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Mitogen-activated protein kinase (MAPK) modules play key roles in the transduction

of environmental and developmental signals through phosphorylation of downstream

signaling targets, including other kinases, enzymes, cytoskeletal proteins or transcription

factors, in all eukaryotic cells. A typical MAPK cascade consists of at least three

sequentially acting serine/threonine kinases, a MAP kinase kinase kinase (MAPKKK),

a MAP kinase kinase (MAPKK) and finally, the MAP kinase (MAPK) itself, with each

phosphorylating, and hence activating, the next kinase in the cascade. Recent advances

in our understanding of hormone signaling pathways have led to the discovery of

new regulatory systems. In particular, this research has revealed the emerging role

of crosstalk between the protein components of various signaling pathways and the

involvement of this crosstalk in multiple cellular processes. Here we provide an overview

of current models and mechanisms of hormone signaling with a special emphasis on

the role of MAPKs in cell signaling networks.

One-sentence summary: In this review we highlight the mechanisms of crosstalk

between MAPK cascades and plant hormone signaling pathways and summarize recent

findings on MAPK regulation and function in various cellular processes.

Keywords: MAP kinase cascade, auxin, abscisic acid, jasmonic acid, salicilic acid, ethylene, brassinosteroids,

gibberellin

INTRODUCTION

Mitogen-activated protein kinases (MAPKs) are one of the largest group of transferases, catalyzing
phosphorylation of appropriate protein substrates on serine or threonine residues. MAPK cascades
are among the most common mechanisms by which cell functions are regulated and are
evolutionarily conserved throughout the eukaryotes, including plants, fungi and mammals (Zanke
et al., 1996; Ligterink and Hirt, 2001; Xu et al., 2017). In plants, they play essential roles in the
transduction of environmental and developmental signals. MAPKs are present in the cytoplasm
and nucleus, and take part in different cellular processes including growth, development and stress
responses (Seguí-Simarro et al., 2005; Pitzschke et al., 2009; Gupta and Chakrabarty, 2013; Sheikh
et al., 2013; Danquah et al., 2015; Wang Z. et al., 2015). By regulating MAPK cascades, cells are able
to respond to a range of stresses caused by high or low temperature, UV radiation, ozone, reactive
oxygen species, drought, high or low osmolarity, heavy metals, wounding and pathogen infections
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(Sinha et al., 2011; Opdenakker et al., 2012; Danquah et al.,
2014; de Zelicourt et al., 2016). Importantly, hormones such as
auxin (AUX), abscisic acid (ABA), jasmonic acid (JA), salicylic
acid (SA), ethylene (ET), brassinosteroids (BR), and gibberellins
(GA) are known to influence signaling through MAPK cascades
(Mishra et al., 2006; Rodriguez et al., 2010; Smekalova et al., 2013;
Hettenhausen et al., 2014; Lu et al., 2015). In this review we
highlight the mechanisms of crosstalk between MAPK cascades
and plant hormone signaling pathways and summarize recent
findings on MAPK regulation and function in various cellular
processes.

MAPK CASCADES IN PLANTS

The transduction and enhancement of input signals by MAPK
cascades involves three types of kinase: mitogen activated
protein (MAP) kinase kinase kinases (MAPKKKs; also known
as MAP3Ks or MEKKs), MAP kinase kinases (MKKs; also
known as MAP2Ks or MEKs) and MAP kinases (MAPKs; also
known as MPK) (Figure 1). MAP kinase kinase kinase kinases
(MAPKKKKs) have also been identified in plants (Colcombet and
Hirt, 2008; Raja et al., 2017). The first signal transduction step
is the activation of a MAPKKKK or MAPKKK by stimulation
of plasma membrane receptors. The MAPKKK then activates
a downstream MAPKK by phosphorylation of two serine or
threonine residues in the S/T-X5-S/T (X is any amino acid)
motif of its activation loop. Once activated, the MAPKK behaves
as a dual-specificity kinase, which phosphorylates a MAPK on
the threonine and tyrosine residues in the T-X-Y motif of an

FIGURE 1 | Schematic representation of MAPK cascade.

activation loop located between subdomains VII and VIII of its
catalytic domain (Rodriguez et al., 2010; Hettenhausen et al.,
2014). MAPKs are serine/threonine kinases that activate various
effector proteins in the cytoplasm or nucleus, including other
kinases, enzymes, cytoskeletal proteins or transcription factors
(Khokhlatchev et al., 1998; Rodriguez et al., 2010). Interactions
between the kinases are mediated by docking sites in the
enzymes themselves and/or by external scaffolding proteins.
Such a series of phosphorylation events is termed a MAPK
cascade.

Nearly 110 genes encoding MAPK cascade kinases have
been identified in the Arabidopsis thaliana genome; these
genes encode 20 MAPK, 10 MAPKK, and 80 MAPKKK
proteins (Colcombet and Hirt, 2008; de Zelicourt et al., 2016;
Raja et al., 2017). There are comparable numbers of MAPK
cascade kinase genes in other plant species, e.g., the rice
(Oryza sativa) genome contains 17 MAPK, 8 MAPKK and
75 MAPKKK genes (Xiong et al., 2001; Singh et al., 2012;
Wankhede et al., 2013), the tomato (Solanum lycopersicum)
genome 17 MAPK (Mohanta et al., 2015), 5 MAPKK and 89
MAPKKK genes (Wu et al., 2014) and the maize (Zea mays)
genome 19 MAPK, 9 MAPKK and 74 MAPKKK genes (Kong
et al., 2013) (Supplementary Tables 1, 2). Similar gene sets
in other plant genomes and the presence of MAPK cascade
kinases in a huge range of species indicate that they are
evolutionarily conserved among higher plants (Danquah et al.,
2014).

The MAPKKK family forms the largest and most
heterogeneous group of MAPK cascade components (Danquah
et al., 2014). Based on sequence analysis, Arabidopsis MAPKKKs
can be divided into three main classes: MEKK-like (21 members),
Raf-like (48 members) and ZIK-like (11 members; also known as
WNK [with no lysine (K)] MAPKKKs (Danquah et al., 2014).

MEKK-like kinases fall into four subgroups (A1 – A4)
(MAPK Group, 2002). Subgroup A1 in A. thaliana includes four
functionally characterized protein kinases: MAP/ERK kinase
kinase 1 (AtMEKK1, also called AtMAPKKK8), AtMEKK2
(AtMAPKKK9), AtMEKK3 (AtMAPKKK10), and AtMEKK4
(AtMAPKKK11) (MAPK Group, 2002). MEKK-like kinases
of subgroup A1 have also been identified in other species,
e.g., Nicotiana benthamiana MAPKKKβ (NbMAPKKKβ)
and Brassica napus MAPKKK8 (BnaMAPKKK8, also known
as BnMAP3Kβ1) (Jouannic et al., 1999; Hashimoto et al.,
2012; Sun et al., 2014). Subgroup A2 consists of AtMAP3Kα

(AtMAPKKK3), AtMAP3Kγ (AtMAPKKK5), AtYODA
(AtMAPKKK4), BnaMAPKKK3 (also known as BnaMAP3Kα1),
NbMAPKKKα and NbMAPKKKγ (Hashimoto et al., 2012;
Sun et al., 2014), while subgroup A3 comprises AtANP1 (also
called AtMAPKKK1), AtANP2 (AtMAPKKK2), AtANP3
(AtMAPKKK12) and their ortholog Nicotiana protein kinase 1
(NtNPK1) (MAPK Group, 2002; Sun et al., 2014). Subgroup A4,
as the last functionally characterized subgroup of MEKK-like
kinases, consists of AtMAP3Kε1 (AtMAPKKK7), AtMAP3Kε2
(AtMAPKKK6) and AtMAPKKK13–21 in A. thaliana, and
BnaMAPKKK6 (BnMAP3Kε1) and BnaMAPKKK19-20 in
Brassica napus (MAPK Group, 2002; Chaiwongsar et al., 2012;
Sun et al., 2014).
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Raf-like MAPKKKs have been classified into groups B and
C (MAPK Group, 2002; Wu et al., 2014). Two of the best-
characterized Raf-like kinases, Arabidopsis constitutive triple
response 1 (AtCTR1, also known as AtRaf1) and enhanced
disease resistance 1 (AtEDR1, also known as AtRaf2), together
with orthologs such as O. sativa OsEDR1 (OsMAPKKK1) and
drought-hypersensitive mutant 1 (OsDSM1) (OsMAPKKK6),
and BnaCTR1 and BnaEDR1 (BnaRaf2), are members of group B
(MAPK Group, 2002; Shen et al., 2011; Yin et al., 2013; Danquah
et al., 2014; Sun et al., 2014; Virk et al., 2015). Members of group
C remain mostly uncharacterized.

Although both Raf-like and ZIK-like kinases are clearly
members of the MAPKKK family, they have not been confirmed
to phosphorylate MAPKKs in plants (Danquah et al., 2014;
Chardin et al., 2017). However, Sun et al. (2014) have recently
shown that Raf-like and ZIK-like kinases interact with MAPKKs
in canola (Brassica napus L.).

Plant MAPKKs, with the exception of MKK10 homologs,
feature a S/T-X5-S/T motif in the activation loop (Jonak
et al., 2002; MAPK Group, 2002; Doczi et al., 2007, 2012;
Danquah et al., 2014; Poyraz, 2015). Some MKK10 homologs,
such as ZmMKK10-2 and OsMKK10-2, show only a partial
MAPKK consensus motif (R-X5-S/T), while others, such as
AtMKK10, ZmMKK10-1, OsMKK10-1 and OsMKK10-3, do not
have this consensus sequence at all (Supplementary Figure 1).
Some MAPKKs in green algae, such as Chlamydomonas
reinhardtii MKK6 (CreinMKK6) and Volvox carteri MKK3
(VcMKK3), also lack the consensus motif (Supplementary

Figure 1).
The Arabidopsis genome contains ten MAPKK genes, which

have been divided into four groups, A – D (Supplementary

Figure 2 and Supplementary Table 1). All AtMAPKKs in group
A have also been shown to interact with AtMPK6 and AtMPK11
(Supplementary Figure 3) (Meszaros et al., 2006; Lee J.S. et al.,
2008). In addition, AtMKK1 activates AtMPK3 and AtMPK12
(Meszaros et al., 2006; Lee et al., 2009), AtMKK2 interacts with
AtMPK5, AtMPK10 and AtMPK13 (Teige et al., 2004; Gao et al.,
2008; Lee J.S. et al., 2008), while AtMKK6 besides AtMPK4
activates AtMPK13 and interacts with AtMPK12 in yeast cells
(Melikant et al., 2004; Lee J.S. et al., 2008; Takahashi et al., 2010;
Zeng et al., 2011).

Group A MAPKKs have also been reported in rice, alfalfa
(Medicago sativa), tobacco (Nicotiana tabacum L., Nicotiana
benthamiana), tomato (Solanum lycopersicum L., Lycopersicon
esculentum,), green algae (Volvox carteri and Chlamydomonas
reinhardtii), lycophyte (Selaginella moellendorffii), maize (Zea
mays L.) and canola (Brassica napus L.) (Cardinale et al., 2002; Xie
et al., 2012; Liang et al., 2013; Cai et al., 2014; Li X. et al., 2014)
(Supplementary Figure 2 and Supplementary Table 1). Group
B MAPKKs include AtMKK3 in A. thaliana and their homologs
in O. sativa (Wankhede et al., 2013), Z. mays (Liang et al., 2013;
Kong et al., 2013), Brassica napus, S. lycopersicum, N. tabacum,
S. moellendorffii, C. reinhardtii, and V. carteri (Liang et al., 2013)
(Supplementary Figure 2). Group C MAPKKs include AtMKK4
and AtMKK5 as well as MKK4 and/or MKK5 proteins in other
species (Supplementary Figure 2) (Kong et al., 2011; Furuya
et al., 2014).

