated that the ATP content of failing

hearts is generally 20% to 30% lower than that of normal

hearts [84]. Furthermore, phosphocreatine, an important

short-term reserve energy source that maintains a high

phosphorylation potential to cope with acute increases
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in energy demand (for example, exercise), significantly

declined by up to 60% in elderly heart failure patients

[85]. The magnitude of this reduction is related to the

severity of heart failure [86] and is shown to predict

mortality in patients with dilated cardiomyopathy [87].

Hypertension is the most common cause of cardiac

hypertrophy, which predisposes to chamber dilatation,

heart failure, and sudden cardiac death [88]. Angiotensin

II, a key molecule in the Renin-Angiotensin System

which regulates hypertension, is well known to cause left

ventricular hypertrophy and fibrosis [89]. At the molecular

level, Angiotensin II binds to ATR1, a Gαq coupled-

receptor, then activates NADPH oxidase through a PKC-

dependent manner to produce ROS [90]. ROS from

NADPH oxidase, particularly the NOX4 isoform, might in-

crease mitochondrial ROS production, as previously shown
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in endothelial and vascular smooth muscle cells [91,92].

Mechanisms of ROS amplification in mitochondria might

include ROS induced ROS release as well as a ROS-

mtDNA damage vicious cycle (Figure 2) (see review [93]).

A study from our laboratory showed that Angiotensin

II delivered for 4 weeks by an osmotic minipump in-

duced increased blood pressure, cardiac hypertrophy,

cardiac fibrosis, and diastolic dysfunction [55]. This ex-

perimental model of cardiac hypertrophy is associated

with increased cardiac mitochondrial protein carbonyl

content and the frequency of mitochondrial DNA dele-

tions, indicating oxidative damage to mitochondria [46].

The accumulation of mitochondrial oxidative damage

activated mitophagy, which in turn increased signaling for

mitochondrial biogenesis through activation of peroxi-

some proliferator-activated receptor gamma coactivator-1

alpha (PGC-1α) and its target genes. Our observation is

consistent with the report that PGC-1α is transcriptionally

upregulated by ROS [78]. mCAT, but not pCAT, were re-

sistant to cardiac hypertrophy, fibrosis, and diastolic dys-

function induced by Angiotensin II [46]. This strongly

supports a central role of mitochondrial ROS in Angioten-

sin II-induced cardiomyopathy [46]. Additional evidence

from other laboratories show that disruption of p66Shc

prevents Angiotensin II-induced LV hypertrophy and

cardiomyocyte apoptosis as well as reducing oxidative

damage in cardiac progenitor cells, cardiomyocytes, and

endothelial cells in a diabetic mouse model [50,51,94].

Moreover, mice deficient in mitochondrial deacetylase

SIRT3 displayed early age onset of hypertrophy associated

with fibrosis, age-dependent increase in mitochondrial

swelling due to increased mPTP opening, increased mor-

tality after transverse aortic constriction [52].

As noted above, Polgm/m mice have increased mito-

chondrial DNA mutations and develop heart failure at

middle age or at young age when challenged with

0

2

4

6

8

10

M
t-
p
ro

te
in

 c
a
rb

o
n
y
l

(n
m

o
l/
m

g
)

0

10

20

30

40

50

60

m
tD

N
A

 d
e
le

ti
o
n
 f
re

q

(r
e
la

ti
v
e
 t
o
 Y

W
T

)

WT mCAT       Polgm/m WT  mCAT     Polgm/m Polgm/m /mCAT

A

B

*

*

*

*

p=0.03

p=0.03

*

p=0.03

p=0.03

4-6 months > 24 months 13.5 months

WT mCAT       Polgm/m WT  mCAT      Polgm/m Polgm/m /mCAT

4-6 months > 24 months 13.5 months

Figure 4 Mitochondrial oxidative damage and mtDNA deletions in cardiac aging. (A). Mitochondrial protein carbonyl (nmol/mg)

significantly increased in old wild-type (OWT, >24 months) and even more in middle-aged Polg (13.5 months) mouse hearts when compared with

young WT mouse hearts. mCAT significantly reduced the age-dependent mitochondrial protein carbonylation. (B) Mitochondrial DNA deletion

frequency significantly increased in OWT (>24 months) and young Polg (4 months) when compared with young WT, and this is dramatically increased

in middle-aged Polg (13.5 months). mCAT overexpression significantly reduced the deletion frequency for both. *P <0.05 compared with YWT. Modified

from Dai et al. [25,43].

Dai et al. Longevity & Healthspan 2014, 3:6 Page 8 of 22

http://www.longevityandhealthspan.com/content/3/1/6



Angiotensin II, both of which are attenuated by mCAT

[43,46]. This suggests that primary damage to mitochon-

drial DNA contributes directly to the phenotype of systolic

heart failure, through increased mt ROS. Therefore, the

protective effects of mCAT expression in Ang-induced

cardiac hypertrophy and Gαq-induced heart failure pro-

vide direct evidence that amplification of ROS within

mitochondria is a key mediator in these disease models

[46]. Using the transverse-aortic constriction (TAC)

