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Abstract

Background: Mitochondrial dysfunction is linked to numerous pathological states, in particular related to

metabolism, brain health and ageing. Nuclear encoded gene polymorphisms implicated in mitochondrial functions

can be analyzed in the context of classical genome wide association studies. By contrast, mitochondrial DNA

(mtDNA) variants are more challenging to identify and analyze for several reasons. First, contrary to the diploid

nuclear genome, each cell carries several hundred copies of the circular mitochondrial genome. Mutations can

therefore be present in only a subset of the mtDNA molecules, resulting in a heterogeneous pool of mtDNA, a

situation referred to as heteroplasmy. Consequently, detection and quantification of variants requires extremely

accurate tools, especially when this proportion is small. Additionally, the mitochondrial genome has pseudogenized

into numerous copies within the nuclear genome over the course of evolution. These nuclear pseudogenes, named

NUMTs, must be distinguished from genuine mtDNA sequences and excluded from the analysis.

Results: Here we describe a novel method, named MitoRS, in which the entire mitochondrial genome is amplified

in a single reaction using rolling circle amplification. This approach is easier to setup and of higher throughput

when compared to classical PCR amplification. Sequencing libraries are generated at high throughput exploiting a

tagmentation-based method. Fine-tuned parameters are finally applied in the analysis to allow detection of variants

even of low frequency heteroplasmy. The method was thoroughly benchmarked in a set of experiments designed

to demonstrate its robustness, accuracy and sensitivity. The MitoRS method requires 5 ng total DNA as starting

material. More than 96 samples can be processed in less than a day of laboratory work and sequenced in a single

lane of an Illumina HiSeq flow cell. The lower limit for accurate quantification of single nucleotide variants has been

measured at 1% frequency.

Conclusions: The MitoRS method enables the robust, accurate, and sensitive analysis of a large number of samples.

Because it is cost effective and simple to setup, we anticipate this method will promote the analysis of mtDNA

variants in large cohorts, and may help assessing the impact of mtDNA heteroplasmy on metabolic health, brain

function, cancer progression, or ageing.
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Background
Mitochondria carry a small circular double-stranded

genome of 16’569 bp in human which encodes the mito-

chondrial 16S and 12S ribosomal RNA, 22 mitochon-

drial tRNA molecules and 13 proteins of the respiratory

chain. Therefore only a minute fraction of a total of

about 1’500 mitochondrial proteins is encoded by the

mitochondrial DNA (mtDNA) whereas all other proteins

are nuclear DNA encoded and imported into mitochon-

dria [1, 2]. Mitochondrial DNA also encodes for some

short peptides which roles and mechanisms of action are

not fully understood [3]. Common non-pathogenic mtDNA

variations can be classified in so-called haplogroups, defin-

ing specific populations that can be linked to their maternal

lineage [4]. The relatively high mutation rate of mitochon-

drial DNA makes haplogroup determination and classi-

fication an important tool for paleoanthropology and

population genetics. Because of the large degree of

sequence variability, maternal mode of inheritance and

biological particularities (such as high copy number per

cell and presence in enucleated cells), mtDNA analysis

is also widely used in forensic science [5].

The mitochondrial genome is present in multiple

copies ranging from a few hundred to several thousand

copies per cell. Consequently, a mutation occurring in

the mitochondrial DNA results in a sequence heterogen-

eity within the mtDNA pool. Several mtDNA popula-

tions can therefore co-exist in a cell, a phenomenon

called heteroplasmy. The extent of heteroplasmy can be

highly variable even within an organism. The concept of

heteroplasmy is known from a long time but many re-

cent findings resulting from sensitive variant detection

approaches highlighted how far this is a common situ-

ation [6–12]. Note that without single cell resolution, it

is not possible to distinguish heteroplasmy at individual

cell level from an apparent heteroplasmy which would

be the result of the average of several cells with a distinct

mtDNA content. Some heteroplasmic mtDNA muta-

tions are actually somatic, i.e. they are not inherited but

occur over the life course. Accordingly, many studies

report an increasing number and frequency of hetero-

plasmic mtDNA variants with age [10, 12, 13]. This is

also a factor contributing to the tissue heterogeneity for

heteroplasmy [10].

