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Mitofusin-mediated ER stress triggers
neurodegeneration in pink1/parkin models of
Parkinson’s disease

I Celardo1,4, AC Costa1,4, S Lehmann1,4, C Jones1, N Wood2, NE Mencacci2, GR Mallucci*,1,3, SHY Loh*,1 and LM Martins*,1

Mutations in PINK1 and PARKIN cause early-onset Parkinson’s disease (PD), thought to be due to mitochondrial toxicity. Here, we

show that in Drosophila pink1 and parkin mutants, defective mitochondria also give rise to endoplasmic reticulum (ER) stress

signalling, specifically to the activation of the protein kinase R-like endoplasmic reticulum kinase (PERK) branch of the unfolded

protein response (UPR). We show that enhanced ER stress signalling in pink1 and parkin mutants is mediated by mitofusin

bridges, which occur between defective mitochondria and the ER. Reducing mitofusin contacts with the ER is neuroprotective,

through suppression of PERK signalling, while mitochondrial dysfunction remains unchanged. Further, both genetic inhibition of

dPerk-dependent ER stress signalling and pharmacological inhibition using the PERK inhibitor GSK2606414 were neuroprotective

in both pink1 and parkin mutants. We conclude that activation of ER stress by defective mitochondria is neurotoxic in pink1 and

parkin flies and that the reduction of this signalling is neuroprotective, independently of defective mitochondria. A video abstract

for this article is available online in the supplementary information
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Recently, endoplasmic reticulum (ER) stress, and in particular

dysregulation of the protein kinase R-like endoplasmic

reticulum kinase (PERK) branch of the unfolded protein

response (UPR) have emerged as major toxic processes

in proteinmisfolding neurodegenerative disorders (reviewed in

Halliday and Mallucci1). Overactivation of PERK signalling

is a feature of post-mortem brains of patients with Alzheimer’s

and Parkinson’s diseases and the tauopathies, frontotem-

poral dementia (FTD) and Progressive Supranuclear Palsy

(reviewed in Scheper and Hoozemans2). In mice with

prion disease3 and FTD-like pathology,4 sustained activation

of the PERK branch of the UPR leads to chronic reduction

in global protein synthesis rates in the brain. The reduction in

translation of vital proteins leads to neuronal death, which is

rescued by inhibition of the pathway at the level of PERK3,4,5

or downstream effectors.6 In Parkinson’s disease (PD),

mitochondrial dysfunction, due to loss of function of PTEN-

induced putative kinase 1 (PINK1) or PARKIN, is a

central pathogenic process (reviewed in Celardo et al.7).

Mitochondrial impairment has been described to trigger ER

stress,8 but whether and how these two processes converge

and/or contribute to neurodegeneration remains unknown.

Drosophila pink1 or parkin mutants show neurodegene-

ration, a crushed thorax phenotype and mitochondrial

dysfunction.9,10

We therefore asked: first, whether ER stress occurs in

Drosophila pink1/parkin models of PD and contributes to the

neurodegenerative phenotype, and second: to what extent, if

any, ER stress is driven by defective mitochondria? We found

that mitochondrial dysfunction in pink1 or parkin mutant flies

does activate the PERK branch of the UPR through the

formation of mitofusin bridges between defectivemitochondria

and the ER. Further, we found that inhibiting PERK signalling

genetically and pharmacologically, or through the reduction of

mitofusin bridges was neuroprotective in pink1 and parkin

mutant flies, irrespective of the persistence of defective

mitochondria.

