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Mitochondrial Telomerase Protects Cancer Cells from
Nuclear DNA Damage and Apoptosis
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Gabriele C. Saretzki*
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Abstract

Most cancer cells express high levels of telomerase and proliferate indefinitely. In addition to its telomere maintenance
function, telomerase also has a pro-survival function resulting in an increased resistance against DNA damage and
decreased apoptosis induction. However, the molecular mechanisms for this protective function remain elusive and it is
unclear whether it is connected to telomere maintenance or is rather a non-telomeric function of the telomerase protein,
TERT. It was shown recently that the protein subunit of telomerase can shuttle from the nucleus to the mitochondria upon
oxidative stress where it protects mitochondrial function and decreases intracellular oxidative stress. Here we show that
endogenous telomerase (TERT protein) shuttles from the nucleus into mitochondria upon oxidative stress in cancer cells
and analyzed the nuclear exclusion patterns of endogenous telomerase after treatment with hydrogen peroxide in different
cell lines. Cell populations excluded TERT from the nucleus upon oxidative stress in a heterogeneous fashion. We found a
significant correlation between nuclear localization of telomerase and high DNA damage, while cells which excluded
telomerase from the nucleus displayed no or very low DNA damage. We modeled nuclear and mitochondrial telomerase
using organelle specific localization vectors and confirmed that mitochondrial localization of telomerase protects the
nucleus from inflicted DNA damage and apoptosis while, in contrast, nuclear localization of telomerase correlated with
higher amounts of DNA damage and apoptosis. It is known that nuclear DNA damage can be caused by mitochondrially
generated reactive oxygen species (ROS). We demonstrate here that mitochondrial localization of telomerase specifically
prevents nuclear DNA damage by decreasing levels of mitochondrial ROS. We suggest that this decrease of oxidative stress
might be a possible cause for high stress resistance of cancer cells and could be especially important for cancer stem cells.
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Introduction

Telomerase is an enzyme best known for its role in telomere

maintenance. Cells with low or no telomerase expression lose

telomere repeats during cell division, eventually resulting in

cellular senescence. Most cancer cells, germ cells and embryonic

stem cells express high levels of telomerase, thus contributing to

pluripotency and immortality. In order to maintain telomeres the

enzyme needs its catalytic subunit (TERT) as well as the RNA

component (TERC or TR) which contains the template for

telomere synthesis.

In recent years, however, evidence has accumulated that

telomerase, and in particular its catalytic subunit TERT, is

involved in various non-telomere-related functions such as

regulation of gene expression, growth factors and cell proliferation

[1–6]. In addition, various groups have shown that TERT shuttles

from the nucleus and translocates to mitochondria upon exoge-

nous stress [7–12]. We and others have shown a protective role of

telomerase within mitochondria [10–12] while inability of

telomerase shuttling leads to cellular stress, prevents immortaliza-

tion and increases sensitivity against genotoxic stress, as shown

recently by Santos’ group [13–15].

Most cancer cells express high levels of telomerase, an

important prerequisite for indefinite proliferation and immortality.

In addition, telomerase contributes to tumorigenesis via non-

telomere dependent mechanisms which are not well understood

yet [16].

Telomerase has thus been suggested to be an important anti-

cancer target, with the first clinical trials of the telomerase

inhibitor imetelstat successfully under way [17,18]. Telomerase is

regulated at multiple levels and subcellular localization is one of

them. Cancer cell survival after therapeutic treatments can be

heterogeneous with some cells responding to the treatment while

others seem to be resistant, contributing to tumor cell survival. A

better insight into the biological consequences of different

subcellular localizations of TERT might lead to the development

of more effective anti-cancer treatments.

Here we characterized the exclusion of telomerase from the

nucleus upon stress application and found a heterogeneous stress

response in cancer cell populations. Importantly, there was a
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striking correlation between telomerase/TERT retained within

the nucleus and high DNA damage. In contrast, cells which

excluded telomerase quickly from the nucleus accumulated no or

very low amounts of DNA damage. By modeling the different

subcellular localizations of telomerase using organelle-targeted

‘‘shooter’’ vectors we demonstrate here that mitochondrial

telomerase prevents nuclear DNA damage as well as the induction

of apoptosis after treatment with H2O2 and irradiation. We

suggest that reduced generation of mitochondrial reactive oxygen

species (ROS) could be the underlying mechanism to explain how

mitochondrial TERT prevents nuclear DNA damage.