Mitochondrial DNA mutations can impair oxidative

phosphorylation and therefore give rise to primary

mtDNA-related diseases. Today, several hundred mtDNA

point mutations affecting every mtDNA encoded gene

have been identified [2]. About 1 in 5’000 individuals

develop an mtDNA-related disease, while the frequency of

carriers of mtDNA mutations may be much higher. For

instance, 1 in 200 healthy humans was found to carry one

of the 10 most abundant pathogenic mtDNA mutations

[14]. Clinical symptoms consecutive to these mutations

are usually observed in muscle, heart, endocrine or brain,

which are all tissues strongly depending on mitochondria

for energy production. Individuals with mitochondrial dis-

eases are usually heteroplasmic carrying a mixture of wild-

type and mutated mitochondrial genomes [11, 15, 16].

Clinical manifestation therefore does not only depend on

the specific mutation and the affected gene but also on the

ratio of mutated to wild-type mtDNA. Exceeding a ratio

threshold leads to energy stress in the vulnerable tissues

and consequently to a variety of disease symptoms (for

example, see an elegant molecular analysis by Picard et

al. [17]). Recent studies highlighted that this threshold can

be of first importance for nuclear reprogramming since

asymptomatic low frequency heteroplasmy variants

present in the donor cells can turn into deleterious high

heteroplasmy variants into some of the derived induced

pluripotent stem cell clones (iPSC) [12, 18]. Accurate and

sensitive methods for the analysis of mtDNA are therefore

necessary to enable the detection and quantification of

low frequency heteroplasmy variants.

Mitochondrial DNA analysis is further complicated by

the presence of nuclear DNA (nucDNA) regions hom-

ologous to mtDNA. These regions, called NUMTs (for

Nuclear MiTochondrial DNAs), are the result of an ex-

tensive mtDNA pseudogenization in the nuclear genome

during evolution. They can be found as blocks of several

kilobases, highly homologous to the genuine mtDNA

sequence, and spread as multiple copies throughout the

genome. Some NUMTs seems to be universal, whereas

others may be specific to some subpopulations [19].

Human and mouse mtDNA have been fully sequenced

in the early 80s [20, 21]. Mitochondrial DNA sequencing

was historically carried out using Sanger sequencing of

PCR products. Several protocols have been described for

human mtDNA, the most classical ones involving ~ 30

distinct PCR reactions to cover the ~ 16.5 kb genome.

PCR amplicons can also be analyzed using dedicated mi-

croarrays such as the GeneChip Human Mitochondrial

Resequencing Array 2.0 from Affymetrix. In general,

these approaches are labor intensive, of low to moderate

throughput, and expensive. Alternative methods simpli-

fied the workflow by targeting specifically the hypervari-

able regions, a small non-coding (but highly informative)

portion of the mitochondrial genome. However, a limitation

of Sanger sequencing is its lack of sensitivity, which restricts

the identification to variants with an heteroplasmy fre-

quency of over 10–20% [22]. This may be a major flaw for

mutation carrier detection or in situations for which the

extent of heteroplasmy of a given variant would be key for

understanding the etiology of mtDNA related diseases (see

above). Nowadays, more quantitative Next Generation Se-

quencing (NGS) technologies are replacing Sanger sequen-

cing to characterize the PCR products. A recent method

described for instance a panel of 161 tiling PCR products,
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covering the entire mtDNA, sequenced on a PGM (Ion

Torrent Personal Genome Machine, Thermo Fischer) [23].

The most common methods have actually rather been

focusing on the simplification of the PCR strategy, introdu-

cing long range PCRs covering the full mtDNA with only 1

to 3 amplicons [24–26]. The single amplicon PCR is a clear

progress over the other PCR methods since it requires a

single reaction well per sample, facilitating the setup and

reducing the risk of handling errors. However, even when

primer sequences are available from the literature, long

range PCR can be complicated to establish as it may re-

quire the optimization of the buffer, as well as of the cycling

conditions to achieve a robust and specific amplification. In

addition, the PCR reaction can be impacted by the presence

of a polymorphism in a primer binding site. This represents

an important potential issue when considering that several

thousands of human mtDNA variants are reported in the

MITOMAP database, some being found at high frequency

in the population [27]. Along the same line, it has been ob-

served that NUMTs can be individual specific [19]. It may

therefore happen that, for some individuals, primers could

co-amplify NUMTs, again biasing the variant detection. For

organisms less well characterized than human and mouse,

such as the rat or the zebrafish which are widely used as

model organisms in research, the absence of extensively

validated PCR primers seriously complicates the design of

PCR amplification of mtDNA. As an alternative to PCR

amplification, mtDNA can be enriched by biochemical

purification of the organelle [28, 29]. This approach can ef-

ficiently eliminate the nuclear DNA (carrying the NUMTs)

but it requires relatively large amounts of fresh starting

material, it is labor intensive, and its throughput is low.