Results

pink1 and parkin mutants show activation of the PERK

branch of the UPR. We first examined pink1 and parkin

mutants for evidence of ER stress and UPR activation. We

found increased levels of chaperone-binding immunoglobulin

protein (BiP), a marker for ER stress activation, in the body

wall muscle cells11 of both pink1 and parkin mutant larvae

compared with wild-type controls (Figure 1a). Upon ER
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stress, BiP dissociates from PERK, which dimerizes and

autophosphorylates. Phospho-PERK in turn phosphorylates

eukaryotic initiation factor 2 alpha (eIF2α), which leads to

inhibition of global protein translation rates at the level of

initiation. We found increased levels of phospho-eIF2α in

pink1 and parkin mutants, which were reduced upon

knockdown of dPerk (Figure 1b), consistent with its activation

through PERK signalling and raised levels of BiP.

The relative translation rate of an mRNA can be deduced

from the number of ribosomes (polysomes) it recruits. We

found an overall reduction of the number of polysomes bound

to mRNAs in adult pink1 and parkin mutants by polysomal

profiling (Figure 1c), consistent with a decrease in global

translation rates. Additionally, we detected a decrease in

protein synthesis, measured by assessing the incorporation of

puromycin, a Tyr-tRNA mimetic, into newly translated proteins

(Figure 1d).12 These findings support activation of signalling

through the PERK branch of ER stress in pink1 and parkin

mutant flies.

pink1 and parkin mutants show an enhanced association

between defective mitochondria and the ER. We next

asked whether there is cross-talk between dysfunctional

mitochondria and activation of PERK signalling. Pink1 and

Parkin mediate the ubiquitination and degradation of the

profusion factor mitofusin (dMfn) on the outer surface of

mitochondria; and pink1 or parkin mutant flies show an

accumulation of dMfn.13 Mitofusin modulates mitochondrial

fusion and the tethering of these organelles to the ER.14 To

test whether the accumulation of dMfn in both pink1 and

parkin mutants affected the proximity between mitochondria

and the ER, we quantified mitochondria–ER contacts using

a previously described assay.15 We first confirmed the

previously reported accumulation of dMfn in pink1 and parkin

mutant flies, which could be partially reversed upon dMfn

RNA interference (RNAi) (Figure 2a). Ultrastructural analysis

of fly brains revealed that both pink1 and parkin mutants

show significant increases in mitochondria–ER contact sites

that can be suppressed upon dMfn knockdown (Figures 2b

and c). Further, analysis of mitochondria–ER contacts in

cultured human fibroblasts obtained from PD patients

carrying homozygous PINK1 or PARKIN pathogenic muta-

tions also confirmed that mutations in PINK1 or PARKIN are

associated with an increased level of contacts between these

two organelles (Figures 3a and b).

Reducing the association between defective mitochon-

dria and the ER attenuates PERK/eIF2α signalling and is

neuroprotective in pink1 and parkin mutants. Next, we

tested whether the association of defective mitochondria

Figure 1 Activation of phospho-eIF2α signalling and attenuation of translation in pink1 and parkinmutant flies. (a) Increased levels of BiP in the body wall muscle of pink1 and
parkin mutant larvae. Representative confocal images with the indicated genotype stained with α-BiP antibody are shown. (b) Increased levels of phospho-eIF2α in pink1 and
parkin mutant flies are reduced by knockdown of dPerk. Whole-fly lysates were analysed using the indicated antibodies. Ratios of signal intensity between phospho and total-
eIF2α are shown at the top. (c) Polysomal distribution of mRNAs of young adult male flies showing individual ribosomal subunits and the polysome peaks. RNA concentrations
were measured from the low (Lo) and high (Hi) translation fractions (mean± S.D., asterisks, one-way ANOVA with Dunnett’s multiple comparison test; n= 4). (d) Reduced
puromycin incorporation in nascent proteins in pink1 and parkin mutant flies. Whole-fly lysates were analysed with an anti-puromycin antibody and equivalent protein loading was
assessed by Ponceau S staining of the membranes. Genotypes for (b) Control: daGAL4; pink1B9: pink1B9,daGAL4; park25: park25/park25,daGAL4. RNAi dPerk was driven by
daGAL4. (a, c and d) Control: w1118
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with the ER upon the loss of pink1 or parkin affects the

PERK-dependent ER stress pathway. Decreasing mitochon-

dria–ER contacts by dMfn knockdown reduced levels of

phospho-eIF2α in pink1 and parkin mutants (Figures 4a

and b), indicating that it is the association of defective

mitochondria with the ER that activates ER stress in these flies.

