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Mitogenic and progenitor gene programmes
in single pilocytic astrocytoma cells
Zachary J. Reitman1,2,3,20, Brenton R. Paolella 1,2,20, Guillaume Bergthold4,5, Kristine Pelton6, Sarah Becker6,

Robert Jones6, Claire E. Sinai7, Hayley Malkin1, Ying Huang6, Leslie Grimmet8, Zachary T. Herbert8, Yu Sun1,

Jessica L. Weatherbee1, John A. Alberta1, John F. Daley9, Orit Rozenblatt-Rosen2, Alexandra L. Condurat2,7,10,

Kenin Qian7, Prasidda Khadka1, Rosalind A. Segal1, Daphne Haas-Kogan11, Mariella G. Filbin2,7,10,

Mario L. Suva 2,12,13, Aviv Regev2,13,14, Charles D. Stiles1, Mark W. Kieran7,10,15,19, Liliana Goumnerova 16,

Keith L. Ligon2,6, Alex K. Shalek2,17,18, Pratiti Bandopadhayay2,7,10 & Rameen Beroukhim 1,2,9

Pilocytic astrocytoma (PA), the most common childhood brain tumor, is a low-grade glioma

with a single driver BRAF rearrangement. Here, we perform scRNAseq in six PAs using

methods that enabled detection of the rearrangement. When compared to higher-grade

gliomas, a strikingly higher proportion of the PA cancer cells exhibit a differentiated,

astrocyte-like phenotype. A smaller proportion of cells exhibit a progenitor-like phenotype

with evidence of proliferation. These express a mitogen-activated protein kinase (MAPK)

programme that was absent from higher-grade gliomas. Immune cells, especially microglia,

comprise 40% of all cells in the PAs and account for differences in bulk expression profiles

between tumor locations and subtypes. These data indicate that MAPK signaling is restricted

to relatively undifferentiated cancer cells in PA, with implications for investigational therapies

directed at this pathway.
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G
liomas, cancers composed of cells that resemble glia, are
the most frequently lethal primary brain tumors. These
tumors are classified as grade I to IV by the World Health

Organization based on clinical, genetic, and histopathological
criteria. WHO grade II–IV tumors are diffusely infiltrating and
generally associated with a poor outcome. Recent efforts have
characterized cellular heterogeneity within WHO grade II–IV
adult and pediatric gliomas by single cell RNA sequencing
(scRNAseq). These studies revealed hierarchical relationships
between cancer cells that mimic normal differentiation of brain
cells from neural stem cells or glial progenitor cells into mature
glia1–4.

Pilocytic astrocytomas (PAs) are the most common brain
tumors in children. These are WHO grade I tumors that can
potentially be cured. However, PAs can be associated with con-
siderable treatment-related morbidity from surgical resection,
chemotherapy, or radiotherapy5,6. PAs that are incompletely
resected tend to recur during childhood, but childhood PA
patients usually do not succumb to their disease6–8. In contrast,
higher-grade gliomas are nearly always fatal.

PAs are also distinguished by the simplicity of their genome.
Unlike higher-grade gliomas, which usually exhibit multiple
driver mutations9–11, most PAs exhibit a single driver somatic
genetic alteration12–14. These almost always activate the MAPK
pathway, with rearrangements generating the KIAA1549-BRAF
fusion oncogene accounting for ~70% of PAs15. Targeted thera-
pies directed at the MAPK pathway are undergoing clinical
testing for recurrent or incompletely resected PAs16,17. However,
whether the MAPK pathway is uniformly activated in PA cancer
cells remains incompletely understood.

Bulk gene expression analyses of PA and other pediatric low
grade gliomas have identified differences in gene expression
profiles between PAs that arise in different brain locations18–21,
and also found PA to strongly express immune gene
signatures19,20,22. It has been unclear whether these differences
were due to different contributions of cancer cells and immune
cells, or due to different gene programme being expressed in the
cancer cells.

Here, we determine the gene expression landscape of PA at
single cell resolution. This analysis deconvolutes the contributions
of PA cancer and immune cells and indicates heterogenous
expression profiles among each of these cell types. PA cancer cells
recapitulate a developmental differentiation hierarchy from OPC-
like cells to mature astrocyte-like cells. Also, PA cancer cells
heterogeneously express MAPK signaling gene programme.
Furthermore, PA exhibit a smaller population of proliferative
progenitor cells that is more similar to normal glial cells than to
the progenitor population of higher grade pediatric astrocytomas.
Together, these findings lay a framework for future biologic and
therapeutic investigations in PA.

Results
Distinguishing pilocytic astrocytoma cells from normal cells.
Recent single-cell RNA-sequencing (scRNA-seq) efforts revealed
transcriptional developmental hierarchies across sets of adult
gliomas and pediatric histone mutant gliomas. However, how
these hierarchies relate to pediatric low-grade gliomas remains
unknown. To explore this, we first sought to develop procedures
to distinguish pilocytic astrocytoma (PA) cancer cells from
intermixed tumor-associated cells. Among high-grade gliomas,
expressed somatic mutations and inferred large-scale copy
number variations (CNVs) have been previously used to distin-
guish high-grade glioma cells from tumor-associated cells in
scRNA-seq data1–4. However, low-grade tumors including PAs
often exhibit few or no large-scale CNVs or expressed

mutations12–14. We therefore developed a pipeline to identify PA
cancer cells using four sources of information: (1) immunola-
beling using a PA-specific marker; (2) enhanced BRAF fusion
transcript detection; (3) clustering based on RNA-seq profiles;
and (4) expressed glial tumor markers (Fig. 1a).

We selected A2B5, a cell-surface marker of glial progenitor
cells, as our target for immunolabeling for two reasons. First,
A2B5 is known to be enriched in PAs and absent from nonglial
cell types23. Second, we found that A2B5 detection was enriched
six-fold in murine neural stem cells engineered to express
KIAA1549-BRAF relative to controls (p < 0.001, Student’s t test;
Supplementary Fig. 1a, b). Representative plots showing our
A2B5 gating strategy for viable human PA tumor cells are shown
in Supplementary Fig. 1c.