Another strategy, more in line with classical NGS

methods, is to start from total DNA extracts but to se-

quence only a subset of the libraries which have been

enriched for mtDNA by an hybridization-based capture

using mtDNA-specific baits [8, 30]. Sequencing reads

mapping the mitochondrial DNA are also found as by-

product of whole genome or whole exome sequencing

data, and have been used for several studies [7, 31–33].

However, such sequencing strategies have been designed

for capturing the nuclear DNA information which is gen-

erally identical in all cell types and stable over time, and

are therefore not optimal for extensive mtDNA research.

A comprehensive overview of the different methods for

high throughput sequencing of mtDNA has recently been

published [34].

As an alternative to PCR, the amplification of mtDNA

can be achieved using Rolling Circle Amplification

(RCA, also known as MDA for Multiple Displacement

Amplification). Random primed rolling circle amplifica-

tion elegantly eliminates the PCR concerns described

above since a universal setup fits all species, works with-

out the need for technical optimization, and requires a

single amplification reaction per sample. The circular

nature of mtDNA (as opposed to the reaction priming

for PCR) allows the specific and efficient enrichment of

mtDNA versus nucDNA. Thanks to the high processivity

and the strong strand displacement activity of the Phi29

polymerase used in the RCA reaction, a single priming

event will indeed generate several copies of the mtDNA

(circular template). In contrast, nucDNA (linear template)

will only result in a 1:1 amplicon:template ratio (as illus-

trated in Additional file 1: Figure S3A). This approach has

been previously used to amplify mtDNA [35, 36] but with-

out further evaluating whether the product was suitable

for low frequency variant detection. It is also worth men-

tioning that successful RCA amplification is achieved with

input as low as 50 pg of total DNA (data not shown), as

opposed to 100’s of ng of material used with PCR-based

approaches.

Here, we describe MitoRS (for Mitochondrial DNA

analysis by Rolling circle amplification and Sequencing),

a novel mtDNA sequencing strategy for detecting

mtDNA variants with high accuracy and sensitivity. The

initial amplification of mtDNA takes advantage of the

versatility of the RCA reaction. Libraries are then prepared

at high throughput thanks to a tagmentation-based

method, and sequenced to high depth by NGS. The

analysis pipeline is tuned to detect low frequency

heteroplasmic variants. The entire procedure is tailored

to be high throughput and requires less than a day of

work, even for a large number of samples. Extensive

benchmarking experiments have been designed and are

reported to demonstrate the actual performance of MitoRS.

Detailed laboratory protocols, analysis pipeline, and bench-

marking procedures are presented to allow straightforward

implementation of the pipeline. We anticipate this method

will promote the analysis of mtDNA polymorphisms.

Results
RCA validation for mitochondrial DNA enrichment

Accurate and sensitive analysis of mtDNA requires its

enrichment over nucDNA. This step specifically limits

the generation of undesired nucDNA sequencing data

(sequencing “waste”) and allows working with low

amount of starting material.

In order to assess the actual level of mtDNA enrichment

obtained by RCA, qPCR was performed to measure the

relative amount of mtDNA versus nucDNA prior and after

amplification. Total DNA extracted from different

biological starting material was used for RCA: mouse

liver, adherent human cells in culture, or immortalized

B-lymphocyte (from the human DNA sample repository

at the Coriell Institute for Medical Research). Depend-

ing on the sample, 100- to 10’000-fold RCA-dependent

enrichment was achieved (Fig. 1a). We confirmed by

restriction digest of the mouse DNA RCA products that
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the amplified DNA mainly consists of concatenated

mtDNA (Additional file 1: Figure S3). Even with the low-

est enrichment measured in mouse liver B6D2F1 liver ex-

tracts, we estimated a ratio of only one nucDNA molecule

per 50’000 mtDNA molecules after RCA amplification. It

is therefore very unlikely that NUMTs could interfere with

variant detection following RCA enrichment.