Thus, exclusion of telomerase from the nucleus after stress, such

as anti-cancer therapeutic treatment could be a protective

mechanism that decreases nuclear DNA damage and apoptosis

by reducing oxidative stress within mitochondria. This might

contribute to increased resistance of those cancer cells against

various anti-cancer treatments.

Results and Discussion

Subcellular shuttling of TERT protein from the nucleus to

mitochondria had been shown previously in various cell types,

including cancer cells [7,10–12]. We confirmed this shuttling of

endogenous telomerase after H2O2 treatment in HeLa and MCF7

cells (Fig. 1A) from the nucleus to mitochondria and quantified the

exclusion compared to MRC-5/hTERT cells (Table 1). In order

to evaluate the shuttling kinetics of TERT in more detail we

analyzed 3 cell lines, including 2 cancer cell lines as well as

hTERT over-expressing MRC-5 fibroblasts, and followed them

over 5 days.

Figure 1. TERT shuttles from nucleus to mitochondria upon H2O2 treatment in cancer cells. A: Example rendered 3D volume projections
of deconvolved confocal images from HeLa and MCF7 cells untreated (control, left panel) or treated with 400 mM H2O2 for 3 h (right panel). Green
represents mitotracker green fluorescence, red anti-TERT immuno-fluorescence and blue nuclear DNA (DAPI). Marked colocalization between
mitotracker green and TERT is displayed by red-green mixing being displayed as yellow. B–D: TERT localization kinetics in 3 cell line populations after
treatment with 400 mM H2O2 over 5 days. B: HeLa C: MCF7 D: MRC-5/hTERT. Black bars: nuclear TERT, red bars: cytoplasmic TERT. Bars are means 6
SE from at least 30 cells per time point and cell line from 3 independent experiments.
doi:10.1371/journal.pone.0052989.g001

Mitochondrial TERT Prevents Damage and Apoptosis
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In all 3 cell lines nuclear TERT exclusion started around

45 min after onset of H2O2 treatment. In hTERT over-expressing

fibroblasts the exclusion reached its maximum of 60% after 3

hours while it took both cancer cell lines up to a day to reach an

exclusion level of 50–60% (Fig. 1B–D). This corresponds well with

the TERT mitochondrial co-localization data from our confocal

images from the 3 cell lines (Table 1). Intriguingly, the nuclear

exclusion level of 50–60% persisted in all 3 cell lines up to 5 days,

the longest time points we analyzed (Fig. 1B–D and S1). Thus,

nuclear TERT exclusion is a rather persistent process that can last

up to several days after a single bolus dose of 400 mM H2O2. To

our knowledge, this is the first time that the TERT exclusion

kinetics has been investigated in detail and compared in three

different cell lines over a 5 day time frame. The long persistence of

TERT protein outside the nucleus in the cancer cell lines might be

an important contributor to increased resistance and decreased

apoptosis in cancer cells after drug treatment or irradiation

compared to non-cancer cells which in most cases express no or

rather low levels of telomerase. We have shown previously that

telomerase negative fibroblasts are much more susceptible to

apoptosis after treatment with H2O2 and etoposide than their

telomerase over-expressing counterparts [10]. We had also shown

Figure 2. Nuclear TERT localization correlates with high DNA damage levels after treatment with H2O2 while mitochondrial
telomerase prevents it. A–C: Representative images of TERT localization (green), and cH2A.X staining (red). Blue: DAPI nuclear counterstain A:
HeLa B: MCF7 C: MRC-5/hTERT cells. Cells were treated for 3 h with 400 mM H2O2. TERT localization was determined as described for Figure 1B and
grouped into 3 categories: nuclear TERT (N) TERT (C) and intermediary TERT (I) localization. Examples for the 3 different localizations are indicated
with arrows. D: Correlation between subcellular TERT localization and nuclear DNA damage levels (number of cH2A.X foci). Cytoplasmic TERT
localization correlates with low nuclear DNA damage in all 3 cell lines while nuclear TERT localization results in high nuclear damage after 3 h of
treatment with 400 mM H2O2. Intermediary TERT localization results in intermediate DNA damage levels. Black bars: HeLa, red bars: MCF7, green bars:
MRC-5/hTERT. Bars are mean 6 SE from at least 40–100 cells per cell line in repeated experiments. * P,0.05.
doi:10.1371/journal.pone.0052989.g002