We next combined three approaches to optimize detection of
the KIAA1549-BRAF fusion in single cells. First, we used the
SMART-seq2 scRNA-seq protocol, which provides full-length
transcript coverage, rather than methods that rely on counting 3’
transcript ends. Second, we spiked in an oligonucleotide specific
for the 3’ region of BRAF during cDNA library generation
(Fig. 1b and Methods). Third, we performed targeted qPCR for
the KIAA1549:BRAF fusion junction in three tumors (n= 578
cells). Using SMART-seq2 alone, we found that the fusion was
found in no cells or very few cells from these tumors (0–0.7%).
Combining the approach with qPCR increased detection rates to
29–54% of all cells. BRAF fusions were only detected in A2B5+
cells (79% of A2B5+ cells, Fisher’s exact test, P < 0.0001)
(Supplementary Fig. 1d, e).

We applied these methods to six PAs to generate scRNA-seq
data (Supplementary Data 1). Genetic profiling of bulk tissues
confirmed that all tumors contained BRAF alterations, including
five tumors with the classic KIAA1549-BRAF 16:9 translocation
and one tumor with a noncanonical BRAF duplication event
(Supplementary Data 2). We generated scRNAseq data for 1239
cells, of which 931 passed quality control measures and were used
for subsequent analyses.

We detected evidence for CNVs in single cells from a subset of
PAs. CNVs were inferred from PA cancer cell scRNA-seq data by
averaging expression over contiguous stretches of 100 genes1.
This analysis supported chromosome-arm-level CNVs in four
PAs and a silent CNV landscape in two PAs (Supplementary
Fig. 2). The inferred CNVs included events previously observed in
PA24 such as gains of chromosomes 5 and 7 in BT646. However,
the only inferred CNVs that could be validated by copy number
analysis of bulk tissue from the same tumor were a chromosome
7 gain in BT646 and a chromosome 10 gain in BT906
(Supplementary Data 2). We conclude that some CNVs seen in
single PA cells could be masked by tumor-associated cells when
bulk tissue is analyzed.

Cancer and noncancer cells separate into distinct groups.
Clustering of PA single cell transcriptomes was highly concordant
with A2B5 and BRAF fusion status. Visualization of the tran-
scriptomic profiles using nonlinear dimensionality reduction
(t-SNE) revealed substantial overlap between cells from each
tumor, suggesting shared transcriptomic patterns across all
tumors (Fig. 2a). Across all tumors, A2B5 positive (A2B5+) cells
clustered together (Fig. 2b), and these tended to be the BRAF+

cells (Fig. 2c). These two groups (A2B5+, BRAF+ and A2B5−,
BRAF−) defined the first principle component in principle
component analysis (PCA) of the same data (Supplementary
Fig. 3a-d). Shared nearest neighbors and nonnegative matrix
factorization were used as parallel approaches to identify clusters
of cells (Methods). These approaches revealed five clusters
(Fig. 2d and Supplementary Fig. 4a-c). Two clusters were almost
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entirely comprised of A2B5+, BRAF fusion-containing cells
(clusters 0 and 1) (Fig. 2b–d). The other three clusters were
almost exclusively A2B5-containing, non-fusion-containing cells
(clusters 2 to 4). Accordingly, clusters 0 and 1 expressed glial
markers associated with PA such as OLIG2, APOD, and PDGFRA
(Fig. 2e). Clusters 2 to 4 expressed markers associated with
immune cells, such as CCL3, SOD2, and IL32 (Fig. 2f).

Immune cells contribute to bulk PA expression profiles. PA
have been previously reported to exhibit heterogeneity with the
presence of immune cells intertwined with cancer cells19,20,22.
Indeed, we also found evidence of immune cells within our
scRNAseq data (Fig. 3a, b). We examined tumor-associated cells
for gene signatures of microglia and macrophages collected
throughout the mouse lifespan in states of health and disease25

(Supplementary Fig. 5a and Supplementary Data 3). All tumors
contained cells belonging to a cluster exhibiting expression of
microglia-related genes (e.g., CCL3, CCL2, C3, CD74, HLA-DRA)
that scored most highly for microglia from healthy adult mice
(Fig. 3b and Supplementary Fig. 5b). These comprised approxi-
mately 30% of all single cells within individual tumors and were
the most abundant immune cells within PA. We also identified
clusters of immune cells exhibiting markers of macrophage dif-
ferentiation in two tumors (e.g., SOD2, S100A9, CXCL8, and
IL1R2; Supplementary Fig. 5c) and of T lymphocytes in four
tumors (e.g., IL32, GZMA, GZMK, CD52, and T cell receptor
genes).

Recognition of these cell types enabled us to deconvolute bulk
tumor profiles. We estimated contributions of each cell type
signature to the bulk tumor transcriptional data from 151
pediatric low grade gliomas19 (PLGGs, Fig. 3c). Similar to our
single cell profiles, microglia contributed a median of 30% (IQR:
20–44%) of the bulk transcriptomic signature (Fig. 3d). In
contrast, cancer cells contributed slightly more than half of the
total bulk transcriptional signal on average (median 57%, IQR:
48–66%). Our prior analyses of bulk transcriptional data have
found a strong distinction between profiles from supra-tentorial
and infra-tentorial PLGGs19. We find that the genes specifically
expressed in the supratentorial tumors from these publications
(such as HLA-DRA, LYZ, CD74, F13A1, and TRIM22, Supple-
mentary Fig. 6a, b) tend to be expressed in cells within the
microglia-type cluster, whereas the infratentorial tumors have
higher expression of cancer cell-related genes (Fig. 3e). This effect
was also seen for genes that were differentially expressed in
supratentorial vs. infratentorial tumors in an independent study20

(Supplementary Fig. 6c–e). We conclude that the ratio between
microglia and cancer cells is a major driver of differences in bulk
transcriptional profiles between supra-tentorial and infra-
tentorial PLGGs.