mouse model, we further show that TAC-induced heart

failure is associated with remodeling of the mitochondrial

proteome, including decreased abundance of proteins in-

volved in fatty acid metabolism and increased abundance

of proteins in glycolysis, apoptosis, mitochondrial un-

folded protein response, and proteolysis. Overexpression

of mCAT mitigates the phenotype of heart failure, better

preserves proteins involved in fatty acid metabolism, and

attenuates the increases in apoptotic and proteolytic en-

zymes [95]. Thus, breaking the ROS vicious cycle within

mitochondria by mCAT is effective in attenuating

both cardiac hypertrophy and failure (Figure 2). In a

highly parallel manner we also demonstrated that the

mitochondrial protective peptide SS31 attenuates car-

diac hypertrophy and diastolic dysfunction induced by

chronic Angiotensin II, and the heart failure pheno-

types induced by overexpression of Gαq or transverse

aortic constriction (See section Mitochondrial protective

strategies as potential therapeutics for aging-related

diseases). Furthermore, SS-31 has also been shown to

prevent hypoxia-reoxygenation induced apoptosis in

renal tubular epithelial cell by downregulation of p66Shc

[96].
Ischemic-reperfusion (I/R) injury often occurs during

acute myocardial infarction, either due to spontaneous

recanalization of the occluded artery or as a result of a

reperfusion therapy. ROS are well known to be primary

mediators in IR injury. ROS begin to accumulate during

ischemia [97], causing mitochondrial respiratory complex

dysfunction, which leads to a burst of ROS after reperfu-

sion. Furthermore, post-ischemic reperfusion is associated

with ROS accumulation, acidic pH, and a rise in [Ca2þi ],

conditions which have been shown to open the mPTP,

which in turn triggers more mitochondrial ROS gener-

ation. This is one of the mechanism involved in mitochon-

drial ROS-induced ROS release [98] (Figure 2).

The aged myocardium has less tolerance to ischemia

and hemodynamic stress than the young myocardium

[99]. Aged cardiomyocytes have a lower threshold for

ROS induced ROS release and increased susceptibility to

mPTP opening [100]. Ischemic preconditioning is also

impaired in the aged myocardium (reviewed by [100]).

This loss of endogenous protective mechanisms of ische-

mic preconditioning in the aged heart might be due to a

decrease in mitochondrial heat shock protein-70 [101],

reduced nitric oxide bioavailability [102], damaged mito-

chondria that are vulnerable to stress, and diminished

PKC translocation into mitochondria, all of which are

required for the protective effect of ischemic precondi-

tioning [103,104]. Cardiac aging and various models of

cardiomyopathy in the context of mitochondrial ROS

are summarized in Table 1.

Skeletal muscle aging

Sarcopenia is the loss of skeletal muscle mass and func-

tion with age. Sarcopenia is an important public health

concern due to its role in exercise intolerance, increased

morbidity, and loss of independence in the elderly

[105-108]. This loss of independence is due to an inabil-

ity to perform activities of daily living that require sus-

tained muscle power, such as walking, dressing, and

showering as well as an increased risk of falling [109].

The resulting increased rates of nursing home place-

ment and hospitalization make the loss of skeletal

muscle function with age a growing public health crisis

in terms of both quality of life and economic costs to

society. Janssen et al. [110] estimated these costs at $18

billion dollars in 2001 and predicted that a 10% reduc-

tion in sarcopenia prevalence would lead to a savings

of $1.4 billion in healthcare costs (adjusted to 2010

dollars) [110].

Skeletal muscle, like heart, relies on mitochondria to

meet the majority of the ATP demands for sustained

muscle contraction. Mitochondrial function in skeletal

muscle is very dynamic where the metabolic rate can

vary by at least an order of magnitude during rest to

work transitions, as well as varying with nutritional state.

One consequence of this variation in mitochondrial

function is that periods of increased mitochondrial ROS

production are a normal part of the physiology of

skeletal muscle [62,111]. Skeletal muscles also produce

significant ROS from non-mitochondrial sources, pri-

marily sarcolemmal NAD(P)H oxidases [112], that can

also contribute to increased cellular and mitochondrial

oxidative stress. These transient increases in oxidative

stress modify muscle function and may play an important

role in the beneficial adaptations to exercise training

[36,113]. However, mitochondria in aged skeletal muscle

have an increased capacity to produce H2O2 when mea-

sured under ex vivo conditions [54]. This increased

mitochondrial oxidative stress can control mitochon-

drial function both in vivo [114,115] and ex vivo

[116,117]. Inducing a mild oxidative stress in adult mice

for 24 h using low doses of paraquat recapitulates

the reduced mitochondrial coupling (P/O) and depres-

sion of skeletal muscle metabolism [114,115] observed

in vivo in aged skeletal muscle in both mice [118] and

humans [119]. This same paraquat treatment in old

mice led to decreases in maximal mitochondrial ATP
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production (ATPmax), in addition to further decreases

in P/O and resting metabolism [115]. This increased

sensitivity is consistent with a decline in the ability of

the aged skeletal muscle to buffer transient increases in

oxidative stress.

Further support for a contribution of mitochondrial

oxidative stress in age-related skeletal muscle dysfunc-

tion comes from experiments using the mitochondrial

targeted peptide SS-31. SS-31 accumulates in the mito-

chondria by associating with the inner mitochondrial

membrane [61] and reduces mitochondrial H2O2 pro-

duction [54,62]. One hour after treatment with SS-31

age-related declines in mitochondrial P/O, ATPmax, and

skeletal muscle metabolism were reversed (Figure 5) [54]

and the skeletal muscle glutathione redox state was

more reduced [120]. These metabolic changes were asso-

ciated with improved fatigue resistance of the tibialis an-

terior muscle in situ and increased endurance capacity

in the aged mice.

Genetic manipulation of mitochondrial antioxidants

also supports a role for mitochondrial oxidative stress in

controlling skeletal muscle function and metabolism.