The last category of MAPKKs is group D, which includes the
remaining Arabidopsis MAPKKs, such as AtMKK7, AtMKK8,
AtMKK9, and AtMKK10 (Supplementary Figure 2). AtMKK7
interacts with AtMPK2 (Lee J.S. et al., 2008), AtMPK12 (Lee
et al., 2009) and AtMPK15 (Lee J.S. et al., 2008), while
AtMKK9 interacts with AtMPK6, AtMPK10 (Lee J.S. et al.,
2008), AtMPK12 (Lee et al., 2009), AtMPK17 and AtMPK20 (Lee
J.S. et al., 2008). In other species, only homologs of AtMKK8
have not been identified (Kong et al., 2013; Wankhede et al.,
2013). Interestingly, AtMKK10, OsMKK10-2 and ZmMKK10-1,
family members that lack (partially or completely) the MAPKK
consensus motif (Supplementary Figure 1), nevertheless interact
with MAPKs (Lee J.S. et al., 2008; Singh et al., 2012;
Wankhede et al., 2013; Kong et al., 2013) (Supplementary

Figure 3).
The MAPKs themselves form the last category of MAPK

cascade component. MAPKs feature the conserved T-X-Y motif,
which is phosphorylated byMAPKKs during signal transduction.
Based on sequence similarities, the 20 Arabidopsis MAPKs
have been divided into two subtypes, TEY (12 MAPKs) and
TDY (8 MAPKs). The MAPKs of the TEY subtype carry a
T-E-Y (Thr-Glu-Tyr) motif and can be divided into three
groups (A – C). The more evolutionarily distant group D
is formed by MAPKs of the TDY subtype, which contain
a T-D-Y (Thr-Asp-Tyr) motif at the phosphorylation site
(Bigeard and Hirt, 2018) (Supplementary Table 2). Recent
phylogenetic analysis of MAPKs from 40 plant species revealed
that group A, as well as MAPKs carrying the T-E-Y motif,
also contains MAPKs sharing a T-Q-Y (Thr-Gln-Tyr) motif,
while group B also includes MAPKs carrying M-E-Y (Met-
Glu-Tyr), T-E-C (Thr-Glu-Cys) and T-V-Y (Thr-Val-Tyr) motifs
(Mohanta et al., 2015) (Supplementary Figure 4). Three MAPKs
of group C also contain a motif that is different to the
typical T-E-Y sequence. These are OlMPK7 from Ostreococcus
lucimarinus, which carries a T-S-Y (Thr-Ser-Tyr) motif, and
Picea abies MPK7-1 (PaMPK7-1) and PaMPK20, which both
contain a M-S-Y (Met-Ser-Tyr) motif sequence (Supplementary

Figure 4). A MAPK motif was not found in the sequence
of OsMPK20-2 from group D (Supplementary Figure 4).
Phylogenetic analysis of MAPKs from 40 plant species allowed
two additional groups to be distinguished, i.e., E and F, which
mainly contain MAPKs of lower eukaryotic and gymnosperm
plants (Mohanta et al., 2015). However, our own phylogenetic
analysis of MAPKs clearly identified group EMAPKs with T-E-Y,
T-D-Y, T-R-M (Thr-Arg-Met), T-E-M (Thr-Ser-Met) and T-Q-
M (Thr-Gln-Met) motifs (Supplementary Figure 4), but MAPKs
such as CrenMPK4-1, Micromonas pusila MPK4 (MpMPK4),
OlMPK6 and VcMPK4-1 assigned to group F by Mohanta
et al. (2015) are actually members of group C (Supplementary

Figure 5). Therefore, we suggest retaining the group E
category, but MAPKs of group F should be incorporated into
group C.

Group A TEY MAPKs include AtMPK3, AtMPK6 and
AtMPK10 in Arabidopsis, and their homologs in canola, alfalfa,
cucumber, tobacco, rice, spruce (Picea abies), tomato, and
maize (MAPK Group, 2002; Liang et al., 2013; Wankhede
et al., 2013; Mohanta et al., 2015; Wang J. et al., 2015)
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(Supplementary Table 2). Group B includes AtMPK4, AtMPK5,
AtMPK11-13, whereas AtMPK1, AtMPK2, AtMPK7, AtMPK14
are members of group C. Members of group B and C are
also present in others plants including gymnosperms and algae
(Liang et al., 2013; Wankhede et al., 2013; Mohanta et al.,
2015; Wang J. et al., 2015) (Supplementary Figure 5 and
Supplementary Table 2). Group D is formed by MAPKs of
the TDY subtype, such as AtMPK8-9 and MPK15-20 (MAPK
Group, 2002; Liang et al., 2013; Wankhede et al., 2013;
Mohanta et al., 2015; Wang J. et al., 2015) (Supplementary

Table 2). Group E includes 12 MAPKs from species such
as C. reinhardtii, C. subellipsoidea, M. pusila, N. tabacum,
S. moellendorffii, P. abies and V. carteri (Supplementary

Figures 4, 5).

MAPK MODULES INVOLED IN AUXIN
SIGNALING

The phytohormone auxin, indole 3-acetic acid (IAA), plays
a crucial role in plant growth and development, including
embryogenesis (Friml et al., 2003; Blilou et al., 2005; Morris
et al., 2005; Leyser, 2017), organogenesis (Benkova et al.,
2003; Reinhardt et al., 2003; Heisler et al., 2005; Smekalova
et al., 2014; Contreras-Cornejo et al., 2015; Enders et al.,
2017; Wójcikowska and Gaj, 2017; Corredoira et al., 2017;
Zhao, 2018), tissue patterning, tropism and growth responses
to environmental stimuli (Benkova et al., 2003; Leyser, 2003;
Reinhardt et al., 2003; Morris et al., 2004; Simonini et al., 2016;
Liu et al., 2017; Kamada et al., 2018). The involvement of
auxin in this multiplicity of biological processes results from its
regulation of cell division, expansion and differentiation (Chen
and Baluska, 2013). Auxin synthesis takes place mainly in the
shoot, after which it is distributed directionally throughout the
plant. Auxin distribution patterns are asymmetric within tissues
and they vary dynamically throughout different developmental
stages (Friml et al., 2003; Tanaka et al., 2006; Béziat and
Kleine-Vehn, 2018). Since Mizoguchi et al. (1994) observed
that auxin can activate MAPKs in tobacco cells, several
MAPK cascades have been implicated in the regulation of
auxin biosynthesis, transport and signal transduction. However,
published studies on the connection between auxin and MAPK
signaling have given conflicting results, such that in some
cases the same MAPK activities apparently mediate different
functions.

MAPK Pathways as Positive and
Negative Regulators of Auxin Signal
Transduction
The pioneering work of Mizoguchi et al. (1994) suggested
a link between auxin and MAPK activity. They reported
that in vitro phosphorylation of myelin basic protein
(MBP) and a recombinant MAPK by extracts of tobacco
BY-2 cells increased when cells were subjected to prior
treatment with a high concentration of the synthetic auxin.
However, using the same system, Tena and Renaudin (1998)

showed that auxin at low concentrations does not induce
MBP kinase activity in tobacco cell lines. Activation of
MAPK was observed only after treatment with very high
concentrations of synthetic auxin and was probably a
consequence of cytoplasmic acidification caused by its
accumulation (Tena and Renaudin, 1998; Mockaitis and
Howell, 2000).

In other early studies, Kovtun et al. (1998) showed that
Nicotiana protein kinase NPK1, a member of the MAPKKK
family in tobacco, initiates a MAPK cascade that negatively
regulates early IAA-inducible genes. Recombinant NPK1 was
transiently expressed in leaf protoplasts to determine its
influence on the activity of the soybean GH3 promoter, which
is known to be auxin-responsive (Liu et al., 1994; Kovtun
et al., 1998). Overexpression of NPK1 specifically blocked
the auxin inducibility of the GH3 promoter, while a MAPK-
specific phosphatase (MKP1) was able to abolish this effect
(Kovtun et al., 1998). Similar results were obtained using
orthologs of NPK1, i.e., Arabidopsis ANP1, ANP2, and ANP3.
In an experiment with constitutively active ANPs, transiently
overexpressed in protoplasts, it was shown that the ANPs
selected can also suppress auxin signaling (Kovtun et al.,
2000). ANP1 mediates H2O2-induced activation of the known
stress MAPKs, AtMPK3 and AtMPK6, and the end result
of this activation cascade is inhibition of auxin-inducible
genes (Kovtun et al., 2000; Hirt, 2000). This evidence for
a role of NPK1 and its orthologs in auxin signaling is
consistent with their involvement in cytokinesis (Jin et al.,
2002; Takahashi et al., 2010). MPK12 is another negative
regulator of auxin signaling and its kinase activity increases
after auxin treatment. MPK12 RNAi lines were hypersensitive
to auxin in a root growth inhibition assay. Furthermore, IBR5,
which mediates crosstalk between the auxin and ABA signaling
pathways, has been identified as a specific MPK12 phosphatase
(Monroe-Augustus et al., 2003; Lee et al., 2009; Raja et al.,
2017).

In contrast to the negative role of MAPK in auxin
signaling, Zhao et al. (2013) found that MAPKs positively
regulate some auxin genes (e.g., OsYUCCA4) under conditions
of cadmium stress in rice roots, while other genes (e.g.,
OsPINc) are negatively regulated. The complex relationship
between MAPKs and auxin signaling was further studied
with respect to cadmium and zinc stresses. Zhao et al.
(2014a,b) performed a comprehensive expression analysis
of 67 key genes in the auxin signaling pathway. Seven
genes were positively regulated by MAPK cascades, namely
OsYUCCA3, OsPIN1c, OsPIN10b, OsPID, OsARF20, OsIAA9 and
OsIAA30. In addition, 14 genes were negatively regulated by
MAPKs (OsYUCCA1, OsYUCCA2, OsPIN5a, OsPIN5b, OsARF7,
OsARF8, OsARF12, OsARF15, OsARF16, OsARF21, OsARF22,
OsARF25, OsIAA12, and OsIAA15). It should be emphasized
that the combined results of Zhao et al., 2014b indicate that
MAPKs function at the interface between H2O2 and auxin
signaling under Cd and Zn stress conditions. This evidence
suggests a model where MAPKs regulate auxin distribution
through H2O2, while H2O2 in turn may act downstream
of MAPKs but upstream of the auxin signaling pathway. It
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would be interesting to investigate the precise MAPK-dependent
regulatorymechanisms that facilitate auxin/ROS (reactive oxygen
species) regulation.

