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Mitogenomics of the Extinct Cave Lion, Panthera 
spelaea (Goldfuss, 1810), Resolve its Position within the 
Panthera Cats

Ross Barnett*, Marie Lisandra Zepeda Mendoza*, André Elias Rodrigues Soares†,  
Simon Y. W. Ho‡, Grant Zazula§, Nobuyuki Yamaguchiǁ, Beth Shapiro†, Irina V. Kirillova¶, 
Greger Larson** and M. Thomas P. Gilbert*,††

The extinct cave lion (Panthera spelaea) was an apex predator of the Pleistocene, and one of the  
largest felid species ever to exist. We report the first mitochondrial genome sequences for this species, 
derived from two Beringian specimens, one of which has been radiocarbon dated to 29,860 ± 210 14C 
a BP.  Phylogenetic analysis confirms the placement of the cave lion as the sister taxon to populations of 
the modern lion (P. leo). Using newly recovered stem pantherine fossils to calibrate a molecular clock, we  
estimate that P. spelaea and P. leo diverged about 1.89 million years ago (95% credibility interval:  
1.23–2.93 million years), highlighting the likely position of this extinct carnivore as a distinct species.

Keywords: Cave lion; Panthera leo spelaea; Mitochondrial genome; Numt

Background
The extinct cave lion (Panthera spelaea) was an integral 
component of the late Pleistocene Holarctic ecosystem, 
occupying the position of apex predator (Barnett et al.,  
2009, Antón et al., 2005, Yamaguchi et al., 2004, Bocherens  
et al., 2011) alongside the scimitar cat (Homotherium sp.) 
(Barnett, 2014). The cave lion is known from plentiful 
remains preserved in the karstic cave systems of Europe 
and the permafrost sediments of Beringia (present day 
Siberia, Alaska and the Yukon). Despite this, P. spelaea 
has had an interesting history of taxonomic revision, 
having been variously considered a highly divergent 
population of the modern lion (Dawkins et al., 1866), a 
subspecies of the modern lion (Kurtén, 1985), and a full 
species in its own right (Sotnikova and Nikolskiy, 2006). 
There is currently no consensus on the taxonomic status 
of the cave lion.

Cave lions were significantly larger than their  modern 
lion counterparts, and exhibit a unique cranial morphology  

that has a mosaic of characters present in the lion and 
tiger (Sotnikova and Nikolskiy, 2006, Hemmer, 2011, 
Vereshchagin, 1971, Gromova, 1932). Evidence from 
Pleistocene art demonstrates that the cave lion differed in 
external morphology from modern lions (Packer and Clotte, 
2000). Male cave lions did not possess a mane, a notable 
secondary sexual character in the modern species, and this 
is likely to have had considerable effect on the ethology 
of the species (Yamaguchi et al., 2004, Nagel et al., 2003). 
Previous work has also demonstrated that the cave lion 
sensu stricto had an enormous range (Barnett et al., 2009), 
from western Europe to eastern Beringia, and were coeval 
with lion populations in southern North America (Panthera 
atrox; Montellano-Ballesteros and Carbot-Chanona, 2009) 
and Africa (Panthera leo; Bougariane et al., 2010). Despite 
dominating the Holarctic mammoth steppe for most of the  
late Pleistocene, the cave lion went extinct nearly simul-
taneously across its range, with terminal dates in Europe, 
Siberia, and Alaska all close to 14,000 cal BP. Panthera atrox 
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disappeared only slightly later in southern North America 
(Stuart and Lister, 2010). 

Ancient DNA (aDNA) studies based on partial fragments 
of the mitochondrial control region, ATP8, and cytochrome 
b genes from P. spelaea have not fully resolved the degree 
of separation between the various lineages of lion-like 
cats (Burger et al., 2004, Barnett et al., 2009, Ersmark et 
al., 2015). In particular, although prior analyses recovered 
spelaea and leo as sister taxa, these studies have relied on 
the Middle Pleistocene appearance of the ancestral cave 
lion (Panthera [leo] fossilis) to calibrate the age of the split 
for molecular dating analyses, without estimating the 
timing of the split directly. Here, we present the complete 
mitochondrial genomes of two cave lion specimens and, 
using a Bayesian phylogenetic approach, we analyse these  
sequences in combination with a strictly vetted set of 
 published mitochondrial genomes. We use these to infer 
the evolutionary timescale of lion-like cats, calibrated 
using recently discovered pantherine fossils, and discuss 
the species status of P. spelaea.