Deficiency of MnSOD (mitochondrial specific isoform of

superoxide dismutase) in type IIB muscle fibers leads to

an increase in mitochondrial oxidative stress and dys-

function in fast-twitch mouse muscles. Mitochondria

from fast-twitch muscles in these mice had significantly

reduced aconitase and succinate dehydrogenase (com-

plex II of the electron transport chain) activities and in-

creased capacity for superoxide production resulting in

elevated F2-isoprostanes [121]. Both fatigue resistance in

isolated muscles and whole body endurance perform-

ance were also decreased in the MnSOD deficient mice.

Interestingly, MnSOD deficiency did not lead to an in-

crease in muscle atrophy or change in maximal force

production in aged mice. Conversely, mCAT preserved

mitochondrial function and insulin sensitivity in skeletal

muscle of aged mice [49], while vector delivery of mCAT

into embryos led to an increase in exercise performance

in 3-month-old mice [122]. However, the ectopic expres-

sion of mCAT had no effect on the contractility and fa-

tigue resistance in isolated extensor digitorum longus

muscle. The lack of effect in the isolated muscle may

indicate that the increased exercise tolerance in this

study was due to improved cardiac function as described

above. Alternatively, the mosaic expression of mCAT in

the skeletal muscles may have limited its effect on

ex vivo skeletal muscle performance.

The current evidence strongly supports an important

role of mitochondrial oxidative stress in the decline in

skeletal muscle function with age, while its role in skel-

etal muscle atrophy with age is still controversial. The

strongest evidence in support of a role for oxidative

stress in age-related muscle atrophy comes from mice
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lacking CuZnSOD (SOD1). CuZnSOD is found in both

the cytosol and the inner membrane space of the mito-

chondria. The absence of CuZnSOD leads to an accu-

mulation of peroxinitrite and oxidative damage [123],

increased mitochondrial ROS production, increased sen-

sitivity to apoptotic loss of myonuclei, and mitochondrial

dysfunction associated with a premature loss of skeletal

muscle mass in aging mice [12]. Muscle fibers from

CuZnSOD-/- knockout mice accumulated mitochondria

around the neuromuscular junction, showed a loss of

motor units and disruption of neuromuscular junctions.

However, muscle specific knockout of CuZnSOD did

not result in muscle atrophy, increased oxidative stress,

nor mitochondrial dysfunction [124], but did have a loss

of specific force throughout life. The lack of atrophy in

the skeletal muscle specific deficiencies in CuZnSOD

and MnSOD knockouts led these authors to suggest that

increased oxidative stress in the myofibers are not pri-

mary cause of muscle atrophy with age. Instead they

suggest that increased oxidative stress in the motorneur-

ons leading to denervation may be the primary driving

force behind loss of muscle mass. This conclusion is

supported by the observation that direct stimulation of

skeletal muscles in the CuZnSOD-/- mice leads to signifi-

cant increases in force production over that achieved by

nerve stimulation [124]. This result suggests that force is

limited not by the muscle itself, but by the ability of the

motorneuron to maximally stimulate the available myofi-

bers. Thus, the data from the CuZnSOD-/- mice suggest an

important role of increased oxidative stress in age-related

muscle atrophy, although it remains unclear whether oxi-

dative stress originating in the myofibers or the motorneur-

ons are the primary drivers of this process. This conclusion

is supported by recent work demonstrating that treatment

with SS-31 during hind limb unloading ameliorated muscle

atrophy and mitochondrial dysfunction [125].

There are multiple ways in which an increase in oxida-

tive stress can affect skeletal mitochondrial and contractile

function. Work to date has primarily focused on the accu-

mulation of oxidative damage to proteins, lipids, and DNA.

Most studies find a clear accumulation of oxidatively dam-

aged macromolecules with age in skeletal muscle and most

other tissues. However, oxidation of the mitochondrial and

cellular redox environment can also exert control over

cellular function through post-translational modifica-

tion of proteins (Figure 1). Glutathionylation is a key

redox dependent post-translational modification in the

mitochondria. Increased oxidative stress has been found

to lead to increased glutathionylation and inhibition of

activity of electron transport chain proteins, F1F0 ATPase

[126] and complex I [127], and of TCA cycle proteins,

succinyl-CoA-transferase [126] and α-ketoglutarate de-

hydrogenase [128]. In addition recent evidence indicates

that glutathionylation of UCP3 regulates proton leak

under conditions of acute oxidative stress in skeletal

muscle [129] resulting in increased proton leak and

reduced P/O.

Redox modification of proteins can also affect con-

tractile function. The skeletal muscle ryanodine receptor

1 (RyR1) in aged rats is oxidized by cysteine nitrosylation

[130]. This leads to a loss of RyR1-calstabin1 interaction,

destabilization of the channel and increased calcium leak

from the SR, which causes a loss of specific force and

reduced exercise tolerance with age. Stabilizing the

channel and preventing calcium leak rescued force pro-

duction and exercise tolerance. As pointed out by the

authors, leaky RyR would lead to elevated cytosolic cal-

cium and increased calcium loading by the mitochon-

dria, and an elevation of mitochondrial ROS production.

This could then lead to a feed-forward mechanism fur-

ther exacerbating skeletal muscle dysfunction. Thus,

oxidation of the cellular redox status in aged muscle

[131] can contribute to energetic and contractile deficits

through both reversible and post-translational modifica-

tion of proteins.

Neurodegenerative disease

Old age is associated with progressive decline in the

functional performance of the nervous system. This in-

trinsic nervous system aging includes slowed reaction

times, degeneration of sensory and motor function, and a

decline in cognitive performance. In addition to intrinsic

nervous system aging, several neurodegenerative diseases

demonstrate strong age-related onset including the highly

prevalent Alzheimer’s disease (AD) and Parkinson’s dis-

ease (PD), among others.