Prior reports of immune cells within PLGGs have raised the
possibility of immunotherapy for children with PA26–28, however
our data suggest lack of expression of relevant immune
checkpoint signaling genes that can be targeted with current
clinically relevant inhibitors. In adult populations, the efficacy of
emerging immune checkpoint blockade therapies (such as PD1
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inhibitors) has been linked to expression of immune checkpoint
signaling molecules in specific cancer and immune cell compart-
ments29. However, immune checkpoint blockade has not yet
demonstrated efficacy for patients with primary brain tumors or
for pediatric patients. To prioritize investigation of immune
checkpoint pathways to target in select PA patients, we first
examined expression of ligands for PD1 and CTLA4 in PA tumor
and immune cells (Fig. 3f). Ligands for PD1 (CD274 encoding
PD-L1 and PDCD1LG2 encoding PD-L2) were minimally
expressed in cancer cells. This is consistent with observed low
rates of PA cancer cell PD-L2 staining observed by
immunohistochemistry26,28. Similarly, ligands for CTLA4
(CD86 and CD80) were almost never expressed in cancer cells.
CD86, encoding a ligand of CTLA4, exhibited robust expression
in microglia, as is often seen in antigen presenting cells, but the
other ligands were seldom expressed in any of the immune cells
in our dataset. We next examined additional components of
checkpoint signaling pathways, including MHC I expression and
expression of ligands that interact with immune checkpoint
receptors other than PD1/CTLA4 (Supplementary Fig. 7a, b).
Robust expression of MHC class I genes (HLA-A, HLA-B, and
HLA-C) was seen in PA tumor and immune cells, suggesting that
antigen presentation is intact. Expression of checkpoint receptors
and ligands varied between tumors and cell types, but in general
the highest levels of expression in microglia were seen for
ICOSLG (ligand of ICOS receptor), CD276 (B7-H3), TNFRSF14
(ligand of BTLA), and LGALS9 (ligand of TIM3). These analyses
suggest that the roles of these receptors and ligands deserve
further study in PA.

Single PA cells resemble oligodendrocyte precursor cells.
Having mapped the architecture of immune cells within the
tumors, we next sought to identify genes that were specifically
expressed in PA cancer cells. To do so, we compared the two
A2B5+, BRAF fusion-associated clusters to the tumor-associated
cells in the other three clusters (Fig. 4a, b and Supplementary
Data 4). The A2B5+, BRAF+ population was marked by high
levels of canonical markers of PA cancer cells, including
oligodendrocyte-associated markers (OLIG1, OLIG2, PDGFRA),
glial markers (GFAP, APOD, APOE), serine proteases (SER-
PINA3, SERPINE2), and other PA markers such as PLEKHB1. At
pathway level, gene set enrichment analysis (GSEA) revealed
enrichment of gene signatures associated with CNS tumors (n=
16) or normal CNS cell types such as neurons, oligodendrocytes,
or astrocytes (n= 15) (Supplementary Data 5).

PA cancer cells exhibited enrichment of oligodendrocyte
precursor cell (OPC) signatures relative to normal cells. To
identify the normal brain cell types that PA cancer cells resemble,
we compared our data to human single cell transcriptomic atlases.
The PA cancer cell clusters were most enriched for OPC gene
signatures from a single cell atlas of the developing midbrain30 as
opposed to other types of mature or developing neurons, radial
glia, or mature glia (Fig. 4c and Supplementary Fig. 8a). We
found OPC signatures derived from additional independent
normal brain single cell atlases (adult cortex31 and developing
cortex32) to also be the most highly enriched within the PA
cancer cells (Supplementary Fig. 8b, c). Furthermore, we observed
enrichment of OPC-like signatures derived from subpopulations
of high grade gliomas (Supplementary Fig. 8d, e). These analyses
indicate that PA cancer cells most closely resemble OPCs.

PA cancer cells were dissimilar to those obtained from higher-
grade gliomas. We compared PA tumor scRNAseq data to data
from H3K27M-mutated midline high grade gliomas4 and from
IDH-mutated astrocytomas and oligodendrogliomas of inter-
mediate grade3. While all tumors exhibited signatures of OPCs

and radial glia, neural stem cell and neuroblast signatures were
more enriched in the higher-grade tumors (Fig. 4d) and PA
scored more strongly for OPC gene signatures (Fig. 4e and
Supplementary Fig. 9a,b). These comparisons to normal brain
single cell gene signatures revealed that PA cancer cells on
average resemble a normal OPC that may be more committed
than the cancer cells in higher-grade gliomas.

MAPK signaling and glia-like programme in distinct PA cells.
We next used unbiased analyses to identify gene programme
expressed in subpopulations within the PA cancer cells. In a
principal component analysis, PC1 distinguished cells character-
ized by either transcription factors expressed downstream of
MAP kinase signaling cascades (e.g., JUN, FOSB, EGR1) or genes
expressed in mature astrocytes (e.g., B2M, APOD, Fig. 5a and
Supplementary Data 6). PC2 distinguished cells characterized by
oligodendroglial markers (e.g., ZAK and QKI) (Fig. 5b). We
found that the MAPK signaling and astrocyte-like signatures were
expressed by large numbers of cells, whereas only a few cells
exhibited the oligodendrocyte-like signature (Fig. 5c). Most cells
expressed a combination of the MAPK and astrocyte-like sig-
natures. We next nominated a list of glial and progenitor markers
and transcription factors for analysis. We found that while almost
all cancer cells expressed OPC-associated signal transduction
factors OLIG1, OLIG2, and PDGFRA, expression of progenitor-
associated transcription factors such as SOX2 and SOX10 were
highly expressed in cells expressing the MAPK programme
(Fig. 5d). We also found that BRAF normalized read counts were
higher in cancer cells expressing the MAPK gene programme
(tumor cluster 0) compared to those expressing the AC-like gene
programme (tumor cluster 1) (Supplementary Fig. 10, P= 0.003
using Fisher’s method). This analysis indicated that PA cancer
cells comprise a developmental spectrum that extends from a
minority of cells that express high levels of the MAPK signaling
programme and little AC-like or OC-like differentiation, to a
much larger group of AC-like cells with lower levels of MAPK
signaling (Fig. 5e). In addition, there are a few cells that express
OC-like signatures, and these have relatively high MAPK sig-
naling scores.