MAPK Signaling as a Regulator of Polar
Auxin Transport
Polar auxin transport (PAT) is an active process whereby
auxin is delivered to specific plant tissues (Tanaka et al.,
2006; Petrasek and Friml, 2009; Leyser, 2017; Zhao, 2018).
Interestingly, PAT is regulated by PIN proteins and reversible
protein phosphorylation, mediated by protein kinases and
protein phosphatases, and it can, for example, control the activity
of auxin transport proteins (Muday and DeLong, 2001; Dai et al.,
2006; Ganguly et al., 2014; Dory et al., 2018). Localization of
the plasma membrane localized PIN proteins is also controlled
by several MAP kinases including MPK4 and the MKK7/MPK6
module (Jia et al., 2016; Dory et al., 2018). The involvement of
MKK7 in PAT was shown by analyses of the Arabidopsis bud1
mutant, which has significantly fewer lateral roots than wild-type
(Mou et al., 2002; Dai et al., 2006) and shows disrupted PAT
from shoots into roots, as well as a deficiency in auxin signaling
(Reed et al., 1998; Xie et al., 2000; Rogg et al., 2001; Dai et al.,
2006). Molecular genetic analysis of bud1 plants by Dai et al.
(2006) revealed increased expression of the AtMKK7 gene, which
results in defective auxin transport, while lowering AtMKK7
mRNA levels using antisense RNA causes an improvement in
auxin transport. Together, these data suggest that AtMKK7 is
a negative regulator of PAT (Dai et al., 2006; Zhang X. et al.,
2008).

Recently, another module, AtMKK2/AtMPK10, has been
implicated in the regulation of PAT. The results of Stanko
et al. (2014) may indicate that the AtMKK2/AtMPK10 module
regulates auxin transport, with consequences for venation
complexity and other developmental phenomena. It seems that
at least two MAPK pathways connect auxin to development,
but the precise regulatory connections have not yet been fully
elucidated.

It is worth mentioning that other interesting links between
MAPKs and auxins exist. YODA kinase (MAPKKK4) and MPK6
have been shown to be involved in an auxin-dependent regulation
of cell division during post-embryogenic root development.
Smekalova et al. (2014), showed that both loss-of-function (yda1)
and gain-of-function (1Nyda1) plants exhibit pronounced root
phenotypes that result from visibly disorientated cell divisions.
Both mutants have elevated endogenous auxin (IAA) levels,
and this might be related to their phenotypes. Indeed, because
the IAA level is particularly upregulated in 1Nyda1 plants,
it is tempting to hypothesize that the role of YODA in the
elongation of the zygote is to promote auxin signaling. It
is known that YODA acts upstream of MPK3/6 in stomatal
development (Bergmann et al., 2004; Lukowitz et al., 2004;
Kim J.M. et al., 2012) and embryogenesis (Wang et al.,
2007). Interestingly, a mpk6 mutant transformed with a kinase-
dead form of MPK6 has a very similar root phenotype
to yda1 plants. This indicates that MPK6 acts downstream
of YODA in an auxin-dependent manner to control cell

division in post-embryonic root development (Smekalova et al.,
2014).

The recent work Enders et al. (2017) provided evidence
that the AtMKK3-MAPK1-RBK1 (ROP binding protein
kinase 1) module regulates auxin dependent cell expansion in
Arabidopsis via modulation of the Rho-like GTPase (ROP4
and ROP6) activity. Both mpk1 and mkk3-1 mutants display
similar phenotypes to the effects of the auxins on the inhibition
of root elongation and cotyledon expansion, suggesting
that the MKK3-MPK1 pathway negatively regulates auxin-
dependent cell growth. Strikingly, the known upstream MKK3
activators, MAPKKK17/18, which are clearly involved in ABA
signaling (Danquah et al., 2015; Matsuoka et al., 2015; Mitula
et al., 2015), were not investigated. Future studies should
consider following up on this preliminary result in order to
investigate the role of the ABA-activated MAPKKK17/18-
MKK3-MPK1/2/7/14 module in the crosstalk between ABA and
auxin signaling.

Overall, this section of the review highlights exciting results
that suggest a connection between MAPKmodules and the auxin
signaling pathway. Disappointingly, though, current knowledge
of MAPK cascade involvement in auxin-mediated processes is
still fragmentary and no complete MAPK module has been
confirmed as having a role in auxin signaling. Thus, multiple
challenges and unanswered questions remain to be addressed.

MAPKs IN JASMONIC ACID AND
SALICILIC ACID SIGNALING

Jasmonic acid and salicylic acid are plant hormones that
participate in plant growth and development. JA plays essential
roles in both biotic and abiotic stress responses (Heil et al.,
2012; Hou et al., 2013; Wasternack and Hause, 2013). Plant
defenses against pathogens are also mediated by SA, a type of
phenolic acid, which similarly to JA also plays a role in plant
growth and development (Hayat and Ahmad, 2007). In addition
to its involvement in the response to wounding, SA participates
in systemic acquired resistance (SAR) and the responses to
abiotic stresses such as water, salinity and cold stress (Miura
and Tada, 2014; Wendehenne et al., 2014). MAPKs are clearly
involved in both signaling pathways as both positive and negative
regulators. However, much work is still needed to elucidate
downstream MAPK targets involved in SA- and JA-dependent
processes.

MAPKs in JA Signaling
Plant hormone JA is an important regulator of plant growth and
development, but it plays a more important role in the wounding
response and SAR (Heil et al., 2012; Hou et al., 2013; Wasternack
and Hause, 2013). Despite the fact that crosstalk between JA
and MAPK signaling has been reported, only a few studies have
summarized this interaction. Nevertheless, MAPKs are reported
to regulate JA biosynthesis and the expression of JA-dependent
genes. For example, tomato SlMPK6-1 (also known as SlMAPK2,
LeMPK2 and SlMPK2) and SlMPK6-2 (SlMAPK1, LeMPK1,
SlMPK1) function as positive regulators of JA biosynthesis
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and signaling pathways (Kandoth et al., 2007). Simultaneous
silencing of SlMPK6-1 and SlMPK6-2 has been shown to reduce
JA biosynthesis and the expression of JA-dependent defense
genes (Figure 2). On the other hand, JA regulates both MAPK
activity and MAPK gene expression. In Arabidopsis, induction
of AtMPK1/2 kinase activity is observed in leaves 1 h after JA
treatment (Figure 2) (Ortiz-Masia et al., 2007). Furthermore
AtMPK9 and AtMPK12 together are involved in JA-induced
stomatal closure (Khokon et al., 2015; de Zelicourt et al.,
2016; Lee et al., 2016) (Figure 2). Induction by JA treatment,
albeit only at the transcript level, has also been demonstrated
in rice for OsMPK7, OsMPK20-5 and OsMPK16 (Reyna and
Yang, 2006; Singh and Jwa, 2013). Increased transcript levels
after JA treatment have been observed for BnaRaf30 in canola
(Sun et al., 2014), for Cucumis sativus MPK6 (CsMPK6),
CsMPK9-1, CsMPK20-1, CsMPK20-2, CsMKK4, CsMKK6, and
CsMEKK21-1 in cucumber (Wang J. et al., 2015), for NtMPK1,
NtMPK7, NtMPK22-1 (also known as NtMPK16) and NtMPK22-
2 (also known as NtMPK17) in tobacco (Zhang et al., 2013),
for 23 MAPKs in cotton (Gossypium raimondii) including
GrMPK2/3/5-1/18-20/22-25/27-28 (Zhang et al., 2014e), and for
Brachypodium distachyon MPK7-1 (BdMPK7-1) and BdMPK20-
5 in purple false brome (Jiang et al., 2015). Undoubtedly
much work is still needed to fully resolve the potential roles
of MAPKs in JA biosynthesis, JA signaling and JA-mediated
responses and these pathways are attractive targets for future
research.

MAPK-Dependent SA Signaling
Alongside JA, SA – a type of phenolic acid – also plays an
important role in plant growth, development and defense (Hayat
and Ahmad, 2007). In addition to its involvement in the response
to wounding, SA participates in SAR and responses to abiotic
stresses such as water, salinity, and cold stress (Miura and Tada,
2014; Wendehenne et al., 2014). The activity of Arabidopsis
AtMPK3 and AtEDR1, and maize ZmMKK6-ZmMPK4-1, are
known to be regulated by SA (Figure 2). Thus, AtMPK3 has
been shown to be induced by ozone stress in an SA-dependent
manner (Ahlfors et al., 2004; Samajova et al., 2013). In disease

resistance, MPK3 seems to be an important crosstalk regulator
of late immune responses (Ichimura et al., 2006; Han et al.,
2010; Mao et al., 2011; Meng and Zhang, 2013). Besides its
well-known role in repressing the constitutive and flg22-induced
expression of defense genes (Asai et al., 2002; Galletti et al., 2011;
Montillet et al., 2013), AtMPK3 also appears to be a negative
regulator of flg22-induced SA accumulation (Frei Dit et al.,
2014).

Other studies have revealed that SA-inducible defense
responses are also negatively regulated by the Raf-like MAPKKK,
AtEDR1, indicating that AtEDR1 is involved in SA signaling, but
not in JA/ET signaling (Frye and Innes, 1998; Frye et al., 2001;
Virk et al., 2015). Recent studies also suggest the participation
of ZmMKK6 in SA signaling: expression of inactive ZmMKK6
in Arabidopsis transgenic plants induced SA accumulation and
SA-dependent leaf senescence. ZmMKK6 also activates both
ZmMPK4-1 (also called ZmMPK4, ZmSIMK) and AtMPK4
in vitro. These data indicate that the ZmMKK6-ZmMPK4-1
cascade may play an important role in the regulation of SA-
dependent leaf senescence (Li et al., 2016).

Analysis of expression profiles of MAPK cascade kinases after
treatment with SA also led to the identification of kinases that
might be involved in SA signaling in other species. In tomato,
three out of five known MAPKK genes (SlMAPKK1/2/4), almost
half of the MEKK subfamily genes, nearly half of the RAF
subfamily genes and nearly all the ZIK subfamily genes were
significantly upregulated by SA treatment (Wu et al., 2014).
Transcription of the genes encoding AtRaf43 in Arabidopsis
(Virk et al., 2015), BdMPK3 and BdMPK17 in purple false brome
(Jiang et al., 2015), BnaMAPKKK18, BnaRaf28, BnaMKK1-
2, BnaMKK4, BnaMKK9, BnaMPK1, BnaMPK3, BnaMPK5,
BnaMPK6, BnaMPK19 in canola (Liang et al., 2013; Sun
et al., 2014), GrMPK2/3/5/6/7/8/9/12/13/16/18/22/23/25/28 in
cotton (Zhang et al., 2014e), NtMPK9-2 and NtMPK15 in
tobacco (Zhang et al., 2013), OsMPK17-1 and OsMPK17-2 in
rice (Hamel et al., 2006; Singh and Jwa, 2013), SlMKK3 in
tomato (Li X. et al., 2014), and PsMAPK3 in pea (Barba-Espín
et al., 2011) has also been shown to be significantly increased
after treatment with SA. Future research is needed to identify

FIGURE 2 | A simplified overview of MAPK cascades involved in JA and SA signaling in plant species such as: A. thaliana (At), O. sativa (Os), Nicotiana tabacum (Nt),

S. lycopersicum (Sl) and Z. mays (Zm). Activation of MAPKs by various stimuli causes phosphorylation of MAPK effectors (usually transcription factors) further

triggering cellular responses. See text for details.
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novel components and effectors of these SA-dependent MAPK
pathways.