Age-related sensorineural hearing loss

Age-related sensorineural hearing loss or presbycusis is

gradual loss of hearing with aging. The prevalence in the

elderly is estimated to be 30% to 35% of people aged 65

to 75 years and 40% to 50% of people aged older than

75 years [132]. The sensorineural hearing loss is usually

more severe for high pitched sound, which eventually

leads to difficulty in understanding speech. The path-

ology is characterized by age-dependent loss of sensory

hair cells, spiral ganglion neurons, and stria vascularis

cells in the inner ear cochlea. Someya et al. [44] reported

that mice with the deletion of the mitochondrial pro-

apoptotic gene Bak attenuated age-related apoptotic cell

deaths and hence prevented presbycusis. While oxidative

stress induced Bak expression in primary cochlear cells,

mCAT suppressed Bak expression, reduced cell death

and subsequently prevented presbycusis. These findings

suggest a central role of mitochondrial ROS induced

apoptotic pathway in presbycusis [44]. They further

demonstrate that caloric restriction prevents presbycu-

sis via reduction of oxidative damage by mitochondrial
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deacetylase SIRT3. In response to CR, SIRT3 directly

deacetylates and activates mitochondrial isocitrate de-

hydrogenase 2, leading to increased NADPH levels and

an increased ratio of reduced-to-oxidized glutathione in

mitochondria and thereby enhancing the mitochondrial

glutathione antioxidant defense system [53].

Alzheimer’s disease

AD is the most prevalent neurodegenerative disease,

affecting approximately 5 million Americans. The clin-

ical presentation of AD is primarily memory impairment

and dementia. The early memory deficit in AD is often

described as ‘recent memory impairment’ (for example,

inability to recall a couple of words after a few minutes

of distraction) [133]. Deficits in other cognitive functions

may appear later after the development of memory

impairment.

There are two principle pathologic lesions in AD: neuro-

fibrillary tangle (NFT) and the amyloid plaque [134]. The

NFTs consist of abnormal accumulations of abnormally

phosphorylated tau within the cytoplasm of certain neu-

rons. The amyloid plaques contain β-amyloid peptide

(Aβ), which arises through proteolytic processing of

amyloid precursor protein (APP) by β-secretase and

γ-secretase (presenilin1/2). Each of these lesions has a

characteristic distribution. The hierarchical pattern of

NFTs among brain regions is so consistent that a sta-

ging scheme based on the topography of these lesions

has been widely used [135]. The majority of AD cases

are sporadic and occur very late in life, however, less

than 1% of AD is familial AD cases, which have an early

onset and are inherited in an autosomal dominant

manner. Genes implicated in the early onset AD include

β-amyloid precursor protein (APP), presenilin 1, and

presenilin 2 [136]. Mutation of the APP gene affects the

cleavage of APP by β-secretase or γ-secretase to gener-

ate various forms of Aβ. The Aβ peptides have a ten-

dency to form oligomer aggregates and become toxic,

especially the long form, Aβ1-42. Presenilins are integral

membrane proteins that function as the proteolytic

components of γ-secretase. Mutations of presenilins re-

sult in increased production of Aβ1-42.

Several lines of evidence have shown the central roles

of mitochondria in AD (see reviews [137]). Both APP

and presenilin have been isolated in mitochondrial fraction

[138,139]. Moreover, Aβ is imported into the mitochon-

drial cristae through translocase of outer mitochondrial

membrane complex (TOMM) [140]. Increased mito-

chondrial oxidative stress and damage to mitochondrial

structural components and enzyme complexes are well

documented in early AD [141-144]. One of the mecha-

nisms involves Aβ, which inhibits mitochondrial func-

tion by inhibition of electron transport chain activity,

especially complex III and IV, that further leads to

increased ROS production, decreased ATP production,

and facilitation of cytochrome c release [143,145,146].

Additional insults to mitochondria include altered Ca2+

homeostasis [147], increased mitochondrial DNA muta-

tions, and deletions [141]. Furthermore, alterations of

mitochondrial dynamics have been implicated in AD

[148-150]. It has been shown that S-nitrosylation of Drp1

(a mitochondrial fission protein) mediates β-Amyloid-

related mitochondrial fission and neuronal injury [148].

Increased production of Aβ interacts with Drp1, which is

a critical factor in mitochondrial fragmentation, abnormal

mitochondrial dynamics, and synaptic damage [150].

More direct evidence of the role of mitochondrial oxida-

tive stress in AD is demonstrated by studies using mCAT

mice or mitochondrial targeted antioxidants. Mao et al.

[47] showed that mCAT decreases amyloid-beta (Aβ)

toxicity and oxidative injury, and extends the lifespan of

Aβ precursor protein (PP) overexpressing mice. This data

provides direct evidence that mitochondrial oxidative

stress plays a primary role in AD pathology, and supports

the possibility that mitochondria-targeted antioxidants

might be an effective therapeutic approach to treat pa-

tients with AD.

AD is associated with neuronal cell death, loss of synap-

ses, as well as mitochondrial abnormalities. Incubation of

N2a cells with Aβ led to reduced neurite outgrowth, lower

cell viability, mitochondrial dysfunction, and fragmenta-

tion and loss of ATP, all of which were partially protected

by simultaneous incubation with either SS-31 or MitoQ

[125]. Primary neurons from the AβPP mouse model

showed increased H2O2 production, reduced cytochrome

oxidase activity, and decreased ATP levels [151]. There

was also decreased anterograde mitochondrial movement,

increased mitochondrial fission, and decreased fusion.