Materials and Methods
Sample Discovery

Sample YG 401.410, a humerus (Figure 1, Table 1), was 
recovered from the Quartz Creek site in Yukon, Canada 
(Figure 2), on 24 July 2010. It has subsequently been 
stored in the Government of Yukon’s Palaeontology Pro-
gram collection in Whitehorse. The specimen was sub-
sampled in June 2013 by GZ and sent to the Centre for 
GeoGenetics (University of Copenhagen, Denmark) for 
processing. Hair sample F-2678/70 was found at the right 
bank of Malyi Anyui river (Chukotka, Russia) during the 
summer of 2008 (Kirillova et al., 2015). A small bundle of 
hair was subsampled by IVK and sent to the UCSC Paleog-
enomics Lab (Santa Cruz, USA) for processing.

Radiocarbon Dating

A section of bone from sample YG 401.410 was delivered 
to Stafford Research LLC (University of Aarhus, Denmark). 
Samples of crushed bone were decalcified and washed, 
treated with 0.05 N NaOH overnight to remove humics, 
soaked in 0.1 N HCl, gelatinized at 60°C at pH 2, and  
ultrafiltered at 30 kDa. The purified collagen was then  
graphitised and analysed at the W.M. Keck Carbon Cycle 
Accelerator Mass Spectrometry (AMS) Laboratory, 
University of California Irvine, according to standard  
protocol (Stafford et al., 1988, Waters et al., 2015, Beaumont  
et al., 2010).

Extraction and DNA Amplification
Sample YG 401.410

Samples of cortical bone were taken (approx. 1 cm3) 
using a Dremel powertool and reduced to powder in 
a  Mikrodismembrator. DNA extraction was performed 
as described by Orlando et al. (2013) in a dedicated 
ancient DNA  laboratory at the Centre for GeoGenetics in 
 Copenhagen, in parallel with negative extraction controls. 

The DNA extract and negative control were then built 
into genomic libraries using the NEB E6070 kit (New 
England Biolabs), following a protocol slightly modified 
from that by Vilstrup et al. (2013). Briefly, extract (30 µL) 
was end-repaired and then passed through a MinElute 
column (Qiagen). The collected flow-through was then 
adapter-ligated and passed through a QiaQuick column 
(Qiagen). Adapter fill-in reaction was then performed on 
the flowthrough, before final incubation at 37°C (30 min) 
followed by inactivation overnight at −20°C. 

We then amplified the DNA in a 50 µL reaction, using 
25 µL of library for 12 cycles under the following reaction 
conditions. Final concentrations were 1.25 U AccuPrime™ 
Pfx DNA Polymerase (Invitrogen), 1× AccuPrime™ Pfx 
reaction mix (Invitrogen), 0.4 mg/mL BSA, 120 nM primer 
in PE, and 120 nM of a multiplexing indexing primer con-
taining a unique 6-nucleotide index code (Illumina). 

PCR cycling conditions consisted of an initial denatura-
tion step at 95°C for 2 min, followed by 12 cycles of 95°C 
denaturation for 15 s, 60°C annealing for 30 s, and 68°C 
extension for 30 s. A final extension step at 68°C for 7 min 
was also included. Amplified libraries were first checked 
for presence of DNA on a 2% agarose gel before purifi-
cation using the QIAquick column system (Qiagen) and 
quantification on an Agilent 2100 BioAnalyzer. Quantified 
libraries were communally pooled in equimolar  
ratios and sequenced as single-end reads (100 bp) on 
an Illumina HiSeq2000 platform at the Danish National 
High-Throughput Sequencing Centre.

Sample F-2678/70

DNA extraction from hair sample F-2678/70 was per-
formed in a dedicated, sterile, facility at UC Santa Cruz, 
using standard protocols for ancient DNA (Cooper and  
Poinar, 2000). The extraction followed the protocol 
described by Dabney et al (2013), with the modifications 
suggested by Campos and Gilbert (2012). The Illumina DNA 
sequencing library was built following Meyer and Kircher 
(2010). Between each step, the libraries were cleaned 
using Sera-Mag SPRI SpeedBeads (ThermoScientific) in 

Specimen Side Minimum 
breadth of 

diaphysis (mm)

Maximum 
depth of 

diaphysis (mm)