Crosstalk Between MAPK Cascade
Kinases and Both JA and SA Signaling –
An Insight Into Plant Immunity
MAPKs are clearly involved in plant defense signaling. Certain
MAPKs such as AtMPK4 and AtMPK6 in Arabidopsis are
involved in both JA and SA signaling (Figure 2). AtMPK4
positively regulates JA/ET responses (Brodersen et al., 2006),
whereas in the AtMEKK1–AtMKK1/2–AtMPK4 cascade appears
to function as a negative regulator of plant innate immunity
and SA signaling (Petersen et al., 2000; Andreasson et al., 2005;
Brader et al., 2007; Pitzschke et al., 2009). AtMPK6 participates in
SA-induced detached leaf senescence by promotion of AtNPR1
activation (Chai et al., 2014). On the other hand, activation
of the AtMKK3–AtMPK6 cascade in Arabidopsis plants by JA
represses a positive regulator of JA biosynthesis genes (AtMYC2),
leading to suppression of JA production (Takahashi et al., 2007).
In tobacco, NtMPK3 (also known as NtWIPK, NtMPK5) and
NtMPK6-1 (NtSIPK, NtMPK6) appear to play an important
role in wound-induced biosynthesis of JA and they function
as repressors of SA accumulation in response to wounding
(Seo et al., 2007; Oka et al., 2013; Hettenhausen et al., 2014).
In addition to NtMPK3 and NtMPK6-1, another wounding-
activated MAPK, NtMPK4-1 (NtMPK4, NtMPK1) appears to
positively regulate JA signaling pathways and is also involved
in SA signaling by affecting SA biosynthesis and signaling in
response to ozone exposure (Gomi et al., 2005) (Figure 2).
The induction of other Nicotiana MAPKs, such as NtMPK16
(NtMPK10) and NtMPK20 (NtMPK8), at the transcript level
in response to MeJA and SA treatment may suggest that these
kinases also play a role in JA and SA signaling, but further
studies are needed to confirm this (Zhang et al., 2013). The
putative involvement of MAPKs in both JA and SA signaling
has also been reported in other species, such as O. sativa,
Z. mays, and S. lycopersicum. In rice, the kinase activity of
OsMPK17-1 (OsMPK12, OsBWMK1) is activated by both JA
and SA treatment (Cheong et al., 2003; Singh and Jwa, 2013).
Overexpression of OsMPK17-1 in tobacco causes SA and H2O2

accumulation and elevated PR gene expression, leading to
hypersensitive response (HR)-like cell death (Cheong et al., 2003;
Bigeard and Hirt, 2018).OsMKK1 (OsMEK2), as well asOsMPK6
(also called OsMPK1, OsMAPK6 and O. sativa SA-induced
protein kinase – OsSIPK), OsMPK17-1 and OsMPK3 (also called
OsMPK5, OsMAP1, OsMAPK2, OsMSRMK2 and OsBIMK1), are
transcriptionally induced by both JA and SA treatment in rice.
In addition, overexpression of OsMPK6 results in JA and SA
accumulation when challenged by pathogens, indicating that the
OsMKK1-OsMPK6 cascade may be involved in JA- and SA-
inducible defense responses (Singh and Jwa, 2013) (Figure 2).
In maize, the MAPK ZmMPK3-2 (ZmMPK3) is sensitive to
various signaling molecules, including JA or SA (Wang X.J. et al.,
2010; Smekalova et al., 2013). In tomato, SlMKK4 (SlMKK2)
and SlMKK9 (SlMKK4) seem to be involved in both JA and
SA signaling pathways (Li X. et al., 2014). SA and JA signaling

are crucial to plant defense against pathogens. Many examples
of MAPK cascade kinases involved more or less directly in JA,
SA or both JA and SA signaling demonstrate the importance of
this cooperation for plants in response to wounding. However,
there is still very little known about the details of this cooperation
and further studies are needed to understand how this leads to
improved resistance of plants to pathogens.

MAPK MODULES INVOLVED IN
BRASSINOSTEROID SIGNALING

Relatively recent studies have shown that crosstalk also exists
between Arabidopsis MAPK cascade kinases and a class of
polyhydroxylated steroid hormones, the BR (Kim T.W. et al.,
2012; Kang et al., 2015). In particular, BRs participate in cell
division and cell elongation, but also take part in cellular
patterning (Tang et al., 2011; Khan et al., 2013) (Figure 3).
It was demonstrated that BRs repress stomatal development
in cotyledons, but in an AtBZR1-independent fashion (Kim
T.W. et al., 2012; Serna, 2013). The signal transduction
required for correct stomatal patterning is mediated by the
Arabidopsis ERECTA family (AtERf) of receptor-like kinases
and the AtYODA-AtMKK4/5-AtMPK3/6 cascade, which results
in phosphorylation and thereby inactivation of transcription
factors such as Arabidopsis speechless (AtSPCH), AtMUTE and
AtFAMA (Lau and Bergmann, 2012; Kim T.W. et al., 2012; Le
et al., 2014). Recent studies have shown that phosphorylation
of AtSPCH Serine 186 (one of three primary phosphorylation
targets) plays a crucial role in stomatal formation (Yang
et al., 2015). To summarize, when the BR level is high,
BR signal transduction through plasma-membrane receptor
brassinosteroid-insensitive 1 (AtBRI1), BR-signaling kinase 1
(AtBSK1) and phosphatase AtBRI1 suppressor 1 (AtBSU1)
inactivates the glycogen synthase kinase 3 (GSK3)-like kinase BR
insensitive 2 (AtBIN2), making AtBES1 (BRI1-EMS-suppressor
1; also called brassinazole-resistant 2 – BZR2)/AtBZR1, and
the MAPK cascade (repressing AtSPCH) active, which in turn
leads to promotion of plant growth and inhibition of cell
division and stomatal formation in cotyledons, respectively
(Kim T.W. et al., 2012; Le et al., 2014; Zhang et al.,
2014a). On the other hand, when BR levels are low, AtBIN2
remains active, inhibiting AtBES1/AtBZR1 and the AtYODA-
AtMKK4/5-AtMPK3/6 module, and leading to inhibition of
plant growth and promotion of stomatal development in
cotyledons (Figure 3) (Kim T.W. et al., 2012). It has also
been demonstrated in two different studies by in vitro and/or
yeast two-hybrid assays that AtBIN2 seems to inhibit the
AtYODA-AtMKK4/5-AtMPK3/6 cascade by direct suppression
of both AtYODA (MAPKKK) and AtMKK4/5 (Kim T.W.
et al., 2012; Khan et al., 2013; Le et al., 2014; Xu and Zhang,
2015).

In contrast to their action in cotyledons, BRs seem to promote
stomatal development in the hypocotyl, but in a BES1- and
BZR1-independent manner (Serna, 2013). Interestingly, AtSPCH
seems also to be controlled by AtBIN2, which phosphorylates
the same AtSPCH residues as AtMPK3/6 (Gudesblat et al.,
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FIGURE 3 | Schematic illustration of the GSK3-like kinase AtBIN2-mediated crosstalk between the AtYODA-AtMKK4/5-AtMPK3/6 cascade and BR signaling in

cotyledons and in hypocotyls.

2012). Since AtYODA-AtMKK4/5-AtMPK3/6 cascade activity
is likely reduced by CHALLAH family (CHALf) signaling in
the hypocotyl, meaning that AtSPCH is not inhibited by this
pathway, inactivation of AtSPCH by AtBIN2 might be the
predominant pathway in hypocotyls (Le et al., 2014). Thus, in
the hypocotyl, BR signaling inactivates AtBIN2 at high BR levels,
whereas AtBES1/AtBZR1 and AtSPCH remain active, leading to
promotion of plant growth, cell division and stomatal formation.
Conversely, AtBIN2 remains active at low BR levels and then
inhibits AtBES1/AtBZR1 and AtSPCH, resulting in inhibition
of plant growth and promotion of stomatal development in
hypocotyls (Figure 3).

Recent studies have also identified crosstalk between MAPK
cascade kinases and BR signaling pathways in other species.
OsMKK4 seems to be involved in BR signaling pathways (Duan
et al., 2014) and might be involved in BR signaling in a
similar manner to AtMKK4, because one of the rice orthologs
of AtBIN2, OsGSK2, is involved in BR signaling (Tong et al.,
2012). In tomato, all the MAPKs of group A are involved in
BR-induced nematode resistance (Song et al., 2018), two of
which, SlMPK6-1 (SlMPK2) and SlMPK6-2 (SlMPK1), positively
regulate BR-induced pesticide metabolism (Yin et al., 2016). Only
SlMPK6-1 plays a role in the regulation of BR-induced H2O2

accumulation and tolerance to oxidative and heat stress (Nie
et al., 2013). In maize, the homolog of AtMPK6, ZmMPK6-2
(also called ZmMPK5), is involved in BR signaling. ZmMPK6-2

is activated by BR-induced H2O2 accumulation and in turn
enhances apoplastic H2O2 accumulation via gene expression
of NADPH, leading to up-regulation of antioxidant defense
systems in leaves (Zhang et al., 2010). The significant involvement
of MPK3 or/and MPK6 in BR signaling in different species
might suggest that the crosstalk between MAPK and BR is
evolutionarily conserved. However, in chinese cabbage (Brassica
rapa), has the investigation of MAPK expression profiles revealed
that five other genes are induced after BR treatment (Lu
et al., 2015): Brassica rapaMAPK5 (BraMAPK5), BraMAPK17-1,
BraMAPK17-2, BraMAPK18-1 and BraMAPK19-1.

MAPK KINASE CASCADES IN
ETHYLENE BIOSYNTHESIS AND
SIGNALING

MAPKs are also involved in ET biosynthesis and signaling.
ET is a gaseous hormone involved in many aspects of plant
biology, such as germination, plant growth, organ senescence and
fruit ripening (Yang and Hoffman, 1984; Bleecker and Kende,
2000; Skottke et al., 2011; Dubois et al., 2018). Furthermore, it
integrates external and internal signals to provide a dynamic
response to diverse stress conditions (Yoo et al., 2009). ET
sensing and signal transduction in plants are complex processes
(Figure 4).
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FIGURE 4 | MAPKs in ET biosynthesis and signaling. (A) An external stimulus

leads to activation of ET biosynthesis predominantly through the

MKK9-MPK3/MPK6 cascade. Alternatively, MKK7 may also be involved in

MPK3/MPK6 activation due to similarities with the MKK9 sequence and its

activation mechanisms. MPK3 and MPK6 can also be activated by MKK4 and

MKK5, which act in a redundant fashion upstream of MPK3/MPK6, especially

after wounding-induced ET biosynthesis. SIMK (MsMPK6) and

NSIPK(NtMPK6-1) are homologs of AtMPK6 from alfalfa and tobacco,

respectively. Active MPK6 phosphorylates ACS2/ACS6, which initiates ET

biosynthesis. (B) ET is perceived by five different receptors (ETR1, ETR2,

ERS1, ERS2, EIN4) localized in the endoplasmic reticulum (ER) membrane

and this leads to inhibition of CTR1 kinase activity, which is the primary

negative regulator of ET signaling. As a consequence, MKK9 is released from

CTR1 inhibition and translocates to the nucleus, where it activates MPK3 and

MPK6. Moreover, inactive CTR1 is no longer able to phosphorylate the

C-terminal domain (CEND) of EIN2. Dephosphorylated CEND moves to the

nucleus and takes part in EIN3 stabilization. (C) In the nucleus, active

MPK3/MK6 promotes the stability of the main plant-specific ET-dependent

transcription factors (EIN3 and EIL1). Phosphorylation of EIN3 at the T174

position blocks its proteasomal degradation and enables it to activate

ET-responsive genes.