We formally evaluated the extent of NUMTs contam-

ination by comparing the sequencing results obtained

from a cell line (human 143-B cells) and its derivative in

which the mtDNA was depleted (143-B-Rho0 cells). For

this purpose we applied the MitoRS method which is

summarized (laboratory procedures and analysis pipe-

line) in the Additional file 2: Supporting Information

and in the Additional file 3: Figure S1 and Additional file

4: Figure S2. All sequencing reads obtained from the

Rho0 cells and mapping to the mtDNA should be origin-

ating from NUMTs contamination. We first confirmed by

qPCR that the mtDNA was indeed reduced from ~ 2’000

copies (143-B cells) to the equivalent of less than 0.1 copy

per cell in DNA extracted from these cell lines (143-B-

Rho0 cells, data not shown). When analyzed with the

MitoRS pipeline, the proportion of sequencing reads map-

ping to the mtDNA genome dramatically dropped from

Fig. 1 Rolling circle amplification of mitochondrial DNA. a Rolling circle amplification significantly enriches the mitochondrial DNA versus

nucDNA. Absolute quantification by qPCR was performed to evaluate the ratio between mtDNA and nucDNA with or without RCA. Copy

numbers are calculated from standard curves. Results are shown in log10 scale. Standard deviation are calculated from three independent qPCR

experiments, on the same sample for the non-amplified material, and from three independent RCA reactions for the amplified samples. mm: mus

musculus, hs: homo sapiens. b Nuclear reads contamination (NUMTs) does not affect MitoRS. Sequencing reads generated from a human control

cell line (143-B) or its mitochondria-free derivative (143-B-Rho0) were mapped against the human mtDNA reference (rCRS, NC_012920.1). The ratio

of the absolute coverage (reported by mpileup) between the Rho and control cell line was calculated for each position of the reference genome

and plotted. The two datasets are generated from the same total number of reads (~15 million). Note that these samples had to be sequenced

10 times more than the usual procedure because of too few mapping reads for the Rho0 sample
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~60% in the control sample to less than 0.05% in the Rho0

sample (the remaining reads mapping to nucDNA). The

sequencing coverage ratio between the Rho0 and the con-

trol samples was calculated at each position of the mtDNA

reference genome. The corresponding plot (Fig. 1b) high-

lights the fact that this NUMTs contamination is ex-

tremely low (below 0.06%). It is actually most probably the

result of trace amount of mtDNA remaining in the Rho0

cells. This demonstrates that using the MitoRS experi-

mental settings, NUMTs are not interfering with genuine

mtDNA variant detection, even for low frequency

heteroplasmy.

RCA application for low frequency variant detection

RCA is a widely used technology for whole genome ampli-

fication, in the context of genotyping experiments for in-

stance. The low error rate of the Phi29 polymerase

(estimated to be in the 10-6 range [37]) has only minimal

consequences when investigating normal diploid genomes

for which a given variant will have a frequency of 0, 50 or

100%. The situation is different when investigating low

frequency heteroplasmy as in the case of viral DNA, can-

cer cell nuclear DNA, or mtDNA analysis for example.

We therefore considered important to carefully evalu-

ate the RCA-induced error by sequencing libraries

generated through our pipeline, including or not the

RCA step. Plasmid DNA was selected as the ideal start-

ing material for this purpose because it can be produced

at high concentration, to high purity, and is virtually

clonal. This allows the generation of a control sequencing

library directly from the crude starting DNA, without any

pre-amplification step. We preferred plasmid DNA over

PCR products because of its circular nature, similar to

mtDNA. RCA reactions were seeded with approximately 5

million plasmid molecules (estimated from fluorescent-

based DNA quantification) spiked into 5 ng of total mouse

liver total DNA to mimic mtDNA amplification condi-

tions. For the non-amplified conditions, the library was

generated directly from crude plasmid DNA.

RCA does not introduce a coverage bias

As shown in Fig. 2, the sequencing coverage obtained

from the crude and the RCA treated samples are nearly

perfectly overlapping, indicating that RCA does neither

over- nor under-amplify specific sequences.