It has been previously shown that the knockdown of dMfn is

able to rescue the mitochondrial morphology phenotypes of

pink1 and parkin mutant flies.16,17 We found that while

reducing mitofusin reduced ER stress, this knockdown did

not rescue defective mitochondrial function. Thus, loss of

mitochondrial membrane potential (Δψm) (Figures 4c and d)

as seen in pink1 and parkin mutants18 is not reversed by

the knockdown of dMfn in neurons (Figure 4d). Despite

this, dMfn knockdown is sufficient to suppress both the

loss of protocerebral posterior lateral 1 (PPL1) cluster of

dopaminergic neurons (Figures 4e, f and g) and the crushed-

thorax phenotypes (Figures 4h and i) of pink1 and parkin

mutants. Taken together, these results support that neurode-

generation associated with pink1 and parkin can be prevented

by dMfn knockdown, in the absence of mitochondrial

functional improvement.

Inhibiting activation of PERK/eIF2α signalling in pink1

and parkin mutants prevents neurodegeneration. Droso-

phila pink1 and parkin mutants show a loss of the PPL1

cluster of dopaminergic neurons.9,10 To determine whether

the dopaminergic neuronal loss in these mutants is caused

by the activation of ER stress, we used both pharmacological

and genetic tools to block its activation. The diet of pink1

Figure 2 dMfn mediates the recruitment of defective mitochondria to ER contact points in pink1 or parkin mutants. (a) The RNAi-mediated suppression of dMfn reduces dMfn
protein levels in pink1 and parkin mutants. Whole-fly lysates were analysed using the indicated antibodies. (b and c) Quantification of mitochondria–ER contacts in adult
Drosophila brains (asterisks, chi-square two-tailed, 95% confidence intervals) (b), and representative electron microscopy images (c). Yellow asterisks show mitochondria in
contact with ER (arrows). ER, endoplasmic reticulum; m, mitochondria. Genotypes for (a) Control: daGAL4; pink1B9: pink1B9,daGAL4; park25: park25/park25,daGAL4. RNAi dMfn
was driven by daGAL4. (b and c) Control: elavGAL4; pink1B9: pink1B9,elavGAL4; park25: park25/park25,elavGAL4. RNAi dMfn was driven by elavGAL4
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and parkin mutants was supplemented with 4-phenylbutyric

acid (PBA), a chemical chaperone that attenuates ER

stress19,20 or the selective PERK inhibitor compound,

GSK2606414.21 Both compounds reduced the levels of

phospho-eIF2α in pink1 and parkin mutants (Figures 5a and

b), increased puromycin incorporation in pink1 (Figure 5c) and

parkin (Figure 5d) mutants, and were neuroprotective,

preventing PPL1 neuronal loss (Figure 5e). Further, genetic

knockdown of dPerk was similarly neuroprotective (Figure 5f).

The data support that ER stress activation, through PERK

signalling, contributes to PD-associated neurodegenerative

phenotypes in pink1 and parkin mutants, consistent with data

in other models of neurodegeneration including prion

disease3,5 or tauopathy mice4 and a Drosophila model of

Amyotrophic Lateral Sclerosis.22 Further, they support phar-

macological inhibition of PERK signalling as neuroprotective.

Discussion

Our results show that the loss of pink1 or parkin leads to the

activation of ER stress through a direct interaction between

mitochondria and the ER, promoted by increased levels of

dMfn. We observed an increase in contacts between

mitochondria and the ER in both flies and cultured human

fibroblasts from PD patients with PINK1 or PARKINmutations.