Maximum 
breadth of 

distal end (mm)

Minimum anteroposterior 
diameter of articulating 

surface for ulna (mm)

Notes

YG 401.410 Left 28.6 52.1 86.1 29.1 Missing 
proximal end 
from pectoral 
ridge

Table 1: Metric data from humerus specimen YG 401.410. Measurements to nearest 0.1 mm taken using digital 
calipers.
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Figure 1: A) Four views of a humerus of cave lion (Panthera spelaea), specimen YG 401.410. This specimen was recovered 
from Quartz Creek in the Yukon Territory, Canada. The scale bar is 5 cm. B) Four views of cave lion (Panthera spelaea) 
hair bolus, sample F-2678/70, contains guard hair but is mainly represented by thick underfur of tightly packed, wavy 
fur hairs. This specimen was recovered from Malyi Anyui river in Chukotka, Russia.
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Figure 2: A map of the approximate distributions of late Pleistocene lions and the provenance of samples used in this 
study. Red indicates the maximal range of Panthera spelaea; blue the maximal range of Panthera atrox; and green the 
maximal range of Panthera leo leo/Panthera leo persica. Stars show approximate locations of lion samples. The insets 
show details of the modern boundaries of Yukon Territory, Canada, and Chukotka, Russia, along with regional settle-
ments. Sample YG 401.410 was found at Quartz Creek (Yukon Territory, Canada), 63.49N, 139.27W. Sample F-2678/70 
was found at the right bank of Malyi Anyui River (Chukotka, Russia), 68.18N, 161.44E.

18%  PEG-8000. The resulting libraries were sequenced in 
a MiSeq Illumina sequencer with v3 kits at UCSC Paleog-
enomics Lab.

Sequence Processing

Sample YG401.410 

The dataset consisted of 3,444,248 single-end sequences 
that were cleaned of adapter and low-quality sequences 
using AdapterRemoval v1.2-GG1 (Lindgreen, 2012). In 
order to obtain the mitochondrial sequence, we mapped 
the resulting 3,429,186 cleaned reads against a published 
mitochondrial genome from Panthera leo persica (Gen-
Bank accession JQ904290.1) using bwa (Li and Durbin, 
2009). In order to take into account the circularity of the 
mitochondrial genome and to recover the reads mapping 
at the edges of the extremes of the reference sequence, 
we added the first 100 bases to the end. Clonality was 
removed with picard-tools v1.92 (Picard, 2013). The map-
ping was analysed for damage at the extremes with Map-
Damage v2.0 (Jónsson et al., 2013) and the quality of the 
damaged bases was rescaled with MapDamage. Realign-
ment was performed with GenomeAnalysisTK (McKenna 
et al., 2010) on the rescaled mapping file in order to call 
SNPs with samtools v0.1.18 and bcftools (Li et al., 2009) 
with a minimum coverage of 8 and minimum quality  
of 30. 

Nuclear copies of mitochondrial genes (numts) are 
known to occur in multiple members of the cat family 

Felidae. Some phylogenetic studies of felids have been 
compromised by the inclusion of numt sequences in 
alignment (Davis et al., 2010). Numts were anticipated 
to be a particular problem in genomes reassembled from 
high-throughput sequencing technologies, which involve 
short fragment lengths and are unable to preferentially 
target cytoplasmic copies (e.g. by PCR primer design). 

In order to obtain a robust, non-chimaeric consensus 
sequence with GenomeAnalysisTK, we only used those 
SNPs supported by at least 2/3 of the reads mapping to 
that position. We used the resulting consensus sequence 
as a reference for a second mapping round, using the 
same mapping and consensus strategy as before. This 
was repeated three more times to make a total of 
four mapping rounds. The final consensus sequence 
has an average depth of 9.53× covering 89.5% of the  
mitogenome.

F-2678/70

The dataset consisted of 6,683,556 paired-end reads.  
Initial processing of these reads consisted of using Adap-
terRemoval v1.2-GG1 (Lindgreen, 2012) for the cleaning 
step, followed by merging reads including a minimum 
overlap of 10 base-pairs between forward and reverse reads 
using SeqPrep (http://github.com/jstjohn/SeqPrep).  
A total of 6,123,696 merged reads were obtained. 
These merged reads were mapped against the Panthera  
leo persica mitochondrial genome (GenBank accession 
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NC_018053.1) using MIA (http://github.com/udo-stenzel/
mapping-iterative-assembler), a reference based, iterative, 
 short-fragment assembler that accepts circular genomes 
as  reference sequences. A total of 9,582 reads mapped 
to the reference mitochondrial genome. The consensus  
sequence was called from the resulting output file, with 
each base having a minimum depth of coverage of 3× and 
2/3 base agreement. The final assembly had an average 
depth of 28.16× covering 99.62% of the mitochondrial 
genome.