Unlike Plasmid1, the coverage over the reference

genome for Plasmid2 is not homogenous. This profile

is similar with or without RCA, demonstrating that

this variation is not the consequence of RCA. The

origin of this phenomenon is most probably the result

of biases introduced by the subsequent steps in the

process such as the tagmentation, the PCR amplification

of the library, the clustering, or the sequencing. This hy-

pothesis is consistent with coverage differences commonly

observed when comparing sequencing libraries generated

with a normal and a PCR free method (our observations,

data not shown).

RCA does not introduce technical variability

Each plasmid DNA was run as four independent replicates

with or without RCA. These technical replicates are per-

formed from the same plasmid DNA preparations. The

technical reproducibility of the variant frequency call was

evaluated by calculating the standard deviation within the

four replicates.

This analysis shows that there is literally no variation

for the two non-amplified plasmids, confirming that

the library preparation and the sequencing procedures

are extremely robust (Additional file 5: Figure S4A).

Following RCA, we detected a slight albeit very low

background noise with only few positions having a

standard deviation over 0.1% (the VarScan variant

detection threshold). The two positions with the high-

est standard deviation (>0.2%) can actually be fully

explained by the presence of a high frequency variant

detected in the plasmid DNA (see below).

RCA is accurate

We next evaluated whether RCA introduces errors in

the template DNA to be sequenced, which would reduce

the sensitivity and accuracy of the approach. To this end,

we calculated the difference in the frequency of detected

variants between the amplified and the non-amplified ma-

terial for each position of the reference genome. Here we

consider separately Single Nucleotide Variants (SNV) and

Insertion/Deletion (Indel) events. Only few positions could

actually be identified, and most of them with only minor

differences.

The high accuracy of the RCA amplification was dem-

onstrated by the very low difference in the frequencies

of SNV (below 0.4%, see Fig. 3a). The two discordant

SNV positions (marked with a star in Fig. 3a) can con-

clusively be explained by the presence of contaminating

nonspecific plasmid DNA reads originating from the

Phi29 enzyme preparation (see the Additional file 2:

Supporting Information). Importantly, such contamin-

ation is not a concern when analyzing mtDNA.

Small indels (maximum observed size of 2 nucleotides

in this test) were also quantified accurately albeit with

slightly lower precision than SNV (differences up to 2%,

see Fig. 3b). This higher error rate for indels may be the

result of Phi29 dependent proofreading activity [37]. In

addition, slight inaccuracy for indel frequency evaluation

is not unexpected because precise indel quantification

may require local sequencing read realignment to ac-

count for unavoidable sequencing reads mapping errors.

Taken together, these data demonstrate that the RCA

allows a robust amplification of mtDNA with very limited
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introduction of errors. It is therefore fully compatible with

low frequency mtDNA variant analysis by NGS, consider-

ing a lower threshold in the 0.5% range for SNV and 2%

for indels.

Benchmarking of MitoRS accuracy and sensitivity

We next assessed the accuracy and sensitivity of the

MitoRS pipeline to quantify heteroplasmy frequency.

DNA was prepared from the livers of two mouse strains

(B6D2F1 and NMRI) whose mtDNA differ at more than

90 positions, offering many distinct sequence contexts

to benchmark the pipeline. Variant identification from

pure B6D2F1 and NMRI DNA extracts is detailed in the

Additional file 2: Supporting Information. The two total

DNA preparations were mixed at various ratios and an-

alyzed. A total of 12 mixtures of NMRI/B6D2F1 DNA

at ratios ranging from 0 to 100% were assayed. For each

ratio, three independent RCA reactions were per-

formed. Total amount of DNA (5 ng) and therefore the

mtDNA copy number (~5 millions) was kept constant

for each ratio. The exact mixture ratio was precisely cali-

brated from the frequencies obtained for the 50/50 ratio

(see the Additional file 2). The average coverage was

around 3’000X.

Benchmarking SNV detection

We first focused on the 88 homoplasmic SNV that are

distinct between the two mouse strains mtDNA (see the

Additional file 2: Supporting Information). Results are

presented with box plots to report the behavior per

variant (Additional file 6: Figure S5A) as well as with a

general plot to present a global picture of MitoRS per-

formance (Fig. 4a).