MAPKs in the Regulation of Ethylene
Biosynthesis
As shown in many studies, the MKK9-MPK3/MPK6 cascade is
involved in the regulation of ET biosynthesis (Liu and Zhang,

2004; Joo et al., 2008; Xu J. et al., 2008; Skottke et al., 2011). The
basal ET level is very low, but under special conditions (abiotic
stress, wounding, pathogen infection, nutrient availability) ET
production increases dramatically (Zarembinski and Theologis,
1994; Wang et al., 2002; De Paepe and Van der Straeten, 2005;
Stepanova and Alonso, 2009; Iqbal et al., 2013; Ludwików et al.,
2014; Tao et al., 2015; Chardin et al., 2017). Key enzymes in ET
biosynthesis are ACC synthases (ACS; 1-aminocyclopropane-1-
carboxylate synthases), which are strictly regulated at both the
transcriptional and post-translational levels, (Kende, 1993).

Kim et al. (2003) showed that NtMPK6-1 is able to induce
ET biosynthesis. The authors constructed transgenic plants
overexpressing a constitutively active mutant of NtMKK4DD

(NtMEK2DD T227D/S233D; kinase upstream of NtMPK6-1;
Yang et al., 2001) under the control of a steroid-inducible
promoter. Dexamethasone treatment resulted in immediate
NtMPK6-1 activation and significant elevation of ET production.
In experiments with transgenic Arabidopsis plants that
overexpress NtMKK4DD, AtMKK4DD, and AtMKK5DD under
the control of the same steroid-inducible promoter, Liu and
Zhang (2004) showed that MAPK activation mechanisms
are conserved between species. Thus, NtMKK4DD is able to
activate MPK6/MPK3 in Arabidopsis. Analogously, Arabidopsis
MKK4DD and MKK5DD (AtMKK4 and AtMKK5 are functional
orthologs of NtMKK4DD) can activate the endogenous
NtMPK3/NtMPK6-1 in tobacco plants. Further experiments
demonstrated that MPK6 is essential for NtMKK4DD-dependent
ET biosynthesis.

Analysis of known Arabidopsis ACS protein sequences
revealed potential MAPK phosphorylation sites in ACS1, ACS2,
and ACS6 (Figure 4). All three ACC synthases cluster together
on a phylogenetic tree (Chae et al., 2003; Yamagami et al., 2003).
An in-gel kinase assay confirmed that MPK6 is responsible for
ACS6 phosphorylation. Site-directed mutagenesis showed that
MPK6 is able to phosphorylate three serines (S480, S483, S488)
in the ACS6 sequence. However, experiments with wild-type
and mutated forms of ACS6 in which single, double and triple
serine (S) residues were converted to alanine (A) or aspartic
acid (D) revealed that changes in phosphorylation state do
not alter its enzyme activity. Instead, it was suggested by Liu
and Zhang (2004) that MPK6-mediated phosphorylation may
influence ACS6 and ACS2 stability. Indeed, it turns out that
mutated ACS6DDD, which mimics the phosphorylated state, is
much more stable in transgenic plants than wild-type ACS6 and
ACS6AAA. MPK6 phosphorylation sites are localized within the
C-terminal domain of ACS6 and ACS2, which is the regulatory
domain responsible for their stability. Lack of MPK6-mediated
phosphorylation results in decreased ACS6 and ACS2 stability
and immediate targeting of both proteins for proteasomal
degradation. Dephosphorylation by ABI1, a member of the
protein phosphatase 2C (PP2C) family is also involved in
regulating the proteasomal degradation of ACS6 (Ludwików
et al., 2014; Ludwików, 2015).

MAPKs regulate ET biosynthesis by controlling transcription
of ACS. Recent studies showed that wounding-induced ET
biosynthesis in Arabidopis is also under the control of MAPKs
(Li et al., 2018). Analysis of ET accumulation after wounding
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in single mpk3 and mpk6 mutants and in a double mpk3
mpk6 mutant rescued by MPK3TA or MPK6YG (chemically
synthesized MPK3 and MPK6) revealed that MPK6 is the
dominant kinase in this process (Xu et al., 2014, 2016). Li
C.H. et al. (2014) observed a 50% reduction in wounding-
triggered ET accumulation in the mkk6 mutant compared
to control plants. In many developmental processes, kinases
MKK4 and MKK5 are redundant and function upstream of
MPK3/MPK6 (Xu and Zhang, 2015), as seen in the case of
wounding-induced ET accumulation. Thus, in a single mkk4
mutant, ET biosynthesis was reduced by about 10% compared to
wild-type plants, while in a mkk5 single mutant, the reduction
in ET accumulation was about 50%. However, in a double
mutant (mkk4 mkk5) strain, ET production was reduced by
80%. Therefore, MKK4 and MKK5 act upstream of MPK3 and
MPK6 after wounding and are required for wounding-dependent
ET accumulation. Among the family of ACC synthase genes,
only four are induced after wounding, namely ACS2, ACS6,
ACS7, and ACS8. Genetic studies confirmed that changes in
expression of these four ACS genes are under the control of
MKK4 and MKK5. In double mkk4 mkk5 mutant plants, ACS2,
ACS6, ACS7, and ACS8 expression was reduced. Analysis of
the role of downstream elements of the MAPK cascade showed
that, in mpk6 single mutant plants, the expression level of
all four ACC synthase genes was markedly reduced, but in
mpk3 single mutant plants was unaffected. Moreover, ACS2,
ACS6, ACS7, and ACS8 are activated at different times after
wounding stimuli. ACS6 and ACS7 were induced very quickly,
about 30 min post-wounding, while ACS2 and ACS8 expression
reached a maximum around 2–6 h after wounding (Li et al.,
2018). These data show that MAPKs are indeed involved in
ET biosynthesis under wounding conditions. MAPKs likely
influence the expression level of a subset of ACS genes, and
thereby modulate ET biosynthesis, by activation of WRKY33 TFs
(Li et al., 2012).

MAPKs in Ethylene Signaling
Extensive research in Arabidopsis led to the identification of
key elements of the ET signaling cascade (Figure 4). After
revealing that CTR1 does not function as a MAPK cascade
element, but instead inactivates EIN2 by direct phosphorylation
of specific residues, extensive efforts have been made to identify
MAPK cascades involved in ET signaling (Ju et al., 2012;
Qiao et al., 2012; Wen et al., 2012; Cho and Yoo, 2015).
Novikova et al. (2000) showed that a protein extract prepared
from wild-type Arabidopsis plants treated with ET contained
MAPK activity and that this activity was higher in ctr1
(knockout) plants and lower in etr1 (ET-insensitive) mutant
plants than in wild-type. Immunoprecipitation experiments
with the Arabidopsis extracts, using antibodies specific for the
mammalian MAPK ERK1, identified a putative MAPK with
molecular mass of 47 kDa (Novikova et al., 2000). Later,
in 2003, Hirt’s group found the MAPKs MPK6 and MPK13
to be involved in ET signaling (Ouaked et al., 2003). They
isolated protein extracts from Medicago and Arabidopsis cells
before and after 1-aminocyclopropane-1-carboxylic acid (ACC)
treatment and used these to perform in-gel kinase assays.

As a result, they discovered two protein kinases 46 and
44 kDa in size in Medicago. These experiments led to the
identification of strong kinase activity associated with SIMK
(46 kDa) and MMK3 (44 kDa). The researchers also noticed
that an increase in kinase activity did not correlate with an
increased amount of these proteins, suggesting that ET induced
MAPK activation by post-translational modification. SIMK
from Medicago was most similar to MPK6 from Arabidopsis,
while MMK3 corresponded to MPK13. Moreover, Ouaked and
coworkers showed that MPK6 is constitutively active in a
ctr1 mutant and ET-dependent activation is not connected
with EIN2 or EIN3. In Arabidopsis plants overexpressing
Medicago MKK4 (MsSIMKK, MsSIMK kinase), they observed
a ctr1-like phenotype in etiolated seedlings (Ouaked et al.,
2003).

Yoo et al. (2008) demonstrated that the MKK9-MPK3/MPK6
cascade is involved in not only in ET biosynthesis, but also in
ET signaling, acting downstream of CTR1 (Figure 4). It was
also shown that MKK7 and MKK9 are able to activate both
MPK3 and MPK6, which play a similar role in ET signaling
(Novikova et al., 2000; Ouaked et al., 2003). What is more, ET-
dependent activation of MPK3/6 by MKK9 is abolished in a
mkk9mutant. The same authors also showed that overexpression
of MKK7 and MKK9 in ctr1 protoplasts results in specific
activation of MPK3 and MPK6. These observations led to
placement of the MKK9-MPK3/MPK6 cascade downstream of
the key negative regulator of ET signaling, CTR1. Despite the
fact that MKK7 and MKK9 are very similar in both sequence
and mechanism of activation, the basal transcript level of MKK9
in protoplasts and in leaves is significantly higher than that of
MKK7. Thus, MKK9 is considered predominant in ET signaling.
Yoo et al. (2008) also investigated a positive role of MKK9 in
ET signaling. Under most of the conditions examined, mkk9
mutants present phenotypes similar to those of ein3 mutants.
Furthermore, in mkk9 and ein3 mutants, the expression of early
ET signaling genes (ERF1 and ERF5) in leaves is abolished.
ERF1 and ERF5 are indirect targets of EIN3, the main TF
regulating ET-inducible genes (Solano et al., 1998; Yanagisawa
et al., 2003). Overexpression of permanently active MKK9
(MKK9a) results in constitutive ET signaling, which cannot
be blocked by ET receptor mutants (etr1) or treatment with
Ag+, an inhibitor of ET perception. These data support the
assumption that MKK9-MPK3/6 functions downstream of CTR1
(Yoo et al., 2008). Perhaps even more interestingly, MKK9 acts
a linker between CTR1, which is located in the ER, and other
components of the ET signaling cascade located in the nucleus.
After ACC treatment, MKK9 is able to move to the nucleus
and activate MPK3 and MPK6, which are localized in both the
nucleus and cytoplasm. After activation by MKK9, MPK3 and/or
MPK6 phosphorylate(s) EIN3 in the nucleus. Computational
analysis predicts two MAPK phosphorylation sites in the EIN3
protein. Mutation experiments reveal that phosphorylation at
T174 is mediated by MPK6 and results in enhanced EIN3
stability (Alonso et al., 2003; Binder et al., 2007). However,
after phosphorylation at the second MAPK phosphorylation
site (T592), the stability of EIN3 is reduced. These findings
show that the MKK9-MPK3/MPK6 cascade is the key module
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responsible for EIN3 stability and ET signaling (Yoo et al.,
2008).

Results from different studies provide evidence for ET-
dependent MKK9-MAPK3/6 activation, but there is still some
controversy about the proposed model. It is worth noting that the
MKK9-MAPK3/6 cascade is readily activated by environmental
stresses (such as wounding and touch) (Alzwiy and Morris,
2007). It is even possible to activate the MAPK cascade
mechanically by spraying “treatment” instead of ET or ACC
treatment (Colcombet and Hirt, 2008). The involvement of the
MKK9-MAPK3/6 cascade in ET signaling therefore needs to be
scrutinized by precisely controlled experiments.