We validated expression of specific genes in PA using
orthogonal approaches. We used fluorescence immunohisto-
chemistry (F-IHC) to examine expression of OLIG2, a progenitor
marker that was expressed in a majority of PA cancer cells based
on scRNA-seq, and of GFAP, a top marker of the AC-like gene
programme, in the context of the PA tumor architecture (Fig. 6a,
b). GFAP expression was spatially confined to compartments of
fibrillary cells (Fig. 6c, d). Olig2 expression was observed in the
majority of tumor cells, and was expressed highly in microcystic
areas of the tumor and also in the fibrillated areas (Fig. 6e, f).
Ki-67, a marker of cellular division, was expressed rarely in up
to ~2% of cells (Fig. 6g, h). Tumor cells expressing Olig2, GFAP,
or both by F-IHC were observed in all tumors analyzed (Fig. 6i).
Also, JUN and APOD, the top markers of the MAPK signaling
and AC-like gene programme, were highly expressed in archived
PA tissues using RNA in situ hybridization (RNA ish, Fig. 6j).
Similar to the scRNA-seq data, we observed cells that expressed
only JUN, only APOD, or demonstrated intermediate expression
of both markers. These F-IHC and RNA ish data validate
compartment-specific expression of specific transcripts seen by
scRNA-seq.

To examine whether a developmental process is plausible based
on our scRNA-seq data, we used a reverse graph embedding
approach33 to construct a cellular trajectory from the cancer cell
RNA-seq profiles. This analysis ordered cells within the trajectory
in pseudotime. In this analysis cells with low pseudotime values
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occupy early states in the inferred developmental process and
cells with high pseudotime values occupy later states (Fig. 7a).
Cells from all tumors were well-represented throughout the
trajectory (Fig. 7b). The initial low-pseudotime cells had high
MAPK signaling scores and highly expressed MAPK genes
(Fig. 7c, Supplementary Fig. 11a). In contrast, high-pseudotime
cells had increasing expression of AC-like scores and of AC-like
genes (Fig. 7d, Supplementary Fig. 11b). Most cells did not
score highly for the OC-like gene programme, but the few that
did were mostly in a distal branch with high pseudotime values
(Supplementary Fig. 11c, d). These results support a develop-
mental process in PA cancer cells.

Expression of activated BRAF can paradoxically lead to
oncogene-induced senescence in vitro, which may explain the
relatively favorable clinical outcomes associated with PA34,35. We
sought to determine which PA cells were proliferative and which
were senescent within the transcriptional population structure
that we identified within PA. To do so, we examined whether
senescence36 or cell cycling37 gene programme were correlated
with either the MAPK signaling or mature glia gene programme
among cancer cells in our dataset (Fig. 8a, b). We found that the
MAPK and senescence programme were the most strongly
correlated pair in this analysis (Spearman ρ= 0.24, Bonferroni-
adjusted q < 10−6). The MAPK gene programme score was also
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significantly correlated with BRAF expression (ρ= 0.14, q=
0.008) and with the cell cycling score (ρ= 0.12, q= 0.04). Cells
expressing high levels of MAPK signaling and low AC-like or
OC-like scores were enriched for cells expressing markers of the
cell cycle (Fig. 5e). As expected, the senescence and cell cycling
scores were not correlated (ρ= 0.015, NS). These results
demonstrate that proliferating and senescent cancer cells are
mutually exclusive subpopulations within a compartment of PA
cancer cells that expresses a MAPK gene programme. Together,
these findings link a MAPK transcriptomic programme with
senescence in vivo.

Since we observed differential expression of oncogenic BRAF
in cancer cells with different cell states, we hypothesized that
expression of oncogenic BRAF may influence the state of PA
cancer cells by modulating one or more of the gene programme
identified above. To test this hypothesis, we examined single cell
transcriptomes of mouse neural stem cells (mNSCs) that we
engineered to express KIAA1549-BRAF fusion38. In parallel, we

examined mNSCs expressing BRAF-V600E, another common
BRAF alteration found in pediatric gliomas38, or vector only
control. Single cell RNA-seq data were generated for 487 mNSCs
after quality filtering (n= 170 vector control mNSCs, n= 154
KIAA1549-BRAF mNSCs, and n= 163 BRAF-V600E mNSCs).
mNSCs expressing each construct clustered separately from each
other (Fig. 9a). The top differentially expressed genes for mNSCs
expressing each construct were identified (Fig. 9b).

Comparison of differentially expressed gene lists in the C2
MSigDB database revealed that mNSCs expressing oncogenic
BRAF constructs has upregulation of genes in high-CpG-density
promoters containing histone H3 dimethylation at K4 and
trimethylation at K27 (H3K27M) in brain39. In contrast, genes
differentially expressed in the vector control cells significantly
overlapped with a proneural glioma signature40. To determine
whether any of the constructs may upregulate or downregulate
gene programme identified in our human PA single cell RNA-seq
analysis, we computed overlaps between the list of genes
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differentially upregulated in mNSCs expressing each construct
and the PA-derived gene programme (Fig. 9c). Only the AC-like
programme and the genes upregulated in the vector control cells
(and thus downregulated in the KIAA1549-BRAF and BRAF-
V600E cells) demonstrated a significant overlap (Fig. 9d,
Bonferroni-adjusted Fisher’s exact test q= 0.002). Indeed, AC-
like gene programme scores were significantly lower for mNSCs
expressing the BRAF constructs compared to controls (Fig. 9e).
This analysis demonstrates that oncogenic BRAF expression can
oppose expression of mature glia gene programme, indicating
that dynamics of BRAF expression may contribute to hetero-
geneity in cancer cell states found in PAs.

Distinct and shared programme in PA and high-grade gliomas.
We next sought to determine whether gene programme expressed
in subsets of PA cells are similar to the gene programme iden-
tified in higher-grade gliomas. We compared the PA-derived
MAPK signaling, AC-like, and OC-like gene programme to five

gene programme derived from pediatric H3K27M midline glio-
mas: stem/cell cycle, OPC variable, OPC shared, AC-like, and
OC-like. The AC-like mature glia gene programme derived from
PAs and H3K27M high-grade gliomas exhibited significant
similarities. First, there was significant overlap between the genes
in the two AC-like gene programme (Fisher’s exact test P <
0.00001), with shared genes including B2M, APOE, CLU, SPARC,
HLA-B, and HLA-C (Fig. 10a). Nevertheless, the PA AC-like
programme did exhibit several differences from the K27M AC-
like programme, including higher levels of APOD and GAPDH
genes in the PA programme and HEY1 in the K27M programme.
Second, the PA and H3K27M-derived AC-like gene programme
were highly correlated with each other among AC-like cells
derived from PA, H3K27M gliomas, or IDH-mutated gliomas
(Spearman’s ρ > 0.45, P < 10−9 for each, Fig. 10b and Supple-
mentary Fig. 12a-e). In contrast, oligodendrocyte-like gene sig-
natures from PA and high-grade pediatric gliomas revealed little
overlap aside from an oligodendrocyte-associated myelinating
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factor BCAS141 (Supplementary Fig. 12f). This analysis revealed
shared features between subpopulations of PA cells and higher-
grade gliomas that resemble mature astrocytes.