Treatment with SS-31 restored mitochondrial transport

and synaptic viability, and decreased the percentage of de-

fective mitochondria [152].

Parkinson’s disease

PD, the second most common neurodegenerative dis-

order, is characterized by defects in motor functions,

manifested as resting tremor, bradykinesia, rigidity, and

postural instability. The hallmark pathology of PD is a

gradual loss of pigmented dopaminergic neurons in the

substantia nigra pars compacta, and accumulation of

Lewy bodies in catecholaminergic neurons of the brain-

stem in the substantia nigra and locus ceruleus. Lewy

bodies are abnormal aggregates of proteins composed

predominantly of α-synuclein and ubiquitin.

There is substantial support for the central role of

mitochondria in the pathogenesis of PD. A few genetic

loci have been mapped in rare familial PD cases, and are

sequentially named PARK1 to PARK11 (review in [153]).

Several genes associated with familial PD have been
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identified in these loci, and the majority of them are

related to mitochondria. PARK1 gene encodes α-

synuclein, which has been implicated in the mainten-

ance of mitochondrial membranes [154]. Increased

amount of α-synuclein binding to mitochondria inhibits

mitochondrial fusion and thereby triggers PD path-

ology, which can be rescued by PINK1, Parkin, and DJ-1

[154]. PARK8 encodes the leucine-rich repeat kinase 2

(LRRK2) and its mutations have been associated with

mitochondrial oxidative phosphorylation dysfunction

[155]. LRRK2 regulates mitochondrial dynamics by a

direct interaction with DLP1, a mitochondrial fission

protein [156]. PARK7 encodes DJ-1, the mutation of

which is associated with complex I defects, increased

mitochondrial ROS, reduced mitochondrial membrane

potential, altered mitochondrial morphology, and dy-

namics [157-159]. PARK2 and PARK6 encode parkin

and PTEN-induced kinase 1 (PINK1), which is involved

in mitochondrial dynamics (fusion/fission) and turnover

by mitophagy [160-162].

Several rodent models have been used to recapitulate

pathology and pathophysiology of PD, including mice

with genetic manipulation of many of the genes men-

tioned above and rodents treated with environmental

toxins (see review [163]). Of note, the majority of the

environmental toxins that recapitulate PD are mitochon-

drial complex I inhibitors, such as 1-methyl-4-phenyl-

1,2,5,6-tetrahydropyridine (MPTP), paraquat, or rote-

none. Inhibition of complex I is associated with impaired

mitochondrial respiration and leads to increased mito-

chondrial ROS production, increased oxidative damage

to proteins, lipids, and DNA, which may further activate

mitochondrial-dependent apoptotic pathways and cause

dopaminergic neuronal cell death.

Direct evidence of the role of mitochondrial ROS in

PD was shown by the protective effect of mCAT mouse

brains against MPTP induced mitochondrial ROS pro-

duction and subsequent dopaminergic neuron dege-

neration in substantia nigra pars compacta [48]. In

contrast, harlequin mice with partial deficiency of apop-

tosis inducing factor, which is required for maintenance

of complex I oxidative phosphorylation activity, are

more susceptible to MPTP-induced dopaminergic neur-

onal cell death. The increased sensitivity of harlequin

mice to MPTP is reversed by the antioxidant tempol

(superoxide dismutase-mimetic) [48]. SS-31 was also

shown to dose-dependently protect dopaminergic neu-

rons and preserve striatal dopamine levels in mice

treated with MPTP, with complete protection observed

at 5 mg/kg [65]. Furthermore, SS-31 prevented MPP+--

induced inhibition of oxygen consumption, ATP produc-

tion, and mitochondrial swelling in isolated mitochondria.

MitoQ was also reported to be protective against MPTP

toxicity [164].

Insulin resistance, diabetes, and its complication

Growing evidence has implicated the involvement of

oxidative stress in insulin resistance and the patho-

genesis of diabetes. Hyperglycemia is associated with

increased ROS production from glucose autoxidation,

advanced glycosylation end-products (AGEs) formation,

polyol pathway, and ROS-producing enzymes including

NADPH oxidase [165]. Nishikawa et al. showed that,

under hyperglycemia, increased glycolysis generates ex-

cess pyruvate, which overloads the mitochondria and

leads to superoxide generation from the electron trans-

port chain [166]. This mitochondrial superoxide produc-

tion triggers the feed-forward cycle of mitochondrial

ROS production in diabetes.

The involvement of mitochondrial oxidative stress in

muscle insulin resistance has been demonstrated by the

protection of mCAT mice in age-related reductions in

mitochondrial function and lipid-induced insulin resist-

ance in skeletal muscle [49]. This protection is associ-

ated with reduced mitochondrial oxidative damage and

preserved mitochondrial respiration in muscle of old

mCAT mice. In another study, Anderson and colleagues

showed both mCAT mice and WT mice treated with

SS-31 have reduced high-fat diet-induced mitochondrial

H2O2 emission and showed preserved insulin sensitivity

in skeletal muscle, further support of the mitochondrial

ROS in muscle insulin resistance [62]. Thus mitochon-

drial oxidative stress plays an important role in the initi-

ation of insulin resistance.