It is well known that ET signaling is an indispensable element
of the response to various stimuli (salt stress, pathogen attack,
iron deficiency or dehydration) (Kende, 1993; Xu J. et al., 2008;
Han et al., 2010; Kazan, 2015; Tao et al., 2015; Ye et al., 2015;
Chen J. et al., 2017; Khan et al., 2017). Salt stress stimulates
ET biosynthesis which in turn activates other internal signals
(Wang et al., 2002; Xu J. et al., 2008; Dong et al., 2011).
However, the mechanisms by which the external signals relating
to salinity stress stimulate ET biosynthesis remain unknown.
Recent studies in O. sativa report that one of the receptor-
like kinases (RLKs) involved in salt stress tolerance is able to
phosphorylate both MPK3 and MPK6 (Ouyang et al., 2010; Li
C.H. et al., 2014). RLKs are thought to be involved in transducing
external signals into the cell, and some of the large number
of known RLKs in O. sativa and A. thaliana are important
in plant development (Osakabe et al., 2013) and the responses
to drought and salinity stress (Marshall et al., 2012; Ouyang
et al., 2010; Vaid et al., 2013). Salt Intolerance 1 (SIT1) is an
active RLK that plays a significant role in drought and salt
stress tolerance in O. sativa. SIT1 is mainly expressed in root
epidermal cells and its expression is induced immediately by
NaCl. As a consequence, SIT1 activates MPK3 and MPK6 (Li
C.H. et al., 2014). A co-immunoprecipitation assay showed that
rice MPK3 and MPK6 are components of the SIT1 complex.
What is more, in vitro phosphorylation experiments revealed
that SIT1 is able to phosphorylate MPK3 and MPK6. A genetic
approach confirmed that SIT1 acts upstream of MPK3 and
MPK6 in O. sativa. It was also shown that SIT1 is involved
in activation of antioxidant systems. ET signaling during plant
stress responses is regulated by ROS production (Jung et al.,
2009; Mergemann and Sauter, 2000). Li C.H. et al. (2014)
demonstrated that SIT1-induced ROS accumulation requires
ET production and signaling. Furthermore, they showed that
after salinity-dependent activation, SIT1 is able to phosphorylate
MPK3 and MPK6, resulting in salt sensitivity in rice. These
findings are in line with other results showing that, when
MPK3 and MPK6 are activated by MKK9, they increase salt
sensitivity in Arabidopsis (Xu J. et al., 2008). There is a
marked similarity between the rice SIT1-MPK3/MPK6 and
Arabidopsis MKK9-MPK3/MPK6 cascades. However, whether
SIT1 is involved in the rice MKK9-MPK3/MPK6 cascade needs
to be examined.

Plants under attack by the necrotrophic fungal pathogen
Botrytis cinerea produce high level of ET (Broekaert et al., 2006;
van Loon et al., 2006), although precisely how ET biosynthesis

is triggered by pathogen infection is still unclear. Han et al.
(2010), using a double mpk3 mpk6 mutant rescued by a DEX-
inducible MPK6 cDNA construct, were able to show that, in
response to Botrytis cinerea, the MPK3/MPK6 cascade is crucial
for activating ET biosynthesis. These authors also identified ACC
synthase 6 (ACS6) as the main enzyme contributing to Botrytis
cinerea-induced ET production.

MPK3 and MPK6 are also involved in the regulation of
ET biosynthesis during iron deficiency in Arabidopsis (Ye
et al., 2015). Iron (Fe) is a vital microelement because Fe ions
are a component of many of the enzymes controlling basic
physiological processes including photosynthesis and chlorophyll
biosynthesis (Kobayashi and Nishizawa, 2012). Ye et al. (2015)
showed that lack of iron induces transcription of the MPK3
and MPK6 genes, as well as increasing MPK3 and MPK6 kinase
activity. Moreover, the transcript levels of some ACC synthases
are also increased in Fe-deficient plants. Although the regulation
of Fe-induced ET biosynthesis needs further analysis, the work
of Ye et al. (2015) highlights another mechanism involving the
MPK3/MPK6 cascade.

MAPKs can be activated by many different stimuli. For
example, in Arabidopsis seedlings, MPK6 may be activated by
drought and rapidly inactivated during rehydration (MAPK
Group, 2002; Tsugama et al., 2012; Xu and Chua, 2012). Interplay
between dehydration and rehydration in plants is especially
important for the cut-flower industry. Thus, rehydration after
dehydration induces rapid ET production for a short duration
in rose (Rosa hybrida) flowers (Tsugama et al., 2012). Further
research on rose flowers showed that, particularly in the
gynoecia, protein levels of RhMPK6 are high during both
dehydration and rehydration, but RhMPK6 kinase activity was
observed only within the first hour of rehydration. Active
RhMPK6 is able to phosphorylate and stabilize RhACS1,
stimulating ET production (Meng et al., 2014). The RhMPK6-
RhACS1 module seems to be crucial for transduction of the
rehydration signal and triggering of ET biosynthesis, which
controls flower opening and senescence in rose. Rehydration-
induced ET biosynthesis also seems to involve RhMKK9.
RhMKK9 is expressed 30 min after rehydration, but after
12 h the expression is almost undetectable. Chen and co-
workers correlated these results for RhMKK9 with the expression
and activity of RhMPK6 and RhACS1, and proposed that
RhMKK9 functions as an activator of RhMPK6-RhACS1 (Chen
J. et al., 2017). However, whether RhMKK9 is actually an
upstream activator of RhMPK6 in dehydration-dependent ET
biosynthesis in rose gynoecia must be confirmed by further
experiments.

MAPK CASCADES IN ABSCISIC ACID
SIGNALING

Abscisic acid signaling has been intensively studied and
comprises multiple components including MAPKs. The
plant hormone ABA functions as a key regulator in many
developmental and physiological processes in plants, including
seed dormancy and germination (Finkelstein et al., 2002;
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Nambara and Marion-Poll, 2003; Gutierrez et al., 2007;
Chen M. et al., 2017; Née et al., 2017), seedling growth
(Leon-Kloosterziel et al., 1996; Chen M. et al., 2017; Trupkin
et al., 2017) and also adaptation to various biotic and abiotic
stress conditions (Lee and Luan, 2012; Wang et al., 2018).
Interestingly, the application of exogenous ABA to plant
structures initiates the effect of stress conditions and results
in transcriptional regulation, protein accumulation and
activation of MAPKs, suggesting an important role for MAPK
pathways in ABA signaling (Fujita et al., 2006; Xing et al.,
2008; Zhang et al., 2014c,d; Li Y. et al., 2017, Li K. et al., 2017;
Li Q. et al., 2017). Subsequent to binding of the hormone by
different cellular receptors, ABA functions through a complex
network of signal transduction pathways, which activate
responses including the regulation of stomatal aperture and
the expression of stress-responsive genes (Himmelbach et al.,
2003; Leung and Giraudat, 1998; Finkelstein, 2013; Mitula
et al., 2015; Albert et al., 2017; Eisenach et al., 2017). The
core components of the ABA signaling pathway have been
identified and characterized relatively recently (Fujii et al.,
2009; Ma et al., 2009; Park et al., 2009). Initial steps in ABA
signal transduction involve the PYR/PYL/RCAR ABA receptors
and also the phosphatase/kinase enzyme pairs, PP2Cs and
SnRK2s, respectively, which have antagonistic functions. The
outcome of ABA signaling is the activation of gene expression
by transcription factors under the control of SnRK2s (Figure 5)
(Cutler et al., 2010; Klingler et al., 2010; Finkelstein, 2013;
Nakashima and Yamaguchi-Shinozaki, 2013; Tan et al., 2018).
These findings have certainly contributed to a more rapid
understanding of the protein complexes that perceive and
transmit ABA signals. Many previous studies indicate the
participation of MAPK cascades in ABA-mediated responses,
including antioxidant defense, guard cell signaling and seed
germination (for reviews see also Liu, 2012; Danquah et al.,
2014; Colcombet et al., 2016; de Zelicourt et al., 2016). Thus,
the interactions between ABA signaling and other signaling
pathways, including MAPK pathways, are beginning to be
deciphered.

MAPK Gene Transcription Regulated by
ABA
In recent years, there has been a significant increase in research
on ABA-mediated gene expression in a variety of plant species.
ABA signal transduction pathways modulate gene expression,
including changes in transcription levels, transcript processing
and stability (Cutler et al., 2010). The regulation of ABA-
responsive gene activity involves TFs, which recognize and bind
to cis-elements in the promoter regions upstream of their target
genes (Zhang et al., 2014b). Importantly, in addition to the
action of TFs, ABA-responsive gene expression is mediated by
receptors, secondary messengers and protein kinase/phosphatase
cascades (Fujita et al., 2011). Nearly 10% of the protein-
coding genes in A. thaliana are regulated by ABA, a far
greater percentage than for other hormones (Shinozaki et al.,
2003; Nakashima et al., 2009; Cutler et al., 2010; Fujita et al.,
2011). Several Arabidopsis genes encoding particular members

of the MAPK family have been reported to be transcriptionally
regulated by ABA. These include AtMPK1, AtMPK2 (Ortiz-
Masia et al., 2007; Hwa and Yang, 2008; Umezawa et al.,
2013), AtMPK3 (Lu et al., 2002; Wang et al., 2011), AtMPK5,
AtMPK7 (Menges et al., 2008), AtMPK18, AtMPK20 (Wang
et al., 2011), AtMKK9 (Menges et al., 2008), AtMAPKKK1
(ANP1), AtMAPKKK5 (Menges et al., 2008), AtMAPKKK15
(Wang et al., 2011), AtMAPKKK16 (Wang et al., 2011),
AtMAPKKK17, AtMAPKKK18 (Menges et al., 2008; Wang et al.,
2011), AtMAPKKK19 (Wang et al., 2011), AtMAPKKK20 (Li
K. et al., 2017), and AtRaf6, AtRaf12, and AtRaf35 (Menges
et al., 2008), all of which are regulated at the transcriptional
level, indicating possible participation of these kinases in ABA
signaling. It is worth mentioning that, despite the large number
of ABA-regulated genes, the roles of most of them in ABA
signaling have not been characterized. In searches for rice
(O. sativa) MAPK genes transcriptionally activated by ABA,
many genes were identified (Supplementary Table 3). It is worth
mentioning that OsMPK3 (OsMPK5) is the best characterized
of all the rice MAPKs, having been studied independently by
at least six research groups and shown to be regulated by
a variety of biotic and abiotic stresses (Agrawal et al., 2002;
Huang et al., 2002; Song and Goodman, 2002; Wen et al., 2002;
Reyna and Yang, 2006; Chen and Ronald, 2011; Nautiyal et al.,
2013; Sharma et al., 2013; Jaemsaeng et al., 2018). Suppression
of OsMPK3 (OsMPK5) by RNAi on the one hand results in
reduced sensitivity to ABA, and on the other hand causes
an increase in levels of endogenous ET (Xiong and Yang,
2003; Sharma et al., 2013). Many ABA-regulated genes have
also been characterized in other plant species and these can
be classified into two groups, upregulated and downregulated
(Supplementary Table 3). The response of MAPK genes to
ABA treatment suggest the involvement of these genes in ABA
signaling. So far, the role of only a few of the kinases listed in
Supplementary Table 3 has been investigated in detail, and in
the following sections the functional characterization of these
kinase modules and the downstream responses they control is
reviewed.