Phylogenetic Analysis

Complete mitochondrial genomes of lion (Panthera leo), 
leopard (Panthera pardus), jaguar (Panthera onca), snow 
leopard (Panthera uncia), tiger (Panthera tigris), clouded 
leopard (Neofelis nebulosa), and domestic cat (Felis  
sylvestris catus) were downloaded from Genbank (Table 2).  
Sequences of all 37 mitochondrial genes were extracted 
from these genomes. 

We estimated the evolutionary relationships among 
pantherine cats using maximum likelihood in RAxML 
v8.0.14 (Stamatakis, 2014). The data set was partitioned 
into five subsets: the three codon positions of the  
13 protein-coding genes; the 2 rRNA genes, and the  
22 tRNA genes. A separate GTR+G model of nucleotide 
substitution was assigned to each subset of the data. The 
maximum-likelihood tree was estimated using 10 random 
starts. Node support was estimated using 1000 bootstrap 
replicates. 

To co-estimate the phylogenetic relationships and evolu-
tionary timescale, we analysed the mitochondrial genome 
sequences using a Bayesian phylogenetic approach in 
BEAST 1.8.2 (Drummond et al., 2012). The Bayesian 

information criterion was used to select the best-fitting 
model of nucleotide substitution for each data subset. 

We compared two tree priors (Yule and birth-death) 
using Bayes factors, based on marginal likelihoods 
calculated using the stepping-stone estimator (Xie  
et al., 2011). To account for the potential presence of rate 
variation across lineages, we also used Bayes factors to com-
pare the strict clock against the uncorrelated lognormal 
relaxed clock (Drummond et al., 2006). We included relative-
rate parameters to allow each subset of the data to have a  
different evolutionary rate. 

To calibrate our phylogenetic estimates of divergence 
times, we included age constraints based on the fossil 
record. Our calibrations were based on the stem snow 
leopard Panthera blytheae (Tseng et al., 2014), stem 
tiger Panthera zdanskyi (Mazak et al., 2011), and stem 
pantherine Panthera paleosinensis (Mazak, 2010). These 
fossils were used to specify uniform priors on the ages 
of corresponding nodes in the tree (Ho and Phillips, 
2009). Previous estimates of the evolutionary timescale 
of cave lions were calibrated using fossil evidence from 
P. fossilis (Burger et al. 2004, Barnett et al. 2009), but  
the exact placement of this taxon is unclear. For  example, 
incorrect assignment of a stem taxon to a crown 
clade can lead to overestimation of  divergence times. 
Alternatively,  divergence times can be  underestimated 
when a taxon belonging to the crown group is erro-
neously assigned to the stem lineage. By using other  
fossil calibrations, we were able to test whether the 
split between cave lion and modern lion coincided with 
the existence of P. fossilis.

Posterior distributions of parameters, including the 
tree and divergence times, were estimated using Markov 

Taxon Common name Genbank accession Reference

Panthera leo persica Asian lion NC018053 (Bagatharia et al., 2013)

Panthera leo leo African lion KF776494 (Ma and Wang, 2014)

Panthera leo Lion KP202262 Unpublished, GenBank

Panthera pardus Leopard NC010641 (Wei et al., 2011)

Panthera pardus japonensis North Chinese leopard KJ866876 (Dou et al., 2014)

Panthera onca Jaguar NC022842 Unpublished, Genbank

Panthera tigris sumatrae Sumatran tiger JF357970 (Kitpipit and Linacre, 2012)

Panthera tigris tigris Bengal tiger JF357968 (Kitpipit and Linacre, 2012)

Panthera uncia Snow leopard NC010638 (Wei et al., 2011, Wei et al., 2009)

Neofelis nebulosa Clouded leopard NC008450 (Wu et al., 2007)

Felis sylvestris catus Domestic cat FCU20753 (Lopez et al., 1996)

Felis sylvestris catus NUMT Nuclear pseudogene FCU20754 (Lopez et al., 1994, Lopez et al., 1996)