Mitochondrial TERT Prevents Damage and Apoptosis
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previously [10] that TERT exclusion from the nucleus is reversible

over a time frame of around 10 days. However, we do not know

whether the persistent TERT protein within mitochondria does

always come from the nucleus or whether newly synthesized

TERT protein is directly imported into mitochondria. This

question requires further investigation.

Next we correlated telomerase exclusion for each individual cell

with its DNA damage level at 3 hours after H2O2 treatment. We

quantified the TERT exclusion level for each single cell as either

nuclear, if more than 75% of total TERT was in the nucleus, or

cytoplasmic/mitochondrial if more than 75% of TERT was

outside the nucleus with the remaining cells being classified as an

intermediate phenotype.

We found a clear heterogeneity for nuclear TERT exclusion

between cells within a population (Fig. 2A and S2A). Intriguingly,

we found that cells that had excluded telomerase 3 hours after the

treatment showed no or very low DNA damage whilst those with

nuclear telomerase had a significantly higher amount of nuclear

DNA damage in all 3 cell lines (Fig. 2). Also, cells with an

intermediate exclusion pattern showed an intermediate damage

level, still significantly higher than cells with completely excluded

telomerase but not significantly different from those with

predominantly nuclear telomerase. This data suggests that a high

level of nuclear exclusion (.75%) and mitochondrial localization

of TERT is required in order to exert its protective function [10–

15]. Absolute DNA damage levels were different between the 3

cell lines with the two cancer cell lines displaying much higher

damage levels than TERT over-expressing fibroblasts. We also

measured the absolute TERT signal intensities for the 3 different

localizations and found that mitochondrial TERT signal was

always lower than that in the nucleus or in the intermediate state

(Fig. S2B). It had been shown previously that TERT protein level

is down regulated within mitochondria after H2O2 treatment

which could explain this observation [19].

A correlation between higher DNA damage in cancer cells and

nuclearly confined telomerase unable to shuttle due to a mutation

in its nuclear export signal was described recently by Kovalenko

and colleagues [13]. The mutated TERT induced an increase in

spontaneous telomeric as well as non-telomeric nuclear DNA

damage in 2 cancer cell lines compared to the same cells without

the mutant TERT [13]. In addition, cancer cells with a mutant

TERT that was confined to the nucleus and unable to shuttle lost

their proliferation ability, were not able to form colonies in soft

agar and showed an increased amount of mitochondrial DNA

damage [13]. Together, these results suggest that sub-cellular

shuttling of TERT might have important implications for the

sensitivity of cells against DNA damage. This increased resistance

due to high telomerase expression and nuclear exclusion of TERT

might favor the survival of cancer stem cells which could result in

relapse after therapy [17]. There is also previously published data

of a protective role of nuclear TERT against staurosporine

induced apoptosis [9]. However, staurosporine is a protein kinase

inhibitor that activates apoptosis in a rapid manner without

inducing DNA damage and independent from mitochondria. We

therefore suggest a different mechanism of action in both

experiments.