MAPK Involvement in ABA Signaling in
Guard Cells
Abscisic acid is the main regulator of stomatal movement
(Burnett et al., 2000; Dodd et al., 2003; Jiang and Song, 2008;
Albert et al., 2017; Qu et al., 2018). The phytohormone may
also cause the production of ROS in various plant cells or
tissues (Hu et al., 2005; Zhang et al., 2011; Shang et al., 2016;
Qi et al., 2017) and ABA signaling in guard cells is mediated
by ROS (Jammes et al., 2009). Studies showing that MAPKs
can be activated by ROS may indicate that ABA signaling and
ROS signaling coincide at the MAPK level (Zhang et al., 2007),
and crosstalk between these pathways could regulate stomatal
closure. H2O2 is an another important signaling molecule in
ABA-induced stomatal closure (Pei et al., 2000; Li Q. et al.,
2017; Rodrigues et al., 2017). Thus, the generation of H2O2 in
response to ABA results in a reduction in size of the stomatal
aperture (Wang and Song, 2008; Li Q. et al., 2017). In A. thaliana
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FIGURE 5 | ABA-regulated MAPKs in Arabidopsis and cotton. ABA promotes

stomatal closing. The different cascades are distinguished by different colors

in the scheme. Arrows with solid lines represent established signaling

pathways, while arrows with dashed lines represent putative signaling

pathways. In the presence of ABA, PYR/PYL/RCAR receptors bind the

phytohormone and inhibit group A PP2Cs. These events result in activation of

SnRK2s. Activated SnRK2s phosphorylate and activate downstream targets,

including MAPKs, Respiratory Burst Oxidase Homolog (RBOH) and Slowly

Activating Anion Conductance (SLAC S-type). Active RBOH mediates ROS

production. Note that in guard cells crosstalk between ABA signaling and

ROS signaling may coincide at the MAPK level and regulates stomatal closure.

MPK3 is involved in the perception of ABA and H2O2 in
guard cells. The results of Gudesblat et al. (2007) indicate that
MPK3 functions downstream of ROS in ABA inhibition of
stomatal opening, but not in ABA-induced stomatal closure.
Another study showed that the atmkk1 and atmpk6 mutants
block ABA-dependent H2O2 production in guard cells (Xing
et al., 2008) (Figure 5). In apparent contradiction of these
results, Montillet et al. (2013) recently found that AtMPK3 and
AtMPK6 are not involved in ABA-induced stomatal closure,
but instead are involved in stomatal closure induced by biotic
stress. The same authors confirmed, however, that ABA-induced
stomatal closure is mediated by MPK9 and MPK12: atmpk9
atmpk12 double mutants, but not single mutants, are impaired
in ABA-induced stomatal closure, in ABA inhibition of stomatal
opening, and in inhibition of the promotion of stomatal closure
by H2O2 (Figure 5) (Jammes et al., 2009; Salam et al., 2012; de
Zelicourt et al., 2016). Recently, Mitula et al. (2015) found an
ABA-activated kinase MAPKKK18 to be involved in stomatal
development and function. Under normal growth conditions,
mapkkk18 mutant plants show increased stomatal aperture and
decreased abaxial stomatal index, compared to the wild-type.
Moreover, Li Y. et al. (2017) demonstrated that the mapkkk18

mutant displays impaired ABA-induced stomatal closure. The
authors hypothesized that MAPKKK18 is probably involved
in drought stress resistance by accelerating stomatal closing
when drought stress occurs (Li Y. et al., 2017). Consistent
with this, studies of the transcriptional regulation of the
MKKK18 promotor revealed high promoter activity following
ABA stimulation in guard cells (Mitula et al., 2015). Importantly,
experimental results indicate that MAPKKK18 interacts directly
with two of the key proteins of the ABA core signaling module,
PP2C phosphatase ABI1 (Mitula et al., 2015) and kinase SnRK2.6
(Tajdel et al., 2016). ABI1, in the absence of ABA, not only
inhibits MAPKKK18 kinase activity by dephosphorylation, but
also targets MAPKKK18 for degradation by the ubiquitin-
proteasome pathway (UPS) (Ludwików, 2015;Mitula et al., 2015).
However, when ABA binds to PYR/PYL receptors, MAPKKK18
degradation is blocked, and this stabilization allows the kinase
to activate downstream components of the signaling module
(Mitula et al., 2015). It is worth mentioning that recently
two independent research groups reconstructed a complete
MAPK cascade initiated by MAPKKK18 and regulated by ABA
(Danquah et al., 2015; Matsuoka et al., 2015). These authors
showed the ABA-regulated MAP3K17/18-MKK3-MPK1/2/7/14
cascade to be involved in stress signaling (Danquah et al.,
2015) and timing of senescence (Matsuoka et al., 2015), and as
previously mentioned it is also known to have a role in drought
stress resistance (Li Y. et al., 2017) (Figure 6). Importantly,
a close paralogue of MAPKKK18, MAPKKK17, was found in
the Arabidopsis genome and was included in the study of
Danquah et al. (2015). The kinase activity of both MAPKKK17
and MAPKKK18 is significantly increased after ABA treatment
(Danquah et al., 2015; Mitula et al., 2015). In addition, there is
a positive correlation between the transcription levels of ABA
core signaling genes and the MAPKKK17/MAPKKK18 genes
(Danquah et al., 2015).

Arabidopsis ABA-insensitive protein kinase 1 (AIK) is another
MAPKKK, MAPKKK20, involved in the regulation of ABA-
induced responses. Very recently, Li K. et al. (2017) documented
that MAPKKK20 is a positive regulator of ABA-induced stomatal
closure and also regulates the effect of ABA on root architecture.
Arabidopsis AIK insertion mutants are insensitive to ABA and
do not display stomatal closure and root elongation in response
to ABA treatment. Moreover, the number of stomata in aik1
mutants is greater than in wild-type plants. The authors also
showed that, as in the case of MAPKKK18 (Mitula et al.,
2015), MAPKKK20 is regulated by ABA at both transcript and
protein levels. ABA induces AIK1 activity in Arabidopsis and
tobacco and, significantly, this kinase activity is inhibited by
ABI1, which dephosphorylates AIK. Finally, analysis of mpk6
and mkk5 single mutant plants showed them to have a similar
phenotype to aik1 single mutant plants and experiments using
bimolecular fluorescence complementation demonstrated that
AIK1works upstream ofMKK5-MPK6:MKK5 is phosphorylated
and is thus activated by AIK1 in an ABA-activated process.
From these findings, it is tempting to hypothesize that sequential
phosphorylations of the AIK1 (MKKK20)-MKK5-MPK6module
are involved in ABA- mediated regulation of both the stomatal
response and primary root growth (Li K. et al., 2017) (Figure 5).
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MAPKs Implicated in ABA Signaling
During Seed Germination
In addition to stomatal closure, ABA has other important
physiological effects relating to seed maturation and the
inhibition of seed germination (Koornneef et al., 2002; Xing
et al., 2009; Chiu et al., 2016; Devic and Roscoe, 2016;
Huang et al., 2017; Leprince et al., 2017). Using ABA-mediated
inhibition of germination as a selection criterion, a number
of important players in ABA signaling, including MAPKs,
have been discovered through genetic screens (Joseph et al.,
2014). Other evidence indicates that MAPK cascades are
positive regulators of ABA signaling during seed germination,
when plants overexpressing AtMPK1 and AtMPK2 display
hypersensitivity to ABA (Hwa and Yang, 2008). Interestingly,
a phosphoproteomic study showed that SnRK2 promotes
activation of AtMPK1 and AtMPK2 in an ABA-dependent
manner (Umezawa et al., 2013). AtMKK3 has been suggested
as the upstream activator of AtMPK1 and AtMPK2 (Hwa
and Yang, 2008). Indeed, Danquah et al. (2015) reported
that the MKK3-MPK1/2/7/14 module mediates ABA signaling
during germination and root elongation. Thus, mkk3-1 plants
are hypersensitive to ABA during germination and root
elongation, while the seeds of this mutant are hypersensitive
to increasing ABA concentrations. Correspondingly, MKK3-
overexpressing seeds were less sensitive to increasing ABA
concentrations (Danquah et al., 2015). Importantly,MAPKKK18,
which functions upstream of MKK3, is associated with the
control of seed development and dormancy. Mitula et al.

(2015) demonstrated that the germination of mkkk18 knockout
plant lines is inhibited in medium supplied with ABA. Taken
together, these results suggest that the MAPKKK18-MKK3
module mediates ABA signaling during germination and root
elongation.

The Raf10 and Raf11 kinases are also involved in regulating
seed dormancy and the response to ABA, as they affect the
expression of ABA-regulated genes (including ABI3, ABI5) (Lee
et al., 2015). The above mentioned AtMKK1–AtMPK6 cascade
is also involved in ABA signaling during seed germination.
The single mutants mkk1 and mpk6, as well as the mkk1
mpk6 double mutant, all show insensitivity to ABA during
germination, while plants overexpressing MKK1 and MPK6 are
hypersensitive to ABA (Xing et al., 2007, 2008). Interestingly,
in apple, the MdMKK1–MdMPK1 cascade has a similar
function to AtMKK1–AtMPK6 in Arabidopsis. Expression
of MdMKK1 and MdMPK1 results in ABA hypersensitivity
during seed germination, implicating MdMKK1 and MdMPK1
in the positive regulation of ABA signaling during seed
germination and early seedling growth (Wang X.J. et al., 2010)
(Figure 6).

ABA-Regulated MAPKs in Maize
So far, only a few members of the MAPK family have been
identified and well documented in Z. mays. These include
ZmMPK3-2 and ZmMPK6-2 (ZmMPK5), which are both
activated by ABA-induced production of H2O2 and increase
the tolerance of plants to drought, salt stress and oxidative

FIGURE 6 | Overview of MAPKs regulated by ABA in different plant species. A single ABA-activated MAPK cascade MAPKKK17/18-MKK3-MPK1/2/7/14 has been

identified in Arabidopsis. This pathway is involved in drought resistance, senescence, stomatal development and signaling. In addition, MKK3 in both maize and

cotton has been shown to function in response to ABA. In maize, MKK3 acts downstream of MEKK1 and transcripts for both kinases are upregulated on ABA

treatment. In cotton, ABA and drought induce activation of a MAPK cascade composed of MKK3, MPK7 and PIP1. These two pathways, MEKK1–MKK3 in maize

and MKK3–MPK7–PIP1 in cotton, are associated with drought resistance and stomatal signaling. Another module in cotton, MAPKKK49-MKK4/

MKK5, is involved in the ABA-mediated response to abiotic stress. MPK17 is another well-characterized MAPK in cotton, which regulates the response to salt and

osmotic stresses. ABA-inducible genes encoding cotton MAPK cascade components presented in the scheme are MKK3, MAP3K49 and MPK17, respectively.

Some MAPK cascades have a similar function in different plant species. In Arabidopsis and apple, the MKK1-MPK6 module affects seed germination and early

seedling growth. ABA treatment induces transcription of the genes encoding MKK1 and MPK6 in both plant species. In Arabidopsis, MKK1 mediates activation of

MPK6, thereby regulating CATALASE1 expression in ROS homeostasis. Additionally, glucose treatment significantly increases MKK1 and MPK6 activities. In apple,

ABA-responsive transcription factor ABI5 may act as a downstream target of this MAPK cascade. MPK5 and MPK3 in maize and MPK1 and MPK5 in rice are

required for ABA-induced antioxidant defense and play a similar role to Arabidopsis MPK6. In maize, ABA treatment significantly increases MPK5 and MPK3

activities. In rice, ABA treatment induces MPK1 and MPK5 expression.
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stress (Wang J. et al., 2010). ZmMPK3 and ZmMPK6-2 play
a similar role in ABA-induced antioxidant defense as AtMPK6
in Arabidopsis (Xing et al., 2008), and OsMPK3 (OsMPK5)
and OsMPK6 (OsMPK1) in rice (Zhang H. et al., 2012; Shi
et al., 2014). Interestingly, ZmCPK11, one of the calcium-
dependent protein kinases (CDPKs), has been shown to act
upstream of ZmMPK6-2 in ABA signaling in maize (Ding
et al., 2013). Moreover, very recently the underlying molecular
mechanisms have been elucidated. Ma et al. (2016), identified
ZmABA2 as a protein interacting with ZmMPK6-2. ZmMPK6-
2 phosphorylates ZmABA2, which results in an increase in
ABA content. These findings show that ZmABA2 is a direct
target of ZmMPK6-2 and participates in ABA biosynthesis and
function.