In contrast to the AC-like signatures, the PA-derived MAPK
gene programme was not similar to gene programme expressed in
specific compartments of higher-grade gliomas. Expression of the
MAPK signaling gene programme was correlated with an OPC-
shared gene programme derived from H3K27M gliomas that is
generally expressed in H3K27M high-grade subpopulations
(Supplementary Fig. 12g-k). However, expression of the MAPK
signaling gene programme expression was not correlated with
expression of any of the H3K27M glioma-derived gene
programme that were expressed in specific tumor subpopulations.
For instance, although in PAs the MAPK signaling gene
programme was associated with cycling cells that lack markers
of differentiated cells, none of the 50 genes from the PA-derived
MAPK signaling gene programme overlap with the 50 genes from
the H3K27M stem/cell cycling signature (Fig. 10c). Furthermore,
the MAPK signaling genes were not highly expressed in the
H3K27M stem cell population, nor were H3K27M stem/cell cycle
genes highly expressed in PA MAPK cells—indeed, we observed
significant anticorrelations between the two programme in cells
from both tumor types (Fig. 10d). This distinction was driven by
higher expression of JUN, JUNB, FOS, FOSB, etc., in the PA cells
and by near-absence of neuronal stem cell associated genes such
as TUBA1B in PA. These analyses show that the MAPK signaling
programme is distinct from stem programme in a higher-grade
glioma.

We found that PA cancer cells expressing the MAPK signaling
gene programme and the PA cancer cells expressing the AC-like
gene programme both resembled more committed glial

progenitors compared to higher-grade gliomas. To examine the
developing brain cells that the PA cell subpopulations most
resemble, we calculated enrichment scores for developing human
midbrain cell types30 for PA cells expressing either gene
programme, and for the stem and mature glia-like populations
found in H3K27M and IDH-mutated gliomas. This analysis
revealed that the PA cells expressing either the AC-like or the
MAPK signaling gene programme both most resembled OPCs
more than earlier neuronal progenitors (Fig. 10e). Both of these
PA subpopulations clustered with the AC-like cancer cells from
IDH-mutated and H3K27M gliomas based on their developing
brain cell type enrichment scores. The stem, OC-like, and OPC-
like populations from the higher-grade gliomas exhibited
enrichment for neural progenitor cell signatures that was absent
from the PA cancer cells and from the AC-like cells from the
higher-grade gliomas. Together, these results show that PA and
higher-grade gliomas all contain subpopulations that express
partially overlapping mature glia-like gene programme, and that
PA also contains a population of cells expressing a MAPK
signaling programme that resembles a more committed glial
progenitor compared to the stem and progenitor populations
from higher-grade gliomas (Fig. 10f).

Discussion
Here we examine single cell transcriptional profiles of pediatric
low-grade brain tumors using a workflow developed specifically
to detect KIAA1549-BRAF rearranged PA cells. We found that a
considerable portion of bulk PA gene signatures are contributed
by nonmalignant microglia. Peeling away these nontumor gene
signatures, we noticed that most PA cancer cells expressed a gene
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programme reminiscent of normal OPCs. We also identified a
MAPK signaling gene programme reflecting Raf/MEK/ERK sig-
naling downstream of the oncogenic KIAA1549-BRAF fusion.
Surprisingly, this MAPK signature was not ubiquitously expres-
sed in cancer cells, but instead was confined to a subpopulation of
cancer cells that expressed either proliferative or senescence-
related genes. Conversely, we identified subpopulations of cancer
cells resembling normal mature glia with lower expression of the
MAPK signaling programme and of cell cycling programme.
Integrating these findings, we propose that the PA cancer cell
hierarchy resembles a normal glial maturation process, with
cycling progenitor-like cancer cells giving rise to cancer cells that
resemble mature glia.

These data indicate that PA cancer cells resemble a devel-
opmental spectrum ranging from OPCs to mature glia. While
the cells overall resembled OPCs, we also observed

subpopulations of cells expressing a MAPK signaling signature
and signatures reminiscent of mature glia. In addition, we
observed subpopulations that exhibited intermediate expression
of both programme. Intriguingly, F-IHC and RNA ish studies
of top marker genes for either gene programme indicate that
these gene programme may underlie the long-observed biphasic
histopathologic features of PA42. These results indicate that the
AC-like gene programme is more highly expressed in the piloid,
fibrillary component of the tumors, and that expression of the
MAPK gene programme is biased towards the loose, micro-
cystic component of the tumors. It stands to reason that one of
these populations may give rise to the other, reflecting a
developmental process. The fact that the cells expressing the
MAPK signaling programme exhibits a higher proportion of
cycling cells and expresses progenitor cell-associated tran-
scription factors such as SOX2 indicates that cells expressing
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the MAPK signaling signature may represent an OPC-like
progenitor population in PA, which gives rise to an AC-like
population. This observation reveals parallels to normal oligo-
dendrocyte differentiation, for which timing of progenitor
expansion is tightly regulated by MAPK signaling43.