When considering the median values of measured fre-

quencies compared to the expected frequencies (based

on the known mixture ratio), we observed a very high

correlation (Pearson coefficient = 0.99994) with a slope

very close to 1 (slope = 0.99903). This demonstrates that

Fig. 2 RCA does not introduce coverage biases. Sequencing reads were generated from two plasmid DNA with or without the RCA step. The

relative coverage reported by mpileup was plotted against each position of the reference genome. A single replicate is presented though the

exact same patterns were observed for independent triplicates. Top panel: plasmid1, bottom panel: plasmid2
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our pipeline faithfully delivers frequencies of hetero-

plasmy measured for any variant very close to its actual

value. Importantly, this also holds true for the lowest

frequencies we assayed (<0.5%, see Fig. 4a insert panel).

The 25 and 75% quartiles are always close to the me-

dian, indicating that there are only few outliers amongst

the 88 individual SNV. A closer inspection of individual

ratios and SNV (see Additional file 6: Figure S5 and

Additional file 7) reveals that only few SNV are actually

detected with lower accuracy and that this behavior

seems to be position dependent. This suggests that the

sequence context can influence the quantification of

SNV frequency (binomial regression, p-value = 5.6 × 10-9).

We did not observe any relationship between lower accur-

acy quantification and the coverage level or the sequence

itself. The only positive correlation we identified was the

surrounding variant density (variant density in a 300 bp

window since we use 150 cycles Illumina reads) centered

on the variant of interest, (Poisson regression, p-value =

2 × 10-16). Accordingly, the height positions for which the

frequency underestimation is the highest could actually be

clustered into two regions carrying four variants in a win-

dow of ≈ 50 nucleotides (see Additional file 6: Figure S5B

and Additional file 7). We hypothesize that a higher vari-

ant density may impair proper sequencing read mapping

as a read with many variants will not have a mapping

score as good as a read perfectly matching the reference.

Note that even with the SNV deviating the most from the

expected frequency (position 15’588), the variant is de-

tected at a sensitivity below 1% with accuracy (~2-fold

underestimation for the lowest frequencies).

The result presented above were focused on the 88 ex-

pected SNV, not taking in account the VarScan default

p-value threshold of 0.001. If this filter is applied, less

than 30% of the 88 SNV are actually detected for the

minimum theoretical 0.4% ratio. It increases to 80% for

the 0.8% ratio and all 88 variants are detected for any

higher ratio tested (i.e 1.6% and above). This means that

there is a gray zone in which some genuine SNV are not

recognized as variants by VarScan (false negative posi-

tions). Importantly, for any of the mixture ratio tested,

no unexpected SNV (false positive) could be identified

at this p-value (<0.001). This gray zone is therefore not

affected by false positive SNV. Lowering the p-value

stringency would reduce the number of false negative

(ignored genuine SNV) but concomitantly result in some

false positive SNV (unexpected variants). We also tested

a 10-fold increase in the sequencing depth (average

mtDNA coverage >30’000X) and observed the same

trend, i.e. an increased sensitivity balanced by a higher

background (data not shown). Based on the large

sequence context diversity analyzed here (88 distinct

SNV), we decided to set the MitoRS SNV detection fre-

quency threshold at 1%. Nevertheless, the actual lower

limit of detection to consider depends on the application

and the biological question (tradeoff between false

positive and false negative rate).

Benchmarking indel detection

Indel analysis was performed as for SNV but exploiting

only the two positions for which indels were identified:

position 5’204 (+G, 98% in NMRI) and position 9’820

Fig. 3 RCA does not introduce sequencing errors. The difference in absolute frequencies between the non-amplified samples and the RCA samples

was computed for each single position of the reference genome. The positions with a non-null difference are plotted as a bar. a SNV and b indels are

plotted in two different graphs. The two non-concordant positions from the SNV panel resulting from unspecific RCA amplification are marked with a

star (see the Additional file 2: Supporting Information). The calculation was made as the average frequency within the four sample replicates. Only pass-

ing filter variants were considered. Left panel: SNV, right panel: indels
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(+AA, 84% in NMRI) (see the Additional file 2: Sup-

porting Information). Note that position 9’820 is in a

potentially complex context given the AA insertion

lies in front of a stretch of eight As.