However, further analysis of these fibroblasts did not detect

any alterations in mitochondrial function or ER stress

signalling (data not shown). It is possible that defective

mitochondria at the ER contact points are causing the

activation of ER stress; therefore, the long-term adaptation

to cell-culture conditions could explain why these fibroblasts

do not display mitochondrial dysfunction and therefore fail to

activate ER stress. As mitochondrial function is compromised

in both pink1 and parkin mutant flies, it is conceivable that the

activation of ER stress in these mutants is linked to the

functional status of mitochondria at ER contacts. Further,

mitofusins can tether two mitochondria together as well as

tether mitochondria to the ER (reviewed in Rowland and

Voeltz23). They therefore have complex roles in both intra- and

inter-organelle coupling. Indeed, the ablation of Mitofusin 2 in

mouse anorexigenic proopiomelanocortic neurons reduces

the contacts between functional mitochondria and the ER

leading to ER stress.15 In contrast, we show that the loss of

contacts between dysfunctional mitochondria and the ER in

pink1 or parkinmutants with downregulated dMfn ameliorates

the PERK branch of ER stress signalling. As these mutants

show mitochondrial dysfunction, we propose that it is not only

the quantity, but also the quality, of mitochondria at ER contact

points that modulates ER stress and may underlie this

discrepancy.

In conclusion, we show how two major processes,

mitochondrial dysfunction and ER stress converge inmediating

neurodegeneration in models of PD, mediated by inter-

organelle interactions. Further, we show that modulating

PERK signallingmay represent a valid strategy for pathologies

where mitochondrial impairment and the resulting ER stress is

also a major pathogenic mechanism in neuronal demise, as in

Parkinson’s and related diseases.

Materials and Methods
Genetics and Drosophila strains. Fly stocks and crosses were
maintained on standard cornmeal agar media at 25 °C. The strains used were
pink1B9, park25, daGAL4 (kind gifts from A Whitworth, MRC, Centre for
Developmental and Biomedical Genetics, University of Sheffield, Sheffield, UK),
w1118, elavGAL4 (Bloomington Stock Centre), and RNAi lines: dMfn (ID: 105261)
and dPerk (ID: 16427) (Vienna Drosophila RNAi Centre). All the experiments on
adult flies were performed with males.

Protein translation assays. For polysome profiling, fifty 3-day-old flies were
homogenized on ice in 600 μl of cold solubilization buffer (300 mM NaCl, 15 mM
MgCl2, 15 mM Tris-HCl pH 7.5, 2 mM DTT, 0.1 mg/ml cycloheximide, 1% Triton
X-100, 25 μl/ml Super-ase-In) and the homogenates were centrifuged at 21 000 g
for 10 min. The supernatants were recovered and applied to the top of a 10–50%
sucrose gradient in high salt resolving buffer (300 mM NaCl, 15 mM MgCl2, 15 mM
Tris-HCl pH 7.5, 2 mM DTT, 0.1 mg/ml cycloheximide). Ribosomal subunits and
polysomes were separated by centrifugation at 25 0000 g for 2 h at 4 °C. Gradients
were fractionated using a Teledyne Isco density gradient fractionator, Foxy R1
(Teledyne Isco, NE, USA) with constant measurement of absorbance at 254 nm.
Ten fractions were isolated per run, and RNA was prepared from each one of those
fractions using guanidine hydrochloride with ethanol precipitation. To measure
nascent protein synthesis, five 3-day-old flies were homogenized in cold
solubilization buffer without cycloheximide, supplemented with 100 μM puromycin.
Lysates were incubated at 4 °C for 5 min and mixed with 4 × LDS loading buffer.