Identification of a cellular developmental process in PA raises
several therapeutic considerations. We found that a MAPK sig-
naling gene programme was expressed in only a subpopulation of
cancer cells, which would suggest that this subpopulation would
exhibit differential responses to MEK inhibition compared to the
more AC-like cells. Clinically, MEK inhibitors have shown great
promise, but complete responses have been rare17. The present
study raises several testable clinical hypotheses that could explain
the heterogeneity of responses to investigational MEK inhibitors
and that could guide ongoing clinical investigations. First, MEK
inhibition may be inadequate to overcome MAPK signaling in
cells with very high levels of MAPK signaling. If this is the case,
we predict that tumors with high MAPK gene programme
expression may have poor responses to therapy and poor long-
term disease control. Second, cells without active MAPK signal-
ing, such as the AC-like+ cells, may be unaffected by MEK
inhibition. If so, we predict that tumors with mostly AC-like+
cells would exhibit a poor initial response to MEK inhibition.
However, such tumors would exhibit good long-term disease
control as the AC-like+ cells are not proliferative. Third, on the

basis of the tumor cell differentiation processes inferred in this
study, MAPK+ cells may be able to transition into AC-like+
cells. If so, we predict that tumors that exhibit poor initial
responses may exhibit a shift towards higher AC-like+ tumor cell
composition between pre-treatment and post-treatment biopsies.
If such a process is clinically relevant, it will be critical to deter-
mine whether this process is reversible to determine whether
further MEK inhibition could be of clinical benefit for these
patients. Future correlative and experimental studies informed by
the gene programme identified here may provide clarity on these
issues and guide the selection of the most efficacious treatment
strategies for PA.

Expression of activated BRAF can paradoxically lead to
oncogene-induced senescence in vitro, which has been speculated
to underlie the relatively indolent biology of BRAF-rearranged
PA34,35. We found that the highest expression of senescence-
related genes was confined to PA cancer cells that highly
expressed the MAPK gene programme. Intriguingly, cells highly
expressing the MAPK signaling gene programme were also most
likely to express a proliferative gene programme, but expression
of the senescence and of the proliferative programme occured in
mutually exclusive sets of MAPK-activated cells (see Fig. 5e).
Future experimental work will be needed to determine whether
the dosage of MAPK signaling and/or other cellular factors
contribute to proliferative vs. senescent cell fate decisions in this
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context. We speculate that such work could inform therapeutic
opportunities to modulate MAPK signaling or other cellular
processes to exploit this biology.

PAs exhibit substantial clinical differences from H3K27M-
mutant pediatric high-grade gliomas and from IDH-mutant adult
intermediate grade gliomas, including a more indolent course
with high overall survival and a low incidence of malignant
transformation. At the single-cell level, we observed a higher
proportion of mature glia-like cells to progenitor-like cells in PAs
as compared to these other tumor types. Furthermore, PA cells
exhibited a basal gene programme that was reminiscent of normal
OPCs, while the higher grade tumors exhibited progenitor
populations with relatively more similarities to radial glia and to
neuronal stem cells. Both IDH and H3K27M mutations block
differentiation by modulating histone methylation marks44,45,
which may explain these differences in developmental hierarchies
between the IDH-mutant and H3K27M-mutant tumors and the
BRAF-driven PA tumors.

Our findings revealed differences in specific gene programme
and in the transcriptional hierarchy between low-grade and high-
grade tumors. The data also revealed heterogeneity in expression
of mitogenic signaling genes that are currently being investigated
as therapeutic targets. A priority for future work will be to
determine the effect of such targeted therapies on the PA cellular
transcriptional hierarchy.

Methods
Tumor acquisition and preparation. Human tissue analysis complied with all
relevant ethical regulations for work with human participants. Informed consent
was obtained from all patients and parents at Boston Children’s Hospital according
to Dana Farber/Harvard Cancer Center Institutional Review Board protocol
10–417. Tissues were collected at the time of surgery and the presence of malignant
cells was confirmed by frozen section. Tumor tissues were mechanically and
enzymatically dissociated in GentileMACS C tubes using a trypsin or papain-based
brain tumor dissociation kit according to the manufacturer’s instructions (Miltenyi
Biotec).

KIAA1549-BRAF expressing neural stem cells. Primary neural stem cell cultures
were established from the medial ganglionic eminence of embryonic day 14 murine
embryos38. Neural stem cells were propagated as neurospheres in DMEM/F12
(50:50 mix) with 1× B27 without vitamin A, and 20 ng per mL EGF46. To generate
KIAA1549-BRAF expressing cells, mouse neural stem cells were plated on laminin
coated dishes and transduced with pBabe (short-isoform) KIAA1549:BRAF15 (gift
of David Jones) or pBabe BRAF-V600E or empty vector control with appropriate
antibiotics. BRAF-V600E and KIAA1549:BRAF expressing cells were cultured and
propagated in neural stem cell media, except without the presence of growth
factors.

Fluorescence-activated cell sorting. Dissociated cells were filtered through a 70
µm filter, pelleted 10 min 400 × g, and resuspended in 5 ml serum-free and growth
factor-free neurobasal-A media (Life Technologies). Tumor cells were pelleted and
then resuspended in 1 ml 1× RBC lysis buffer (ThermoFisher) and incubated for
10 min at room temperature. Cells were washed with 10 mL 1× PBS then resus-
pended into 100 µL of FACS buffer (1× PBS with 1% BSA), counted, and then
diluted to 1–5 million total cells per mL including non-viable cells. Cells were
labeled with 10 µL anti-A2B5-APC (clone: 105HB29, Miltenyi Biotec) and 1.5 µL
Calcein Blue AM (Invitrogen, cat# C1429) per 100 µL of cell suspension. Cells were
pelleted, washed with 1 mL FACS buffer, and then resuspended into 500 µL FACS
buffer containing 0.5 µl of a LIVE/DEAD fixable near IR dead cell stain kit (cat# L-
34974). Negative controls with no stain, single, and double stains were used for all
tumors. Positive controls for A2B5+ were mouse neural stem cells cultured as
neurospheres38. Cells were sorted on a SH800S fluorescence activated cell sorter
(Sony Biotechnology) or MoFlo Astrios EQ, Cell Sorter (Beckman Coulter). Single
cells were sorted by A2B5 status and collected into 96-well plates in approximately
equal proportions by A2B5 status. Cells were collected in 5 µl of 1 × Lysis buffer
(SmartSeq2 v4 kit, Takara) containing 1% b-mercaptoethanol, spun at 800 × g,
snap frozen on dry ice, and stored at −80 °C prior to library preparation.