We next modeled the different TERT localizations separately

by over-expressing nuclear and mitochondrial organelle specific

vectors expressing the catalytic telomerase subunit TERT fused to

a myc-tag in 3 cancer cell lines: HeLa, MCF7 and U87

glioblastoma (Fig. 3). Transiently transfected cells were treated

either with H2O2 or irradiation and analyzed for cH2A.X DNA

damage foci and TERT localization using the fused myc-tag. The

localization for mitochondrial (mito TERT) and nuclear TERT is

shown in Fig. 3A and B (upper panels). There was no difference in

DNA damage levels between cells transfected with either vector or

un-transfected cells before treatment. However, we found that in

all 3 cell lines and both treatments, cells with a mitochondrial

TERT localization had significantly less DNA damage compared

to those cells that either expressed nuclear TERT or were un-

transfected (Fig. 3 A–D). In order to exclude that endogenous

telomerase interacted with the over-expressed shooter TERT

Figure 3. Mitochondrially located TERT reduces nuclear DNA damage after H2O2 treatment in comparison to nuclear TERT
localization in 4 different cell lines. A: Organelle specific TERT vectors transfected into HeLa cells. Upper panel: representative images of cells
transfected with mitochondrial and nuclear TERT shooter vectors with and without treatment with 200 mM H2O2 for 3 hours. TERT staining (using
myc-tag) fused to TERT protein (green) and cH2A.X staining (red) for DNA damage foci. Arrows show transfected cells. Lower panel: Quantification of
cells with high levels of DNA damage foci for transfected and un-transfected cells with and without H2O2 treatment. Bars are mean 6 SE from 3
independent experiments, *P,0.05. B: Organelle specific TERT vectors transfected into MCF7 cells. Panels as described for A. C–F: Quantification of
cells with high levels of DNA damage foci for transfected and un-transfected cells with and without x-irradiation. C: MCF7 after 20 Gy X- irradiation.D:
U87 after 20 Gy X-irradiation. E: MRC-5/SV40 after 10 Gy X-irradiation. Bars are mean 6 SE from 3 independent experiments. * P,0.05.
doi:10.1371/journal.pone.0052989.g003

Table 1. Quantification and significances of z-stacks for determination of correlation coefficient for co-localization of hTERT to
mitochondria in three cell lines.

Cell type H2O2 treatment

Correlation coefficient for co-localization of hTERT to

mitochondria P-value

MRC5/hTERT 2 0.702

MRC5/hTERT + 0.891 0.0047

HeLa 2 0.579

HeLa + 0.887 0.0180

MCF7 2 0.475

MCF7 + 0.795 0.0182

Mean correlation coefficients were determined from between 8–10 cells per cell line/treatment. Pearson correlation coefficients were determined per cell for
deconvolved, 3D rendered images, subtracting any background for each channel, using Huygens Colocalization analyzer plugin (Huygens, SVI, Netherlands). All datasets
passed Normality tests and P values are from Student’s T tests comparing untreated and treated cells per cell line.
doi:10.1371/journal.pone.0052989.t001
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protein we repeated the experiment in an SV40 immortalized

MRC-5 cell line that maintains its telomeres via an alternative

lengthening mechanism [20]. Post irradiation, we found the same

protective effect of mitochondrial telomerase (Fig. 3 E). We also

used an antibody against 53BP1, another protein involved in the

DNA damage response to confirm our results that DNA damage

foci are high in cells transfected with nuclear TERT while in

contrast those transfected with mitochondrial TERT show less

DNA damage than un-transfected cells (Fig. S3).

Since high amounts of nuclear DNA damage are thought to

decrease survival of cells we analyzed whether the used stress

treatments would also compromise cell survival and induce

apoptosis. We treated 3 cell lines transfected with both TERT

shooter vectors with H2O2 and X-irradiation and determined

apoptosis induction using an antibody against activated caspase 3.

Intriguingly, not a single cell transfected with mitochondrial

TERT showed any sign of apoptosis while around 20% of un-

transfected cells and between 40–60% of cells expressing the

nuclear shooter were apoptotic (Fig. 4). This result confirms that

indeed the induced DNA damage found in cells with nuclear

TERT localization impacts directly on cell survival while

mitochondrial TERT efficiently protects against apoptosis. In

order to elucidate the mechanism by which mitochondrial TERT

might protect cancer cells from nuclear DNA damage we

measured the amount of mitochondrial ROS after H2O2

treatment and irradiation using mitosox staining as a measure of

mitochondrial superoxide generation in addition to myc-TERT

staining for nuclear and mitochondrial ‘‘shooter’’ vectors in the

same 3 cancer cell lines (Fig. 5 A–E). Mitosox dye is taken up by

mitochondria in a membrane potential specific manner. In order

to exclude that different membrane potential caused the effects, we

measured mitochondrial membrane potential in HeLa and MCF7

cells transfected with both TERT shooters and compared them to

un-transfected cells after H2O2 treatment as well as X-irradiation.