Cell culture. Human primary fibroblasts were cultured in DMEM (Gibco BRL,
Waltham, MA, USA); media was supplemented with 10% heat-inactivated FCS
(Invitrogen, Paisley, UK), 100 U/ml penicillin (Gibco BRL), 100 μg/ml streptomycin

Figure 3 Increase in mitochondria–ER contact points in PINK1 or PARKIN mutant fibroblasts. (a and b) Quantification of mitochondria–ER contacts in human fibroblasts
(asterisks, chi-square two-tailed, 95% confidence intervals) (b), and representative electron microscopy images (a). Yellow asterisks show mitochondria in contact with ER
(arrows). ER, endoplasmic reticulum; m, mitochondria. PINK1: c.261_276del16; p.T90LfsX12 (homozygous); PARKIN: deletion of exons 3 and 4 (homozygous)
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(Gibco BRL) and 50 μg/ml gentamicin (Sigma, Gillingham, UK). The cells were
maintained at 37 °C in 5% CO2 in culture medium.

Ethics statement. All human primary fibroblast cells were generated in vitro
after written informed consent using protocols approved by the ULCH research and

development department and the City Road and Hampstead ethics committee,
London, UK.

Protein extraction and western blotting. Protein extracts from whole
flies were prepared by grinding flies in lysis buffer (100 mM KCl, 20 mM Hepes at

pH 7.5, 5% (v/v) glycerol, 10 mM EDTA, 0.1% (v/v) Triton X-100, 10 mM DTT,

1 μg/ml leupeptin, 1 μg/ml antipain, 1 μg/ml chymostatin and 1 μg/ml pepstatin).

Protein extracts from whole flies for phospho and total-eIF2α immunoblots were

prepared by grinding flies in lysis buffer (20 mM Tris at pH 7.5, 150 mM NaCl, 1%

(v/v) Nonidet-40, 0.5% (w/v) Sodium deoxycholate, 0.1% (w/v) SDS) containing

Figure 4 Suppressing dMfn in pink1 or parkin mutants attenuates eIF2α signalling and blocks neurodegeneration. (a and b) Decreased levels of phospho-eIF2α upon RNAi-
mediated suppression of dMfn in pink1 (a) and parkin (b) mutant flies. Whole-fly lysates were analysed using the indicated antibodies. Ratios of signal intensity between phospho
and total-eIF2α are shown at the top. (c and d) RNAi-mediated suppression of dMfn does not prevent the loss ofΔψm in pink1 or parkin mutants. Representative confocal image
of a whole mounted control brain showing neurons loaded with TMRM (c). Quantification ofΔψm in the brains of the indicated genotypes (d) (mean± S.E.M.; asterisks, one-way
ANOVA with Bonferroni’s multiple comparison test). (e–g) The RNAi-mediated suppression of dMfn rescues the loss of dopaminergic neurons in the PPL1 cluster of pink1 and
parkin mutant flies. Schematic diagram of a fly brain in sagittal orientation indicating the PPL1 cluster of dopaminergic neurons in red (e). Anti-TH staining showing cell bodies of
PPL1 neurons in a representative control brain (f) and quantification of the PPL1 cluster neurons (g) (mean± S.E.M.; asterisks, one-way ANOVA with Bonferroni’s multiple
comparison test). (h and i) Suppression of the thoracic defects of pink1 and parkin mutants by RNAi-mediated suppression of dMfn. Representative images of normal and
defective thorax in pink1 mutants, the arrow points to a thoracic defect (h). Quantification of the thoracic defects (i) in the indicated genotypes (asterisks, chi-square two-tailed,
95% confidence intervals). Genotypes for (a, b, i) Control: daGAL4; pink1B9: pink1B9,daGAL4; park25: park25/park25,daGAL4. RNAi dMfn was driven by daGAL4. (c, d, f, g)
Control: elavGAL4; pink1B9: pink1B9,elavGAL4; park25: park25/park25,elavGAL4. RNAi dMfn was driven by elavGAL4. (h) Control: w1118
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phosphatase inhibitor cocktail tablets PhosSTOP (Roche, Mannheim, Germany)

and the protease inhibitors leupeptin, antipain, chymostatin and pepstatin (Sigma) at