Library preparation and sequencing with BRAF spike-in. cDNA libraries for
BT618, BT646, and BT679 were prepared using the a modified SmartSeq proto-
col47. cDNA libraries for BT801, BT827, BT906 we prepared using SmartSeq v4 kit
(Takara) with the following modifications. An oligonucleotide specific to a
sequence contained in exon 18 of BRAF was used, since this exon is contained in

both long and short isoforms of KIAA1549:BRAF gene products15. This BRAF
sequence was added 3’ to the SmartSeq2 Smart CDS Primer universal adapter
sequence. See Supplementary Data 7 for oligonucleotide sequences. This oligonu-
cleotide as added at 13 µM final concentration during 3’ primer addition step, at
the same time as addition of the Smart CDS Primer IIA. The concentration and
size distribution for each cDNA library was evaluated on an Agilent TapeStation
2200 using D5k screentapes. Sequencing libraries from samples with more than 0.3
ng of cDNA greater than 400 bp were prepared using a ¼ Nextera XT reaction47.
Up to 384 single cell sequencing libraries were pooled and sequenced with paired-
end reads using a high output kit on Illumina NextSeq500 or Illumina HiSeq2500
instruments. Sequenced reads were aligned to the UCSC hg19 reference genome
assembly using STAR v2.5.1b48 and gene expression was quantified using RSEM
v1.2.2849 as part of the VIPER snakemake pipeline50. Transcripts reflecting dis-
cordant mapping of reads between experiments were manually removed for
downstream analyses. KIAA1549-BRAF gene fusions were identified in the RNA-
seq data using STAR-Fusion v0.5.451. The BRAF spike-in workflow was tested for
systematic differences introduced into the data by examining mouse neural stem
cells processed with and without the BRAF oligonucleotide spike-in (n= 6 for
each). The resulting transcriptomic data from these cells clustered together based
on principal component analysis and hierarchical clustering (Supplementary
Fig. 13), indicating that data is comparable between protocols.

Detection of BRAF fusion from single cell cDNA libraries. qPCR was performed
on remaining cDNA libraries after sequencing if any material was available fol-
lowing NGS. Clinical detection of KIAA1549-BRAF fusion breakpoints were
determined by OncoPanel targeted sequencing. Taqman qPCR probes targeting the
most common BRAF fusion breakpoints 15–9, 16–9, or 16–11 were used49, see
Supplementary Data 7 for sequences. cDNA from BT827 and BT618 had been
exhausted for RNA-seq analysis and was not available to perform qPCR. BT646
contained a complex rearrangement involving multiple breakpoints that linked
KIAA1549 to BRAF that was not amenable to this qPCR approach.

Data quality control, dimension reduction, and clustering. All processed data
was analyzed in R v3.4.3. Data were initialized using functions in the Seurat
package52 with default parameters, unless specified otherwise, as follows. Tran-
scripts per million data normalized for each cell by the total expression, then
multiplied by a scale factor of 10,000, and then log transformed using the Log-
Normalize function. Data were scaled using the ScaleData function. To remove
sources of variation that did not reflect common features of PA tumors, linear
regression was performed on number of detected genes and on tumor of origin. For
quality control filtering, cells with <1000 expressed genes or >4% mitochondrial
genes were excluded from analysis and genes expressed in <10 cells were excluded
from analysis. Variable genes with 0.25 to 5 log-normalized read counts and
>1 standard deviation were subjected to PCA in Seurat. The first 7 principal
components were used for t-SNE generation for all cells. Shared nearest neighbor
clustering was performed using the FindClusters function with k parameters= 150
and using the first 7 principal components. The first 5 principal components were
used for t-SNE generation for the cancer cell subset. NMF was performed using R
package NNMF53. Rare A2B5+ cells that clustered with the immune cells were
inspected for expression of PA cancer cell differential genes and for KIAA1549-
BRAF expression, and fourteen discordant cells without expression of these mar-
kers were removed from the A2B5+, BRAF+ group. Rare A2B5+ cells expressing
immune genes were removed from cancer cell analyses by filtering out cells
expressing >1.5 log-normalized GZMB reads. Gene set enrichment analysis was
performed using the javaGSEA desktop application54.

Data visualization. Bar plots, PCA plots, volcano plots, lineage score plots, and
violin plots were generated using ggplot255. Heat maps were generated using the
pheatmap function on the scaled data matrix. T-SNE plots were generated using
the FeaturePlot and TSNEPlot functions in Seurat with default settings.

Inferral of CNVs from single cell RNA-seq data. Large-scale chromosomal
CNVs were inferred from expression data as using the inferCNV package1.
Expression for each gene was averaged over 100-gene windows. Averaged
expression intensity was then compared to all other cancer cells as a reference.

Estimation of contribution of cell types to bulk expression. To estimate con-
tribution of different cell subtypes to bulk sequencing profiles, differential gene lists
were first derived for all cancer cell compartments found in the single cell RNA-seq
data (tumor, microglia, T cell, and macrophage) using Wilcoxon rank sum t-tests.
Genes with FDR < 0.05 (Bonferroni correction) were used for each differential gene
list. For each bulk expression profile, enrichment scores for each compartment
were calculated by dividing the average z-scored expression of all genes in that
compartment’s differential gene list, divided by the average expression of all genes.
The estimated percent contribution of each compartment was calculated by
dividing the enrichment score for each compartment into the sum of enrichment
scores for all compartments. Genes that did not overlap between the scRNA-seq
platform and the bulk expression analysis platform were discarded for this analysis.
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Enrichment score calculation and visualizations. To calculate enrichment scores
for normal brain gene signatures in single cells, the mean scaled expression score
for all genes in the signature was divided by the mean scaled expression score for all
genes. Mean enrichment scores for clusters and for different types of tumors were
calculated in the same fashion, except the mean expression for each gene across all
cells in the cluster was used instead of the expression of each gene in a single cell.
Gene signatures for microglia and macrophage subtypes from a single cell RNA-seq
atlas of mouse microglia25 were the list of upregulated genes for a given subtype
(>1.5 fold change and FDR q-value < 0.05 using Wilcoxon rank sum test and
Bonferroni correction). Cluster 7a could not be analyzed in this way since only one
gene was upregulated in that gene list, and that gene did not have a human
ortholog that was expressed in our scRNA-seq dataset. Each microglia/macrophage
signature enrichment scores were normalized to the mean enrichment score for the
same signature in the tumor clusters. BioMart was used to convert mouse gene
names to human ortholog gene names for comparisons to mouse gene lists56. Gene
programme were derived from the top or bottom 50 genes in principal component
variables. Tumor subpopulations were defined as cancer cells with enrichment
scores of >2.5 for a given gene programme. Cell cycle and senescence scores were
determined by testing for enrichment of cell cycle37 and for senescence36 gene sets
from the C2 curated gene set in MSigDB (http://software.broadinstitute.org/gsea/
msigdb/index.jsp). For heat maps comparing normal brain gene signature
enrichment between different tumor types, 500 cancer cells of each type were
randomly sampled and the mean enrichment scores for those cells was calculated.