Diabetes is linked with multiple cardiovascular compli-

cations including accelerated atherosclerosis, augmented

ischemic injury post-myocardial infarction, diabetic ret-

inopathy, and nephropathy. In a mouse model of dia-

betes induced by streptozotocin injection, retina of

diabetic mice had two-fold increase in superoxide levels,

40% reduction in GSH levels and 20% reduction in com-

plex III activity, and increased mitochondrial membrane

permeability. All these changes were attenuated in mice

overexpressing MnSOD, which also experience reduced

vascular histopathology, indicating the role of mito-

chondrial oxidative stress in retinopathy [167]. Cardiac

mitochondria in diabetic mice also displayed increased

mitochondrial membrane permeability, which has been

shown to contribute to the increased propensity for I/R

injury in diabetic hearts. Daily intraperitoneal injection

of MTP-131 (analogous to SS-31) for 4 days partially

reversed increased mPTP opening in diabetic heart mito-

chondrial. In the same study, Sloan et al. showed that the

administration of MTP-131 peptide during reperfusion

reduced I/R injury in diabetic hearts, supporting the role

of mitochondrial ROS and mPTP opening in I/R injury in

diabetic cardiomyopathy [168].

Despite the evidence supporting the role of mitochon-

drial oxidative stress in experimental models of diabetes,
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there are mixed results on the protective role of antioxi-

dant treatments in diabetes or its complications from

clinical trials [165]. For instance, the HOPE trial showed

vitamin E treatment for 4.5 years fails to confer benefit in

cardiovascular outcomes and nephropathy [169]. Results

of SECURE trial and PPP trial also failed to demonstrate

any protective effects with vitamin E treatment [165]. On

the other hand, clinical trials on α-lipoic acid have shown

more promising results than vitamin E trials. Multiple

studies with α-lipoic acid, including ALADIN study,

DEKAN study, and SYDNEY trial, have demonstrated its

protective effect on diabetic neuropathy [165,170-174].

It is possible that increased mitochondrial ROS may

play a larger role in the development of insulin resist-

ance before the onset of chronic hyperglycemia. A recent

study using the streptozotocin-induced mouse model of

type 1 diabetes actually found reduced mitochondrial

function and superoxide production in diabetic kidneys

and suggested that this may be due to reduced mito-

chondrial biogenesis caused by lower PGC1α expression

[175]. The investigators postulated that reduced mito-

chondrial biogenesis led to reduction in activity of

AMPK, the master energy sensor. Activation of AMPK

restored mitochondrial function and superoxide produc-

tion, and this was associated with a beneficial reduction

in renal pathology. Thus chronic mitochondrial oxidative

stress may actually result in reduced mitochondrial func-

tion in the later stages of diabetes, and that restoration

of mitochondrial structure and function may be neces-

sary to prevent the decline in organ function.

It was recently reported that SS-31 significantly reduced

diabetic retinopathy [63]. Daily treatment with SS-31 over

4 months in the rat streptozotocin model significantly pre-

vented the loss of mitochondrial cristae and mitochondrial

swelling in retinal epithelial cells. SS-31 also protected the

inner blood-retinal barrier, and this was due to preserva-

tion of tight junctions in the retinal blood vessels, suggest-

ing adequate ATP production is required to maintain the

cytoskeleton of the endothelial cells. Oxidative markers

such as 8-OHdG and nitrotyrosine were significantly

reduced in the SS-31-treated diabetic animals. The upreg-

ulation of VEGFR2 was also significantly attenuated, and

this suggests that SS-31 can reduce neovascularization.

Interestingly, SS-31 had no effect on blood glucose, but

clearly prevented the effects of hyperglycemia on retinal

structure and function.

Age-related cancer

Mitochondrial ROS leads to oxidative damage in nucleic

acids and proteins and has been implicated in carcino-

genesis. A recent study demonstrates that loss of mito-

chondrial cytochrome oxidase is associated with the

development of colonic dysplasia (precancerous state) in

patients with ulcerative colitis [176]. Direct evidence for

the role of mitochondrial ROS in age-related cancer is

shown by the effect of mCAT to reduce the non-

hematopoietic tumor burden in a mouse end-of-life path-

ology study [45]. The mCAT expression has also been

shown to be protective in an experimental model of meta-

static breast cancer (PyMT mice). The mCAT mice dis-

played reduced invasive grade of primary breast tumor

and have 30% less pulmonary metastasis incidence. Both

tumor cells and lung fibroblasts in mCAT expressing

PyMT mice have reduced intracellular ROS and increased

resistance to H2O2-induced cell death, which may confer

the protective effects in mCAT mice [177].

Ataxia telangiectasia mutated (ATM) kinase plays a

central role in the DNA-damage response and redox

sensing by the phosphorylation of many key proteins

that initiate activation of the DNA damage checkpoint,

leading to cell cycle arrest, DNA repair, or apoptosis. In

addition to severe ataxia due to cerebellar degeneration,

ataxia telangiectasia patients also have increased risk of

lymphomas and leukemias, as well as immune defect

[178]. ATM null mice (ATM-/-) develop thymic lymph-

omas, despite very mild neurodegenerative phenotypes.

Reducing mitochondrial ROS by mCAT in ATM-/- mice

reduced propensity to develop thymic lymphoma, im-

proved bone marrow hematopoiesis, and macrophage

differentiation in vitro, and partially rescued memory

T-cell development [178].

Mitochondrial protective strategies as potential

therapeutics for aging-related diseases

Meta-analyses of several clinical trials using antioxidant

supplement have shown largely disappointing results

[13]. With strong evidence of the central role of mito-

chondrial oxidative stress and damage in several age-

related diseases as revealed by the mCAT model, there

have been several attempts to develop mitochondria-

targeted antioxidants. The most common approach used

for delivering compounds into mitochondria have relied

on the conjugation of known redox agents to triphenyl-

phosphonium ion (TPP+) to take advantage of the poten-

tial gradient across the inner mitochondrial membrane.