Panthera tigris NUMT Nuclear pseudogene DQ151551 (Kim et al., 2006)

Panthera spelaea YG401.410 Cave lion KX258451 This study

Panthera spelaea
F-2678/70

Cave lion KX258452 This study

Table 2: Mitochondrial genomes of pantherine cats analysed in this study.
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chain Monte Carlo sampling. Samples were drawn every 
2000 steps over a total of 20,000,000 steps. Convergence 
was checked using two independent chains, and the 
resulting samples were combined. Sufficient sampling 
was  confirmed by inspection of effective sample sizes of 
parameters, which were all greater than 200. 

Results
Radiocarbon dating

Sample YG401.410

We obtained two separate dating results for sample 
YG401.410. The dates were within three hundred 14C years 
of each other, with overlapping 95% confidence intervals. 
Collagen yield was substantial (Table 3), with δ13C and 
δ15N values appropriate for the trophic level of the spe-
cies (Bocherens et al., 2011). Interestingly, the radiocarbon 
date for this specimen falls within a noticeable chronolog-
ical gap for Eastern Beringian lions, suggesting that some 
of the absences observed by Stuart and Lister (2010) may 
be resolved with further sampling.

Sample F-2678/70

The hair sample has previously been radiocarbon dated 
by Kirillova et al. (2015). The reported uncalibrated 
AMS date of 28,690 ± 130 was much younger than 
dates associated with bone and claw from the same 
individual, which could have resulted from incomplete 
removal of modern carbon. For a full discussion see 
Kirillova et al. (2015). 

Phylogeny and divergence times

Our initial estimates of the phylogeny gave unexpected 
placements for some of the taxa (data not shown). Inclu-
sion of the mitochondrial genomes from the African lion 
(Ma and Wang, 2014) and Asian lion (Bagatharia et al., 
2013) produced a tree with P. spelaea as the sister taxon 
of P. l. persica, in contradiction with previous studies  
(Barnett et al., 2009, Burger et al., 2004, Ersmark et al., 
2015). Analysis of the ATP8 gene, which has been charac-
terised for both cytoplasmic and nuclear origin (Barnett  

et al., 2009) in Panthera cats, revealed the presence of 
a numt sequence within the mitochondrial genome 
 published by Ma and Wang (2014). Given that this 
 mitochondrial genome sequence was assembled from 
published nuclear genome data (Cho et al., 2013), it 
is likely to include a significant proportion of nuclear-
derived sequence. Therefore, this mitochondrial genome 
was excluded from further analyses.

The evolutionary relationships estimated using maxi-
mum-likelihood and Bayesian methods were congruent 
(Figure 3), with all nodes being strongly supported. The 
two samples of P. spelaea group together as the sister lin-
eage to P. leo. Our estimates of divergence times largely 
overlap with previous estimates (Johnson et al., 2006, 
Barnett et al., 2005). However, the estimated split between 
P. leo and P. spelaea at 1.89 Ma (95% CI: 1.23–2.93 Ma) is 
considerably older than the first appearance of Panthera 
fossilis, which has been used as a calibrating node in previ-
ous studies (Burger et al., 2004, Barnett et al., 2009).

Discussion
Evolutionary history of the lion-like cats

Despite their global range and continued dominance of 
ecosystems in Africa, and until recently in Asia, the lion-
like cats have left a confusing fossil trail. Remains of pan-
therine felids have been found in fossil beds dating to 
3.46 million years ago at Laetoli in Tanzania (Barry, 1987), 
with recognisably leonine fossils known from Olduvai II 
at 1.4–1.2 million years ago (Hemmer, 2011). Lion fos-
sils only become relatively abundant during the Middle 
Pleistocene, with the appearance of Panthera fossilis. This 
taxon is considered an ancestral form of Panthera spelaea 
and provides a minimum age for the separation between 
the spelaea and leo lineages. P. fossilis is known from MIS 
17-15 (680-600 ka) from European sites such as Mosbach 
(Germany), Pakefield (UK) and Isernia (Italy) (Hemmer, 
2011, Turner and Antón, 1997, Lewis et al., 2010, Sabol, 
2011). Given our divergence-time estimates (Figure 3), it 
would appear that P. fossilis must be already on the branch 
leading towards P. spelaea rather than close to the split. In 