RNA in situ staining. RNA in situ staining was performed on freshly cut unstained
formalin-fixed, paraffin embedded slides4 using probes RNAscope Hs-APOD (cat
no. 445171) and RNAscope Hs-JUN (cat no. 470541) (ACD Biotech).

Fluorescence immunohistochemistry. A multiplexed F-IHC was performed57.
The antibody panel consisted of Olig2 (R&D System, Goat polyclonal, AF2418)
with CY5.5, GFAP (Cell Signaling Techology, Mouse monoclonal, Clone GA5,
#3670) with FITC, and Ki-67 (Dako, Mouse monoclonal, Clone MIB-1, M7240)
with CY3. Whole slide Images were acquired from stained slides using a Perkin
Elmer Vectra 3 imaging system (PerkinElmer, Inc.), and InForm software (version
3.4.3, PerkinElmer) was used to unmix the signals. Twenty high power fields (20×)
were analyzed utilizing Halo Image Analysis platform (Indica Labs) for each tumor.
The thresholds for the markers were set, respectively, based on the staining
intensity, by cross reviewing 20 images. Cells with the intensity above the setting
threshold were defined as positive.

Bulk tumor profiling. BRAF fusion calls, CNVs, and mutation calls from bulk
tissues were extracted from OncoPanel58 data. DNA was isolated from tissue
containing at least 20% tumor nuclei. Agilent SureSelect hybrid capture kit was
used to target exonic DNA sequences of 300 cancer genes and 113 introns across 35
genes for rearrangement detection prior to Illumina HiSeq 2500 sequencing.

Cell trajectory construction. Cell trajectory visualization and inference of pseu-
dotime values for cancer cells were performed using Monocle v.2.6.433 in R. Cancer
cells that had been filtered as described above were input into cell trajectory
analyses. The top 1000 differentially expressed genes as determined by the differ-
entialGeneTest function were used for cell ordering. The cell trajectory was learned
using the reduce Dimension function using the DDRTree dimension reduction
method, the first five principal components, and tumor of origin and number of
expressed genes as residuals. The plot_cell_trajectory function was used to plot the
cell trajectory, with color_by and markers calls used to specify the parameter to
account for coloring of the cells.

Mouse neural stem cell scRNA-seq. mNSCs expressing vector control,
KIAA1549-BRAF, or BRAF-V600E were generated using pBabeNeo retroviral
vectors and cultured in growth factor-containing media38. Cells were trypsinized
and subjected to scRNA-seq as described for human cells above, with the following
modifications. BRAF oligonucleotide spike-in and qPCR was not performed for
mouse scRNA-seq. Transcriptomes were aligned to UCSC mouse mm10 assembly.
Data were generated for 576 mNSCs before quality filtering. Cells with <3000 genes
or >3% mitochondrial genes were removed for data filtering. Genes expressed
in <10 cells were removed for data filtering. For comparisons between human and
mouse systems, gene lists of interest were converted from human to mouse gene
names as described above. Lists of differentially expressed genes were compared to
C2 curated gene sets using the Compute Overlaps function in MSigDB.

Statistics. FDR-adjusted q-values were determined for differential expression
analyses using the Benjamini–Hochberg method. Student’s t-test was used to test
differences in mean expression of markers in flow cytometry analyses. Wilcoxon
rank sum tests were used to test for differences in mean gene signature enrichment
scores between groups, and to calculate P-values for genes differentially expressed
between clusters or between tumor and tumor-associated cells. For gene pro-
gramme overlap analysis, Fisher’s exact test was used to test significance of gene
programme overlaps assuming a genome size of 18,000 genes. Spearman’s rho was

calculated to assess correlations between gene programme scores among cell
populations. To correct for testing multiple hypotheses when examining pairwise
correlations between different gene programme, or for computation of the sig-
nificance of overlaps between multiple pairs of gene lists, Bonferroni-corrected q-
values were reported.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The human RNA sequencing data has been deposited in the dbGaP repository under the

accession number phs001854.v1.p1. Expression data and metadata for tumor of origin,

cluster, and t-SNE coordinates for single cells have been uploaded to the Broad Institute

Single Cell Portal under accession number SCP271. The mouse neural stem cell RNA

sequencing data, expression matrix, and metadata has been deposited to the Single Cell

Portal under the accession number SCP468. The source data underlying Fig. 6a–j are

provided as a Source Data file. The datasets for H3K27M mutant pediatric midline

gliomas4, oligodendrogliomas2, and intermediate grade astrocytomas3 referenced in the

study are available from the Single Cell Portal with accession numbers SCP147, SCP12,

and SCP50, respectively. Normal adult cortex gene signatures were derived from marker

gene lists found in Fig. 1 of a scRNA-seq atlas of normal adult cortex31. Developing

midbrain gene signatures were derived from the marker gene matrix found in Table S2 of

a publication by La Manno and colleagues30. Each midbrain cell type gene signature

comprised the list of all genes expressed in that cell type in the marker gene matrix.

Developing cortex gene signatures were derived from the differential gene list found in

Table S5 of a publication by Nowakowski and colleagues32. For the developing cortex

gene sets, only the differential genes with P < 0.0005 (non-parametric Wilcoxon rank

sum test) were used for the gene signature for each cell type in order to restrict gene

signatures to ~200 genes. All the other data supporting the findings of this paper are

available within the article, the supplementary information files and from the

corresponding author upon reasonable request.
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