As for SNV, we observed a very high correlation across

the different ratios which were analyzed (Fig. 4b). It is

interesting to note that the slope is different from 1

(0.977 and 0.835 for positions 5’204 and 9’820 respect-

ively). This is perfectly in line with the fact that both

variants are not homoplasmic but are found in 98 and

84% of the mtDNA molecules respectively (see the

Additional file 2: Supporting Information). This

demonstrates that our pipeline can accurately and ro-

bustly determine indel frequencies.

In terms of sensitivity threshold, we have previously

shown that the RCA induces errors as high as 2%. Here,

a G insertion at position 5’204 is still accurately detected

at ratios as low as 0.4%, whereas the background level

is in the range of 1% for the more complex 9’820

position. Nevertheless, the VarScan p-value threshold

(p-value < 0.001) restricts the analysis to mixture ratio

above 1.6% so that the two indels are not considered

as false negative. Moreover, data from the pure NMRI

and B6D2F1 mtDNA runs revealed 5 false positive

Fig. 4 Benchmarking MitoRS accuracy and sensitivity. a SNV detection is accurate over the whole range of frequencies. Total DNA extracted from

two mouse strains was mixed at different ratios and run through the pipeline. The measured frequency of the 88 homoplasmic SNV distinguishing the

mtDNA from the two strains are plotted versus the calculated ratio from the input mixture. Red dots correspond to the mean frequency calculated

from the 88 variants, internal blue bars show the 25th and 75th quartile, and extremal grey bars the minimum and maximum variant frequency

observed for a given ratio. The correlation factor and the slope of the linear regression are shown on the graph. Three independent input mixtures

were run for each theoretical ratio. The insert panel is a zoom on the low frequency ratios. b Indels analysis is also accurate. Same graph as in A., but

considering only the two indel positions distinguishing the mtDNA from the two strains. The insert panel is a zoom on the low frequency ratios.

Results are calculated as the average and standard deviation of the three independent RCA reactions performed for each ratio
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indels (passing the p-value filter) with frequencies as

high as ~7% for position 5’171 (see the Additional file 2:

Supporting Information and the Additional file 7).

These are however associated with particularly com-

plex sequence contexts. As a consequence, although

we demonstrated that indels can be accurately quanti-

fied at frequencies as low as 0.5%, we considered that

the relatively high level of false positive imposes

MitoRS a conservative minimal threshold of 10%.

Application of MitoRS to mtDNA heritability analysis

Analysis strategy

To apply the MitoRS pipeline, we investigated the herit-

ability of mtDNA variations within the full CEPH families

1463 and 884. These large families offer the possibility to

study the transmission of mtDNA variants over three

generations. The full mtDNA of 17 (family 1463) and 18

(family 884) individuals were sequenced and analyzed.

Data interpretation presented below could be performed

using simple calculation, sorting, and filtering tools

applied to the final output csv file generated.

Based on the benchmarking performed on mouse

mtDNA (see above), variants were filtered for a minimum

frequency of 1% for SNV and 10% for indels. Most of the

mtDNA could be successfully included in the analysis, ex-

cept few low complexity positions, mostly around the 310

C-stretch (labeled with “EXCLUDE”, see details in the

Additional file 2: Supporting Information). For simplicity,

we also chose not to report variants flagged for their map-

ping coverage below 10% of the average coverage (marked

with “WARNING”, see details in the Additional file 2:

Supporting Information). A table summarizing positions

with identified variants can been found in the Additional

file 8 and Additional file 9).

For an easy visual overview, identified variants were

separated into 3 classes based on their frequency, and

presented as a pedigree tree (Fig. 5). The 3 classes of var-

iants are: homoplasmic (frequency > 98%), high frequency

heteroplasmy (between 10 and 98%) and low frequency

heteroplasmy (between 1 and 10%). Each haplogroup was

assigned by submitting the generated consensus fastA file

to the HaploFind tool [38]. The Haplofind outputs can be

found in Additional file 10: Table S2 and Additional file 8

and Additional file 9. As expected, all children share their

mother’s haplogroup. This is actually the consequence of

most homoplasmic variants being shared, which is not the

case for heteroplasmic variants (see below). Note that

some variants are at the limit of the 10% coverage

Fig. 5 Mitochondrial DNA variant heritability. The DNA from the 17 and 18 members of the CEPH families 1463 (a) and 884 (b), respectively, were

analyzed with MitoRS. Each haplotype was determined. Mitochondrial DNA variants were classified into three categories based on their frequency

status: homoplasmic (>98%), high frequency heteroplasmy (between 10 and 98%) and low frequency heteroplasmy (between 1 and 10%)
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threshold and may not always be reported in the pedigree

tree. This is for instance the case for the homoplasmic var-

iants at position 263 in the family 884.