UCIAMS UCIAMS-142833 UCIAMS-143525

Fraction Modern 0.0243 ± 0.0006 0.0234 ± 0.0006

D14C (‰) −975.7 ± 0.6 −976.6 ± 0.6

14C Age BP 29,860 ± 210 30,160 ± 220

>30 kD Collagen yield(%) 8.1 N/A

δ15N (‰) 8 N/A

δ13C (‰) −18.2 N/A

%N 16.3 N/A

%C 44.7 N/A

C/N (wt%/wt%) 2.75 N/A

C/N (atomic) 3.21 N/A

Table 3: Results of two AMS radiocarbon analyses of sample YG401.410 with associated stable isotope and chemical 
analysis values.
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view of this finding, we recommend that P. fossilis should 
only be used to provide a minimum age constraint for the 
split between the leo and spelaea lineages.

Dating the divergence between spelaea and leo

Much of the discussion of the taxonomic position of the 
cave lion has revolved around its degree of separation 
from modern lion populations. Although some authors 
have aligned the spelaea and atrox lineages with the tiger 
(Groiss, 1996, Herrington, 1986) and with the jaguar 
(Simpson, 1941, Christiansen and Harris, 2009), most have 
realised its close connection to the  modern lion (Goldfuß, 
1810, Dawkins et al., 1866, Vereshchagin, 1971, Turner, 
1984, Kurtén, 1985, Sotnikova and Nikolskiy, 2006). 

Previous genetic studies (Burger et al., 2004, Barnett 
et al., 2014) have used the first appearance of the 
ancestral cave lion (Panthera fossilis) (Sotnikova and 
Foronova, 2014, Peretto et al., 2015) to calibrate 
 estimates of the pantherine evolutionary timescale. 
This study represents the first attempt to identify the 
divergence bounds between spelaea and leo  without 
recourse to P. fossilis as a calibration. The identifi-
cation of this split within the Early Pleistocene at  
1.89 Ma, rather than the Middle Pleistocene, shows that 
the modern lion and cave lion lineages represent substan-
tially distinct taxa. A caveat to this is that the estimates 
rely strongly on the fossil calibrations used. If  reanalysis 
later shows that these fossils have been ascribed to 
the wrong lineages or are re-dated to different periods 
then their utility in the analysis will be compromised. 

Comparison with other recent pantherines (Figure 3)  
demonstrates that the degree of mitochondrial diver-
gence is considerably greater than that found between 
well-defined subspecies in modern lion (P. leo) (Barnett 
et al., 2014), leopard (P. pardus) (Uphyrkina et al., 2001), 
or tiger (P. tigris) (Luo et al., 2004). The estimated  
divergence time between P. leo and P. spelaea is also 
greater than that between the two newly recognised 
species of clouded leopard, Neofelis nebulosa and  
N. diardi, which has been estimated at 1.41 Ma (Buckley-
Beason et al., 2006). 

Mitochondrial data and the considerable morphologi-
cal differences (Sotnikova and Nikolskiy, 2006) support 
the recognition of the cave lion as a full species: Panthera 
spelaea. Data from the nuclear genome will allow further 
testing of this proposal. 

Conclusions
Our analyses of mitochondrial genome sequences reveal 
that the Middle Pleistocene Panthera fossilis is likely 
to represent a form already on the spelaea lineage. Its 
appearance in the fossil record demonstrates the ini-
tial spread of the ancestral cave lion form into Eurasia.  
Furthermore, our study has provided an estimate of  
1.89 Ma (95% CI: 1.23–2.93 Ma) for the split between the 
lineages leading to the cave lion and modern lion. This 
molecular estimate appreciably antedates the appearance 
of P. fossilis, and provides further evidence that the cave 
lion was distinct enough to be considered a species in its 
own right.

Figure 3: Bayesian estimate of the pantherine phylogeny based on mitochondrial genomes. The tree is drawn to a time-
scale, given in millions of years. Bars at nodes give 95% credibility intervals of node-age estimates. Values at nodes 
denote posterior probabilities and likelihood bootstrap support. The position of the root was inferred by using the 
domestic cat (Felis sylvestris catus) as the outgroup.
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Availability of Supporting Data
Sequence data produced for this study have been 
uploaded to GenBank, with accession numbers KX258451 
and KX258452. Raw data have been uploaded to the 
Sequence Read Archive at NCBI under study accession 
number SRP075782.
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