the manufacturer’s recommended dilution. The suspensions were cleared by

centrifugation at 21 000 g for 10 min at 4 °C and protein concentrations of the

supernatants were measured using the Bradford assay (Bio-Rad, Hemel

Hempstead, UK). All supernatants were mixed with 4 × LDS loading buffer. For

SDS-PAGE, equivalent amounts of proteins were resolved on 4–12% or 10%

Precast Gels (Invitrogen) and transferred onto PVDF membranes (Millipore,

Billerica, MA, USA). The membranes were blocked in TBS-T (0.15 M NaCl, 10 mM

Tris-HCl pH 7.5, 0.1% Tween-20) containing 10% (w/v) dried non-fat milk for 1 h at

room temperature, probed with the indicated primary antibody before being

incubated with the appropriate HRP-conjugated secondary antibody. Antibody

complexes were visualized by Pierce enhanced chemiluminescence (ECL). The

levels of phospho-eIF2α were calculated as a ratio to the total-eIF2α levels, using

the ImageJ software (http://imagej.nih.gov/ij/; provided in the public domain by the

National Institutes of Health, Bethesda, MD, USA).

Antibodies. Primary antibodies employed in this study were EIF2S1
(ser51) (Abcam, Cambridge, UK, ab32157), EIF2S1 (Abcam, ab26197), α-tubulin

(Sigma, T6074), GAPDH (Sigma, G8795), BiP (BT-GB-143S, Babraham Bioscience

Technologies, Cambridge, UK), TH (22941, Immunostar, Hudson, WI, USA),

Puromycin (Millipore, MABE343), dMfn (a gift from A. Whitworth, MRC, Centre for

Developmental and Biomedical Genetics, University of Sheffield).

Confocal microscopy. For anti-Bip immunostaining, third-instar larvae were
dissected, fixed in 4% paraformaldehyde, stained with anti-BiP (1 : 50) essentially
as previously described.11

Microscopy-based assessment of mitochondrial function.
Measurements of Δψm in fly brains were performed using tetramethylrhodamine
(TMRM) as previously described.18 Briefly, fly brains were loaded for 40 min at room
temperature with 40 nM TMRM in loading buffer (10 mM HEPES pH 7.35, 156 mM
NaCl, 3 mM KCl, 2 mM MgSO4, 1.25 mM KH2PO4, 2 mM CaCl2, 10 mM glucose)
and the dye was present during the experiment. In these experiments, TMRM is
used in the redistribution mode to assess Δψm; and therefore, a reduction in
TMRM fluorescence represents mitochondrial depolarization. Confocal images were
obtained using a Zeiss 510 confocal microscope (ZEISS, Jena, Germany) equipped
with a × 40 oil immersion objective. Illumination intensity was kept to a minimum (at
0.1–0.2% of laser output) to avoid phototoxicity; and the pinhole was set to give an
optical slice of 2 μm. Fluorescence was quantified by exciting TMRM using the 565-
nm laser and measured above 580 nm. Z-stacks of five fields of 300 μm2 each per
brain were acquired, and the mean maximal fluorescence intensity was measured
for each group.

Electron microscopy. For transmission electron microscopy (TEM), adult fly
brains and human fibroblast were fixed overnight in 0.1 M sodium cacodylate buffer
(pH 7.4) containing 2% paraformaldehyde, 2.5% glutaraldehyde and 0.1%
Tween-20. Samples were post-fixed for 1 h at room temperature in a solution
containing 1% osmium tetroxide and 1% potassium ferrocyanide. After fixation,