In accordance with our previous findings of an increased

mitochondrial membrane potential in MRC-5/hTERT compared

to parental fibroblasts the results confirm a significantly higher

membrane potential in cells over-expressing mitochondrial TERT,

which is in HeLa cells already apparent even before any stress

treatment (Fig. S4). Therefore, mitosox levels found in our

experiments truly represent different ROS levels which are

dependent on TERT localization. We found that over-expression

of mitochondrial TERT in all cell types resulted in significantly

lower ROS levels after H2O2 treatment and irradiation compared

to un-transfected cells or those that over-expressed nuclear TERT

(Fig. S4).

Again we used MRC-5/SV40 cells without endogenous

telomerase to confirm the results from the 3 cancer cell lines

and found the same protective effect of mitochondrially localized

TERT on ROS levels (Fig. 5F). ROS levels in cells expressing the

nuclear TERT ‘‘shooter’’ were usually not different from un-

transfected cells with the exception of MCF7 and MRC-5/SV40

cells after irradiation, where nuclear shooter transfected cells

showed lower ROS levels than un-transfected cells.

This data suggests that by shuttling into mitochondria

telomerase/TERT not only protects the organelle, but by

decreasing mitochondrial superoxide production also indirectly

protects the nucleus from DNA damage. Similar observations of

telomerase shuttling from the nucleoplasm to nucleoli had been

reported previously under ionizing radiation in primary and

cancer cells [21]. The authors had speculated that telomerase

might negatively interfere with repair enzymes in the nucleus

under conditions of increased DNA damage and stress. Our results

seem to support this suggestion that telomerase might be

‘‘undesirable’’ within the nucleus under conditions of DNA

damage. Telomerase has been shown to ‘‘heal’’ chromosomes by

attempting a form of DNA repair by adding telomere sequences to

broken telomere ends [22]. However, this might not lead to proper

DNA repair, as known to be carried out by true DNA repair

systems.

Our results demonstrate that mitochondrial telomerase locali-

zation specifically decreases mitochondrial ROS generation and

cellular oxidative stress after induction of exogenous stress

generated by H2O2 or irradiation in cancer cells and might

thereby prevent damage to nuclear DNA. It could also explain

why shuttling of telomerase from the nucleus to mitochondria

seems to promote cellular survival, whilst in cells where telomerase

is not able to leave the nucleus DNA damage accumulation is

observed.

Diehn and colleagues reported recently that cancer stem cells

that produced less ROS due to higher antioxidant expression

accumulated less DNA damage after ionizing radiation [23]. It

would be interesting to ascertain whether these cells also have

more excluded telomerase than non-cancer stem cells after

irradiation. It has been shown that cancer stem cells express high

telomerase activity level; however nothing is known about TERT

shuttling in these cells [24].

We have demonstrated previously that exogenous ROS

generation by irradiation in fibroblasts damages mitochondria

and accelerates nuclear DNA damage creating a positive feedback

loop [25]. We suggest that such a functional interaction between

mitochondria and the nucleus also exists in cancer cells and other

telomerase positive cells, where telomerase enters mitochondria in

order to decrease ROS which are induced by chemotherapeutic

drugs and irradiation. Thus, it seems that anti-cancer treatments

can induce a novel, hitherto unknown mechanism of telomerase

shuttling that prevents nuclear DNA damage by decreasing

mitochondrial ROS generation via induction of telomerase

shuttling. Due to its heterogeneous pattern it could also explain

the resistance of some, but not all, cancer cells against therapeutic

treatments.