The second major category is aromatic-cationic tetrapep-

tides that selectively target the inner mitochondrial mem-

brane without relying on mitochondrial potential.

TPP+ conjugated antioxidants

The mitochondrial inner membrane has a negative po-

tential gradient (-150-180 mV) that is generated as a re-

sult of the release of protons from the mitochondrial

matrix to the intermembrane space. The negative poten-

tial serves as a basis for the use of lipophilic cations to

deliver redox agents into the mitochondrial matrix. This

method can potentially result in 100- to 1,000-fold ac-

cumulation of drugs within the mitochondrial matrix
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[179]. TPP+ has been conjugated to coenzyme Q (MitoQ)

and plastoquinone (SkQ1) [30,31]. By preferentially accu-

mulating in the mitochondrial matrix, these TPP+-conju-

gated antioxidants are more potent than their lipophilic

counterparts in reducing intracellular ROS, preserving re-

duced thiols, and reducing oxidative cell death [180,181],

This lipophilic cation approach has also been used to

generate other mitochondrial-targeted antioxidants to

decrease superoxide (MitoSOD), hydrogen peroxide (Mito-

Peroxidase), ferrous iron (MitoTEMPO), and lipid peroxi-

dation (MitoE2) (see review [182]).

MitoQ had been shown to improve pathology associ-

ated with antioxidant deficiency and prolong lifespan of

SOD-deficient flies, however, it failed to show lifespan

extension in normal WT flies [183]. Indeed, there was a

dose-dependent increase in toxicity of MitoQ in flies

[183]. MitoQ and SkQ1 have been shown to be effective

in reducing ischemia-reperfusion injury [68,184,185].

Dikalova et al. reported that MitoQ treatment for

8 weeks reduced systolic blood pressure and cardiac

hypertrophy in spontaneous hypertensive rats [66,186].

The plausible mechanism of blood pressure lowering ef-

fect is the improved bioavailability of endothelial nitric

oxide. There is evidence that MitoQ can protect against

endotoxin-induced cardiac dysfunction [187]. As men-

tioned earlier, MitoQ was also found to be protective in

animal models of neurodegenerative diseases such as

AD and PD [164,188]. A series of papers reported that

SkQ1 prolonged lifespan, reduced ischemia-reperfusion

injury, inhibited tumor development, and returned vi-

sion to blind animals [30,67-69].

However, recent reports suggest that MitoQ can actually

increase superoxide production at Complex I [189,190]

and both MitoQ and SkQ were reported to inhibit

mitochondrial bioenergetics [191,192]. Thus while these

TPP+-conjugated antioxidants can reduce mitochondrial

ROS, they may also reduce oxidative phosphorylation and

ATP production.

MitoQ has been evaluated in two clinical trials. A

small trial of MitoQ in 30 patients with hepatitis C

revealed a significant reduction in alanine aminotrans-

ferase after 28 days of treatment [193]. However, a

double-blind, placebo-controlled trial in patients with

PD showed that MitoQ treatment over 12 months did

not slow the progression of PD [194]. It is unclear

whether clinical development of MitoQ is being contin-

ued at this time. On the other hand, SkQ1 eye drops ap-

pear to have been approved for dry eye and are available

in Russia.

SS peptides

The Szeto-Schiller (SS) compounds are tetrapeptides with

an alternating aromatic-cationic amino acids motif, which

was serendipitously found to preferentially concentrate in

the inner mitochondrial membrane greater than 1,000-fold

compared with the cytosolic concentration [68,190,195].

Although these peptides carry 3+ net charges, the mito-

chondrial uptake of these SS peptides is not dependent on

mitochondrial potential, as they are also concentrated even

in the depolarized mitochondria [190,195]. SS-31 (H-D-

Arg-Dmt-Lys-Phe-NH2) was originally thought to exert its

beneficial effect solely by the free radical scavenging activity

of dimethyl tyrosine [66]. SS-31 is able to scavenge H2O2

hydroxyl radical and peroxynitrite in vitro in a dose-

dependent manner [195,196].

A recent study revealed that in addition to this ROS

scavenging capacity, SS-31 selectively binds to cardioli-

pin on the inner mitochondrial membrane via both elec-

trostatic and hydrophobic interactions [61]. Cardiolipin

is a phospholipid that is uniquely expressed on the inner

mitochondrial membrane and plays an important role in

the maintenance of cristae structure and formation of

super complexes to facilitate electron transfer in the

electron transport chain [197-199]. Cardiolipin also plays

a role in anchoring cytochrome c to the inner mitochon-

drial membrane and facilitates electron transfer from

complex III to complex IV [200,201]. Although electro-

static interaction with cardiolipin is important for cyto-

chrome c to function as an electron carrier, hydrophobic

interaction with cardiolipin tends to cause cytochrome c

to unfold and dramatically enhances its peroxidase activ-

ity causing cardiolipin peroxidation [202-204]. The oxi-

dation of cardiolipin disturbs cardiolipin microdomains

on the inner mitochondrial membrane and causes the

loss of cristae curvature and super complex formation.

Disruption of super complex formation not only reduces

oxidative phosphorylation but also increases ROS forma-

tion by complex I [205].