Figure 5 Inhibiting PERK/eIF2α signalling in pink1 and parkin mutants prevents neurodegeneration. (a and b) The chemical chaperone PBA (a) and the PERK inhibitor
GSK2606414 (b) decrease the levels of phospho-eIF2α in pink1 and parkin mutant flies. Whole-fly lysates were analysed using the indicated antibodies. Ratios of signal intensity
between phospho and total-eIF2α are shown at the top. (c and d) Recovery of puromycin incorporation in nascent proteins in pink1 (c) and parkin (d) mutant flies upon dietary
supplementation with PBA or GSK2606414. Whole-fly lysates were analysed with an anti-puromycin antibody and equivalent protein loading was assessed by Ponceau S staining
of the membranes. (e) The chemical chaperone PBA and the PERK inhibitor GSK2606414 rescue the loss of dopaminergic neurons in the PPL1 cluster of pink1 and parkin
mutant flies (mean± S.E.M.; asterisks, one-way ANOVA with Bonferroni’s multiple comparison test). (f) The RNAi-mediated suppression of dPerk rescues the loss of
dopaminergic neurons in the PPL1 cluster of pink1 and parkinmutant flies (mean± S.E.M.; asterisks, one-way ANOVAwith Bonferroni’s multiple comparison test). Genotypes for
(f) pink1B9: pink1B9,elavGAL4; park25: park25/park25,elavGAL4. RNAi dPerk was driven by elavGAL4
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samples were stained en bloc with 5% aqueous uranyl acetate overnight at room
temperature; the samples were then dehydrated via a series of ethanol washes and
embedded in TAAB epoxy resin (TAAB Laboratories Equipment Ltd., Aldermaston,
UK). Semi-thin sections were stained with toluidine blue, and areas of the sections
were selected for ultramicrotomy. Ultrathin sections were stained with lead citrate
and imaged using a MegaView 3 digital camera and iTEM software (Olympus Soft
Imaging Solutions GmbH, Münster, Germany) in a Jeol 100-CXII electron
microscope (Jeol UK Ltd., Welwyn Garden City, UK).

Defective thorax analysis. Visual assessment of thoracic indentations
(defective thorax) was assessed essentially as a binary assay: first, we ask if a fly
has a defective thorax or not; second, we use chi-square statistics to determine
whether the degree (percentage) of crushed thorax in the populations under
analysis is significantly different.

Drug treatments. Drugs used were incorporated into the fly food. Flies treated
with PBA (Merck Millipore, MA, USA) were raised in PBA-containing food at a
concentration of 7.5 mM. Flies treated with GSK2606414 (Merck Millipore) were
transferred to drug-containing food (10 μM) up to 24 h after hatching. The adult flies
were kept in drug-containing food throughout lifespan.

Analysis of dopaminergic neurons. Fly brains were dissected from
20-day-old flies and stained for anti-tyrosine hydroxylase (TH, Immunostar) as
previously described.10 Brains were positioned in PBS+0.1% Triton in a coverslip
clamp chamber (ALA Scientific Instruments Inc., Farmingdale, NY, USA) using a
harp made of platinum wire and nylon string and imaged by confocal microscopy.
Tyrosine hydroxylase-positive PPL1 cluster neurons were counted per brain
hemisphere. Data acquired for the assessment of each genotype were obtained as
a single experimental set before statistical analysis.

Statistical analyses. Descriptive and inferential statistical analyses were
performed using GraphPad Prism 5 (www.graphpad.com). Data are presented as
the mean values, and the error bars indicate± S.D. or± S.E.M. as indicated. The
number of biological replicates per experimental variable (n) is indicated in either
figures, inside the bars, or figure legends. Parametric tests were used (performed
using data obtained from pilot experiments) after confirming that the variables under
analysis displayed Gaussian distributions using the D’Agostino-Pearson test
(computed using GraphPad Prism 5). The significance is indicated as **** for
Po0.0001, *** for Po0.001, ** for Po0.01 and * for Po0.05.

Digital image processing. Fluorescence, transmission electron microscope
and western blot images were acquired as uncompressed bitmapped digital data
(TIFF format) and processed using Adobe Photoshop CS3 Extended, employing
established scientific imaging workflows.24
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