Materials and Methods

Cells
HeLa, MCF7, U87 and MRC5/SV40 cells originated from

ATCC. MRC5 were purchased from ECACC (London). hTERT

overexpression was performed using retroviral transfection of

hTERT as described earlier [10]. U 87 and MRC5/SV40 cells

were cultivated in MEM and DMEM respectively supplemented

with 1% non-essential amino acid, 10% FCS (Sigma), 2 mM

glutamine, and 1% penicillin/streptomycin. All other cell types

were cultivated in DMEM (PAA) containing 10% FCS (SIGMA),

Figure 4. Mitochondrial TERT protects from apoptosis induction after H2O2 treatment and X-irradiation compared to cells
transfected with nuclear TERT. Representative images of activated caspase 3 (shown in red) in A: Hela, B: MRC/SV40, C: U87 cells transfected with
mito TERT and nuclear TERT (myc-tag, shown in green) after 400 mM H2O2 treatment for 3 h or irradiation with 20 Gy. D: Quantification of the
percentage of apoptotic cells of the 3 cell lines after H2O2 treatment, E: Quantification of the percentage of apoptotic cells of the 3 cell lines after X-
irradiation. Bars present mean and standard error from around 45 transfected cells per condition and cell line. * p,0.05.
doi:10.1371/journal.pone.0052989.g004
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1% penicillin/streptomycin (PAA) and 2 mM glutamate (Gibco).

Cells were incubated at 37uC at ambient oxygen and 5% CO2.

Treatments
Cells were seeded 1 or 2 days before treatment onto 19 mm

coverslips in 12 well plates for immuno-fluorescence staining

(56104 per well).

H2O2 (SIGMA) treatment was performed in serum free

medium for the indicated times and concentrations. The used

H2O2 concentrations had been optimized for each different type of

experiment. X-irradiation at 10 and 20 Gy was performed using a

Faxitron (Elektron Technology, UK). For all irradiation experi-

ments (except apoptosis analysis) cells were fixed and analyzed 20

minutes after treatment. Cells were fixed using 4% paraformal-

dehyde in PBS for 10 min.

Immuno-fluorescence Staining and Imaging
Cells were fixed on coverslips using 4% paraformaldehyde for

10 min. Single or double immuno-staining was performed with the

following primary antibodies: mouse cH2A.X (Upstate), rabbit

anti-TERT (Rockland), rabbit anti-Ki67 (Abcam) and anti myc-

tag (Abcam). Specificity and lack of background staining of the

used TERT antibody has been confirmed (Fig. S5). Secondary

antibodies were: goat anti-mouse and rabbit Alexafluor 594 and

488 (Molecular probes/Invitrogen). Nuclear staining was observed

using DAPI. Images for each channel were obtained using an

AxioImager Z1 microscope (Zeiss) equipped with suitable filter

cubes to spectrally distinguish Alexafluor488 and Alexafluor594,

ensuring no bleedthrough into/from either fluorophore (estab-

lished previously, data not shown). Images were subsequently

analysed using ImageJ. Thresholds were defined for each image

individually.

Confocal Fluorescence Microscopy and Co-localization
Analysis
Cells were loaded with 400 nM mitotracker green (Molecular

probes) for 30 minutes at 37uC before fixation and then stained

with anti-TERT antibody and Alexa FluorH 594. Images were

captured using a Zeiss LSM 510 equipped with a 6361.4 NA

objective with the pinhole set to 1 Airy unit (Zeiss, Germany). Z

stacks were obtained every 100 nm for each cell (sampling

.26Nyquist criteria). Images were deconvolved and then

analyzed for object co-localization in 3D using Huygens software

(SVI, Netherlands). For colocalization analysis and image prepa-

ration, the deconvolved images were rendered into 3 dimensional

volumes. Single cells were isolated within the image and single,

unified objects (mitochondrial and Tert) were identified using

’Object Colocalization’ in Huygens with a cut-off to exclude any

objects smaller than one mitochondrion in the mitotracker green

channel. Huygens then computed a Pearson’s correlation

coefficent for each cell for 3 dimensional colocalization between

mitochondria and Tert staining. This enabled us to accurately

predict true colocalization (within the limits of diffraction

limitation) of the two dyes irrespective of their different

wavelengths.