We recently showed that the binding of SS-31 to car-

diolipin alters the interaction of cardiolipin with cyto-

chrome c, and favors its electron carrier function while

inhibiting peroxidase activity by protecting the Met80-

heme ligand [32,206]. By promoting cytochrome c re-

duction, SS-31 increases electron flux in mitochondria

and accelerates ATP production [206]. At the same time,

SS-31 inhibits ROS generation and inhibits cytochrome

c peroxidase activity, thereby preventing cardiolipin per-

oxidation and loss of cristae membranes [206]. Thus,

SS-31 is a multifunctional mitoprotective compound

that acts by promoting bioenergetics, reducing ROS pro-

duction, scavenging excess ROS, inhibiting cardiolipin

peroxidation, and preserving mitochondrial structure.

These unique properties of SS-31 are particularly ef-

fective in minimizing ischemia-reperfusion injury. After

prolonged ischemia, the hydrophobic interaction be-

tween cardiolipin and cytochrome c is enhanced by low

ATP concentration [207,208] and this would inhibit

mitochondrial respiration at a time when ATP synthesis
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is necessary for survival. SS-31 is able to increase oxygen

consumption and ATP synthesis under these conditions,

thus accelerating ATP production upon return of blood

flow to minimize cell death and promote organ recovery.

By inhibiting cardiolipin peroxidation during reperfu-

sion, SS-31 also preserves mitochondrial cristae and

maintains ATP synthesis after ischemia. Numerous pre-

clinical studies support these claims. Studies in models

of renal ischemia reperfusion have demonstrated that

SS-31 protects mitochondrial cristae architecture and

prevents swelling during ischemia and reperfusion

[61,209]. This results in more rapid ATP production

upon reperfusion and preservation of the cytoskeletal in-

tegrity of the epithelial cells, and amelioration of acute

kidney injury [61,209].

SS-31 has also been shown to reduce cardiac ischemia

reperfusion injury and reperfusion arrhythmia and better

preserve myocardial function in various infarct models

[59,60,64,196]. SS-31 reduced infarct size in rabbits and

sheep after coronary artery ligation, attenuated the ex-

tent of no-reflow in rabbits, and reduced infarct size in

isolated perfused guinea pig hearts. SS-31 also reduced

infarct size in a mouse model of cerebral ischemia and

attenuated glutathione depletion when administered at

the onset of reperfusion [210].

In addition to ischemia-reperfusion injury, SS-31 has

shown impressive effects in preclinical models of heart

failure. SS-31 ameliorated Angiotensin-II induced car-

diac hypertrophy and diastolic dysfunction, as well as

Gαq overexpression-induced heart failure, despite the

absence of a blood pressure lowering effect [55]. SS-31

also reduced systolic heart failure in a pressure-overload

model of transverse aortic constriction (TAC). Ultra-

structural studies confirmed that SS-31 protected car-

diac mitochondria in the TAC model and proteomic

analyses showed that SS-31 attenuated the majority of

the changes in mitochondrial and non-mitochondrial

proteins [56]. By protecting mitochondrial function and

bioenergetics in the heart, SS-31 prevented myocardial

remodeling and fibrosis. The efficacy of SS-31 in com-

bating heart failure has been confirmed in a post-

myocardial infarction canine heart failure model, Sabbah

et al. demonstrates that short-term administration of

Bendavia for 2 h significantly increased ejection fraction,

stroke volume, cardiac output, and LV contractility index

(dP/dt) [57]. These findings suggest that the improve-

ment of LV function is likely the result of improved car-

diac energetics. Long-term administration for 3 months

significantly improved ejection fraction and reduced LV

end-diastolic pressure [58].

SS-31 has also been shown to be beneficial in many

other models of age-associated diseases, including PD

[65], AD [152], skeletal muscle aging, disuse skeletal

muscle atrophy [210], [54] insulin resistance [62],

and diabetic complications. Some of these studies

were mentioned in the previous sections (see section

Mitochondrial oxidative stress in healthspan above),

and an extensive review of these studies was pub-

lished recently [32].

Given the very promising preclinical efficacy data, SS-

31 entered into clinical trials using a clinical formulation

named Bendavia [32]. Several Phase I studies have

assessed the safety, tolerability and pharmacokinetics of

Bendavia in healthy male and female human subjects

with intravenous and oral dosing. The highly predictable

pharmacokinetics and safety profile of Bendavia have

led to Phase II trials in patients. The first multina-

tional phase II study is focused on cardiac ischemia-

reperfusion injury for patients experiencing ST-elevation

myocardial infarction [211]. A second ongoing phase II

trial is for treatment of acute kidney injury in hyperten-

sion. A third phase II trial is planned for the treatment

of congestive heart failure.

These clinical studies are generally designed to address

the efficacy of SS-31 in the treatment of age-associated

cardiorenal diseases. It will eventually be important to

also establish whether these mitochondria-targeted anti-

oxidants can delay aging and other age-related degenera-

tive diseases.

Conclusion

Substantial evidence supports the central role of mito-

chondrial oxidative stress in aging and healthspan.

Despite the disappointing outcomes of non-targeted an-

tioxidants in clinical trials, there is growing evidence for

the beneficial effects of mitochondrial-targeted antioxi-

dants in aging and age-related diseases. Genetic and

pharmacological approaches reducing mitochondrial oxi-

dative stress (either by direct antioxidant or indirectly

through preservation of mitochondrial structure and

function) attenuate the phenotypes of cardiac aging, age-

related cardiovascular diseases, skeletal muscle aging,

neurodegenerative diseases, diabetes, and cancer various

animal models (summarized in Table 1). Moreover,

based on promising preliminary results in small and

large mammals, mitochondrial-targeted antioxidants

have moved into clinical trials. Further studies are neces-

sary to investigate many of the remaining questions in

this field, while examining the potential application of

mitochondrial targeted therapeutics in the treatment or

prevention of specific diseases as well as improved

healthspan in general.
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