Another study implicates the maize gene ZmMKK3-1
(ZmMKK3), which encodes a MAPKK, in the ABA signal
transduction pathway, since ZmMKK3-1 is upregulated by
ABA. Its overexpression on the one hand results in increased
tolerance to osmotic and oxidative stresses, but on the other
hand causes a decrease in ABA sensitivity in transgenic tobacco
plants (Zhang M. et al., 2012). In maize root the expression
of another MAPKK, ZmMKK1, is also induced by ABA.
Overexpression of ZmMKK1 confers tolerance to salt and
drought in Arabidopsis and yeast. ZmMKK1 interacts with
ZmMEKK1 in vitro, and this, importantly, represents the first
characterized MAPK cascade in maize (Cai et al., 2014). ABA
has also been shown to induce transcription of other MAPKs
in maize, including ZmMPK4-1 (Wang et al., 2014), ZmMPK7
(Zong et al., 2009), and ZmMPK17 (Pan et al., 2012). ZmMPK7
together with ZmMPK3 is activated by ZmMKK10 (Chang et al.,
2017).

ABA-Regulated MAPKs in Other Species
The participation of MAPKs in ABA signaling has been best
characterized in A. thaliana. Nevertheless, MAPKs are known
to be involved in this signaling pathway in other species, as
recent research has shown. In mulberry (Morus L.) expression
of MnMPK1 is upregulated by ABA (Liu et al., 2017). In
pea (P. sativum L.), using a kinase activity assay, Ortiz-
Masia et al. (2008) showed that ABA can activate PsMPK2.
Furthermore, the activation profile of PsMPK2 is similar to
that described above for AtMPK1 and AtMPK2. JA and H2O2

also cause an increase in activity of this kinase, which in
turn suggests that MAPKs may have the same functions
across species in this context (Ortiz-Masia et al., 2008). In
wild tobacco, Nicotiana attenuata, NaMPK4 plays a critical
role in ABA-induced stomatal closure responses. NaMPK4-
silenced plants (irNaMPK4) are impaired in their response
to ABA- and H2O2-mediated stomatal closure. NPK4 is also
involved in defense against aphids, invading pathogenic bacteria
and Alternaria alternata (tobacco pathotype) (Slavov et al.,
2004; Hettenhausen et al., 2012; Sun et al., 2014; Guo et al.,
2017).

In cotton (Gossypium hirsutum), GhMPK17 expression is
upregulated by ABA and also by NaCl. Notably, overexpression
of GhMPK17 in A. thaliana results in increased tolerance
to salt and osmotic stresses, as well as in changes in H2O2

levels and in the expression of stress-related genes (Zhang
et al., 2014c). In recent work by Liu et al. (2016), a novel
cotton MAPKKK gene, GhMAPKKK49, was isolated and
shown to be significantly induced by exogenous treatment
with ABA or H2O2. As GhMAPKKK49 also interacts with
GhMKK4 and GhMKK9, it is tempting to hypothesize
that a GhMAPKKK49–GhMKK4 or GhMAPKKK49–
MKK9 cascade participates in ABA- and H2O2-mediated
responses to abiotic stress (Figure 6). Recently, experimental
work by Wang et al. (2016) showed that GhMKK3 plays
an important role in drought tolerance by controlling
the rate of water loss. Overexpression of GhMKK3 in
N. benthamiana results in more efficient ABA-induced
stomatal closure and a decrease in the number of stomata
(Figure 5). Intriguingly, both GhMKK3 and GhPIP1
interact with GhMPK7 to form a functional ABA- and
drought-activated MAPK module. In support of this
result, previous studies in Arabidopsis demonstrated that
group C MAPKs, including AtMPK7, are activated by
ABA in an MKK3-dependent manner (Danquah et al.,
2015).

In Brassica napus, MKK1 appears to be involved in ABA
signaling (Supplementary Table 3). Interestingly, overexpression
of BnMKK1 in transgenic tobacco plants causes rapid water loss,
resulting in increased sensitivity to drought stress (Yu et al.,
2014).

CONCLUDING REMARKS AND FUTURE
PROSPECTS

In this review, we provide a comprehensive picture of our
current understanding of the function of MAPKs and their
interaction networks in plants. MAPK cascades are responsible
for protein phosphorylation and signal transduction events
associated with plant hormone signaling and therefore they
play an essential role in the regulation of development,
senescence, stress signaling and acclimation. Many cases
of MAPK involvement in AUX, ABA, JA, SA, ET, and BR
signaling have been identified and these demonstrate the
complex structure, extensive crosstalk and dynamics of the
signaling network. For example, analysis of MAPK function
in ABA and ET signaling highlights MAPK regulation of
target protein stability and the control of MAPK pathways
by UPS degradation. However, despite the impressive current
knowledge of MAPK cascades, their participation in BR
and AUX signaling remains relatively unexplored. The
very limited amount of data available on crosstalk between
MAPK and GA signaling pathways (Huttly and Phillips,
1995; Marcote and Carbonell, 2000; Li Y. et al., 2014; Lu
et al., 2015) highlights significant opportunities for further
study in this area. In oat Aspk9 (also known as AsMAP1)
seems to be negatively regulated by GA (Huttly and Phillips,
1995). The expression of the PsMAPK3 gene is induced by
GA in unpollinated pea ovary after fruit set (Marcote and
Carbonell, 2000). Overexpression of GhMKK4 (homolog
of AtMKK4 and AtMKK5) from G. hirsutum in transgenic
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N. benthamiana increases sensitivity of the plant to GA
(as well as ABA) and significantly reduces GA levels after
infection with R. solanacearum (Li Y. et al., 2014). In Chinese
cabbage, BraMAPK17-2 and BraMAPK19-1 are upregulated
by GA3, whereas transcript levels of most BraMAPKs, such as
BraMAPK3, BraMAPK10-2/3, BraMAPK10-4/5, BraMAPK5,
BraMAPK13, BraMAPK1. BraMAPK7-1, BraMAPK7-2,
BraMAPK8-1 and BraMAPK16-2 are significantly lower after
treatment with GA3 (Lu et al., 2015). Hypocotyl elongation
in Arabidpopsis mkk3-1 knockout seedlings is hypersensitive
to exogenous GA3, and is proportional to GA3 concentration.
However, no significant activation of MAPK cascade kinases
has been observed in the Arabidopsis protoplast system after
treatment with exogenous GA3, indicating that crosstalk
may occur between AtMKK3 and GA in Arabidopsis, but is
probably mediated through common downstream targets (Lee,
2015).

The molecular mechanisms that regulate MAPK
assembly, activity (both activation and inactivation) and
substrate binding require further elucidation. Nevertheless,
several distinctive features of the mode of action of
MAPKs have already been identified. The specificity of
the MAPK module is achieved by coordinated expression
of its components, by protein complex assembly and
by subcellular localization (Danquah et al., 2014; Mitula
et al., 2015; Bigeard and Hirt, 2018). In general, MAPK,
MAPKK and MAPKKKs are localized in either nucleus
or cytoplasm or both compartments. Localization in other
cellular compartments is also evident. For example, MEKK1,
besides being present in the nucleus and cytoplasm, can also
be observed at the plasma membrane and in endosomes
(Yang et al., 2010; Bigeard and Hirt, 2018). In addition,
MAPK localization can be associated with its enzymatic
activity. The active form of MAPKKK18 is localized in
the nucleus, while the kinase-inactive isoform is found
in the cytoplasm (Mitula et al., 2015). This suggests that
not only MAPKKK18 activity but also the concentration
of the protein is tightly controlled within the target
compartment.

The activation of a typical MAPK module is rapid but
transient. Subsequently, MAPK inactivation is achieved via
dephosphorylation by dedicated protein phosphatases that
function as part of a negative feedback loop to control the
hormonal response. For example, MPK1 protein phosphatase
regulates MPK3, MPK4 and MPK6 (Ulm et al., 2002; Bartels
et al., 2009). Another MAPK phosphatase, MKP2, interacts
with and controls the activity of MPK3 and MPK6 (Lumbreras
et al., 2010). Furthermore, following ABA treatment, MPK3
and MPK6 kinase activities are inhibited by AP2C1 and
PP2C5 phosphatases (Brock et al., 2010). Finally, MPK6
and MAPKKK18 are also regulated by the ABI1 protein
phosphatase, a negative regulator of ABA signaling (Mitula
et al., 2015). Besides protein phosphatases, activated MAPKs
can be also controlled by the UPS dependent proteolytic
pathway. For example ABA-regulated MAPKKK18 is
regulated in this way (Mitula et al., 2015), demonstrating
that MAPKKK18 downregulation by UPS is a significant

factor in determining the nature of the MAPK signal
output.

A consistent feature of MAPK function in hormone
signaling is the existence of central MAPK-dependent hubs
allowing extensive crosstalk between hormonal pathways, which
leads to precisely regulated cellular functions. In principle,
these MAPKs may use more sophisticated mechanisms to
diversify signal outputs determined by different stimuli,
such as tissue distribution and the formation of acontext-
specific signalosome. The most prominent examples are
AtMPK3/4/6. MPK3/6 are partially redundant in their
activities and are crucial for coordinated response in scope
of JA, SA, BR and ABA signaling pathway (Figures 2,
5, 6). AtMPK4 regulates crosstalk between the JA/ET/SA
and AUX responses (Figure 2). All three kinases can
autophosphorylate (Huang et al., 2000; Pecher et al.,
2014) suggesting that they may be regulated by alternative
mechanisms or potentially can even escape from the
canonical model of MAPK activation. Another example is
the AtMKK4/5-MPK6 module which precisely regulates
ET and BR signaling and the corresponding responses
(Figures 3, 4).

The very complexity of MAPK cascades means that it is
often difficult to define them in detail and to assign them a
specific role in a particular biological process. Thus, to date,
no MAPK cascade, together with its downstream substrates,
has been defined in its entirety in any plant system. We
also need a better characterization of the functional diversity
and redundancy of MAPK complexes. MAPK cascades share
many of their components, but nevertheless are still able
to deliver hormonal signals to the cell interior precisely
and specifically. Importantly, we also need to understand
the consequences of phosphorylation by MAPKs for the
function, localization or stability of their protein targets.
Therefore, many questions remain, some of which are listed
below:

r Which cellular elements function as molecular switches
to support precise crosstalk and interaction outcomes
between MAPK cascades? How do plants discriminate
between hormone signaling pathways? How do MAPK
cascades maintain specificity?

r What governs MAPK distribution within the cell? What
post-transcriptional and translational mechanisms are
employed to regulate this distribution?

r Which signaling systems are responsible for MAPK
inactivation? How do these work? Which ligands target
MAPK pathways to regulate their activity?

r What is the relative importance of different MAPK
pathways in hormonal responses?

We believe that the answers to these questions will provide
exciting discoveries and establish further the crucial role of
MAPKs in plants. MAPK cascades, like other signaling networks,
display a wide range of regulatory properties and the extension
of MAPK research to all economically important crops is
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particularly relevant for ensuring sustainable food production
globally.
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