Organelle Specific Transfection
TERT containing nuclear and mitochondrial organelle specific

vectors (pCMV-myc-mitoTERT and pCMV-myc-nucTERT were

a kind gift from J. Haendeler and Joachim Altschmied,

Duesseldorf, Germany and described previously [9,11]). Transient

transfection was performed using lipofectamine TM 2000 (Invitro-

gen, USA) of mito-TERT and nuc-hTERT ‘‘shooter’’ vectors.

The average transfection efficiencies 48 hours after transfection

were between 25 and 30%. Transiently transfected cells were

treated 2 days after transfection either with H2O2 or irradiation.

Determination of ROS Level
Cells were stained with 5 mM mitosox (Invitrogen, USA) for

15 min after H2O2 treatment or irradiation prior to fixation and

antibody staining. ROS levels were determined as the percentage

of cytoplasmic mitosox signal from total cytoplasmic area using

Image J (http://rsbweb.nih.gov/ij/).

Analysis of DNA Damage
Analysis of DNA damage was performed using immuno-

fluorescence either as a single staining with c-H2A.X or double

staining with TERT. Cells were fixed, permeabilized with PBG

(PBS, BSA, fishskin gelatine and 0.5% triton) and c-H2A.X

antibody was applied to the cells and then stained with Alexa

FluorH 594. Anti myc-tag and Alexa FluorH 488 were used to

visualise transfected TERT protein. Slides were examined using a

Zeiss Axiovision fluorescence microscope (Zeiss, Germany). For

the analysis of DNA damage the number of DNA damage foci was

counted for each type of TERT localization separately from 20–40

cells per group and cell line.

Measurement of TERT Exclusion Rate
For each individual cell, TERT localization was manually

quantified by comparing telomerase signals inside and outside the

nucleus using Image J. Subcellular areas were determined for

nuclear and cytosolic regions by using freehand selection.

Expression signals in the selected area were evaluated using area

calculation function after thresholding to remove noise. The result

of each individual cell indicated a percentage of TERT signal

expressed in the subcellular compartment:

% TERT nuclear expression =TERT signal in nucleus area/

total TERT signal6100,

% TERT cytoplasmic expression =TERT signal in cytosolic

area/total TERT signal6100. The average percentage of nuclear

and cytoplasmic localization of TERT from at least 30 individual

cells was taken to determine the average percentage of the whole

population.

Correlation of Cellular TERT Localization and DNA
Damage Level
We classified the localization of TERT into 3 classes: nuclear

TERT (N): 75%–100% of TERT signal resides within the nucleus,

cytoplasmic TERT (C): 75%–100% of TERT signal resides

outside the nucleus and all other percentages for the class of

intermediate localization (I). For each of the 3 classes we

Figure 5. Mitochondrially localized TERT protects against mitochondrial ROS generation after H2O2 treatment and irradiation in 4
different cell lines. A: Upper panel: Representative images of ROS staining (red, mitosox) and TERT localization (myc-tag, green) after organelle
specific TERT transfection and 100 mM H2O2 treatment for 3 h in HeLa cells. Upper row: mito- TERT, lower row: nuclear TERT. Arrows indicate
transfected cells. Lower panel: Quantification of ROS levels measured as percentage of mitosox positive area from whole cytoplasm using ImageJ in
transfected and un-transfected cells. B: MCF7 cells, panels as described for A. C: Quantification of ROS in U87 cells after 3 h of 100 mM H2O2

treatment. D–F: Quantification of ROS levels after X-irradiation. D:MCF7 after 20 Gy X-irradiation. E: U87 after 20 Gy X-irradiation F:MRC-5/SV40 after
10 Gy X-irradiation. Bars represent mean 6 SE from 3 independent experiments. * P,0.05.
doi:10.1371/journal.pone.0052989.g005

Mitochondrial TERT Prevents Damage and Apoptosis

PLOS ONE | www.plosone.org 9 January 2013 | Volume 8 | Issue 1 | e52989



determined the number of cH2A.X foci from around 40–100 cells

per cell line.

Analysis of Apoptosis
Hela, U87 and MRC/SV40 cells were transfected with nuclear

and mitochondrial TERT shooter. After 2 days they were treated

either with 400 mMH2O2 or 20 Gy irradiation and left for 1 more

day (U87 and MRC/SV40) or 2 days for HeLa due to a known

delay in apoptosis induction in these cells. After fixation cells were

stained with myc-tag for TERT and activated caspase 3 (Abcam)

in order to label apoptotic cells. Results have been determined

from 30–150 transfected cells per cell line and condition.

Statistics
One way ANOVA was performed using Sigma Plot (Systat

Software Inc, USA).

Supporting Information

Figure S1 Immuno-blot of nuclear and mitochondrial
fraction in Hela and MCF7 cells treated with 400 mM
H2O2 for 5 days. A: Immuno-blots from nuclear and

mitochondrial fraction in MCF7 and HeLa cells and the indicated

days (d0–d5) after H2O2 treatment as well as untreated cells.

Samples for d0 have been taken 3 h after the onset of the H2O2

treatment. HDAC was used as loading control for the nuclear

fraction while coxI was used as loading control for mitochondria.

In addition, HDAC staining was performed on mitochondria in

order to confirm purity. The detailed method is described in

Supporting information methods S1. B:Quantification of the ratio

between mitochondrial and nuclear TERT over the period of 5

days after H2O2 treatment.

(TIF)

Figure S2 TERT intensities in different sub-cellular
locations. A: Representative images showing single TERT

immuno-fluorescence staining (red) of HeLa, MCF7 and MRC-

5/hTERT cells with and without H2O2 treatment confirming that

the intensive cH2A.X signals in cells with high amounts of DNA

damage was not interfering with the nuclear localization signal for

TERT. B: TERT signal intensity was measured in HeLa, MCF7

and MRC-5/hTERT cells that had been analyzed for the

correlation between TERT localization and DNA damage levels

and is described in supporting information method S2. The bars

are mean and S.E. from 35–100 cells per cell line and condition.

*p,0.05.

(TIF)

Figure S3 Mitochondrial TERT correlates to less DNA
damage foci after X-irradiation. A: MCF7 transfected with

nuclear TERT (green) after irradiation with 5 Gy and staining

against 53BP1 (red). B: MCF7 transfected with mitochondrial

TERT (green) after irradiation with 5 Gy and staining against

53BP1 (red). The method is described in supporting information

method S3.

(TIF)

Figure S4 Mitochondrial membrane potential is higher

in cells with mitochondrial TERT. A: HeLa cells transfected

with mitochondrial or nuclear TERT before (left) and after

irradiation with 20 Gy (right). B: MCF7 cells transfected with

mitochondrial or nuclear TERT before (left) and after irradiation

with 20 Gy (right). The bars indicate means and S.E. * P,0.05,

**P,0.01, ***P,0.001. The method is described in supporting

information method S4.

(TIF)

Figure S5 Specificity of the anti-TERT antibody from

Rockland. A: Representative images of TERT immunofluores-

cence staining using Rockland anti-TERT antibody (ab). Upper

row: MRC-5/hTERT cells stained with TERT ab and Alexafluor
594 (red) secondary ab (right), while left panel shows DAPI nuclear

staining only. Middle row: MRC-5/hTERT cells only stained with

secondary antibody. Lower row: MRC-5/hTERT cells stained

with same anti-TERT and secondary ab as above, DAPI and

TERT signal are merged (left). The right image shows the same

staining on MRC-5 cells which are negative for TERT and do not

display any staining signal. B: Immuno-blot showing a specific

band at 127kD for TERT using TERT antibody (Rockland) and a

loading control with tubulin. Lane 1: MRC-5/hTERT, 2: MRC-

5, 3: HeLa, 4: MCF7. The method is described in supporting

information method S5.

(TIF)

Methods S1 The supporting methods refer to the

methods used in Figures S1–S5. Method S1. Cell fraction-

ation and immune-blotting for the measurement of TERT

exclusion after H2O2 treatment. Method S2. TERT signal

intensities for endogenous TERT. Method S3. 53BP1 immuno-

staining after X-irradiation in MCF7 cells. Method S4. Measure-

ment of mitochondrial membrane potential after TERT shooter

transfection in HeLa and MCF7 cells. Method S5. Immuno-blot

for anti-TERT (Rockland).

(DOCX)
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