Paternal mtDNA transmission

The dataset was screened to investigate putative low level

of paternal mtDNA transmission. A comparable analysis

has recently been performed by taking advantage of ultra-

deep sequencing [39]. Despite the lower depth of our se-

quencing dataset, our approach has the advantage of being

able to interrogate the full mtDNA genome. Importantly,

a 10-fold increase in the coverage did not reveal additional

variants in our dataset (data not shown). From the six

fathers analyzed (three for family 1463 and three for fam-

ily 884), no paternal specific variant, i.e. not also found in

the mother’s mtDNA, could be identified in the offspring

(summarized in Table 1 for family 1463, and Additional

file 8 and Additional file 9 for complete results). This does

not only hold true for homoplasmic position, as expected,

but for heteroplasmic variants as well. Taken together, our

results further land support against the transmission of

mtDNA from the male in humans.

Maternal mtDNA transmission

Mitochondrial DNA transmission from the mother was

also scrutinized (summarized in Table 2 for family

1463, and Additional file 8 and Additional file 9 for

complete results).

We observe that homoplasmic variant transmission

is the general rule since most homoplasmic positions

are found identical between mother and children (and

grandchildren). There are however several individual

specific cases of positions shifting from maternal

homoplasmy (<1% or > 98%) to children high fre-

quency heteroplasmy (between 10% and 98%) in both

families. Some of these frequency changes were of very

high amplitude such as for instance positions 846

(93% in son #12893 versus 0% in his mother #12878

and his grandmother #12892) or positions 2’989 and

12’468 (both found at 68% in son #12877 versus 0% in

Table 1 No evidence for father’s mtDNA transmission

Variants specific for the father (i.e. not also present in the mother) are shown. For easier visualization, homoplasmic variants passing filters are highlighted in red,

high frequency heteroplasmy in orange, low frequency heteroplasmy in yellow, and positions not passing filters are left in blank. Each variant is ordered by lane

and identified by its position (rCRS numbering). The positions highlighted in blue were verified by Sanger sequencing
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his mother #12890). Maternal heteroplasmic variant

transmission could only be analyzed from 3 positions.

None of these were actually inherited: position 3’283

(12% in mother #12890 versus 0% in her son #12877),

position 6’266 (74% in grandmother #12892 versus 0%

in all other family members) and position 16’023 (63%

in mother #12878 versus 0% in all other family members).

The height positions showing the highest frequency dif-

ference were validated by Sanger sequencing (see the

chromatograms and the quantification results in the

Table 2 Transmission of variants from the mother’s mtDNA

Variant identified in the mothers or in the children are shown. Mothers #128892 and #12878 are shown in the same table to account for the three generations

inheritance. The color code is the same as in Table 1. Each variant is ordered by lane and identified by its position (rCRS numbering). The positions highlighted in

blue were verified by Sanger sequencing
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Additional file 11). For instance, position 846 A to G

polymorphism lies in the 12S ribosomal RNA, position

6’266 A to G is a silent mutation in the COX1 gene,

and position 16’023 G to A is the last nucleotide of the

tRNA proline gene. None of these 3 mutations are

reported in the MITOMAP variant list [27].

Although these findings are not in complete disagree-

ment with the bottleneck hypothesis for mtDNA trans-

mission [11], the extent of appearance/disappearance of

high frequency variants is unexpected. It may be the

consequence of de novo somatic mtDNA mutation, a

phenomenon reported in many studies involving mtDNA

variant heredity and/or tissue specificity analysis [8, 10,

40]. Accordingly, sequencing additional tissues would

help understanding whether what we observe is blood

cell specific somatic mutations (DNA samples have

been extracted from immortalized lymphoblastoid cell

lines). The co-occurrence of the variants in several tis-

sues would at the opposite strongly suggest that they

have been inherited from the mother. The shifts may

also be the result of ex vivo genetic drifts since these

DNA are originating from blood cells collected in the

80s, immortalized and having undergone extensive pas-

sages. Given this behavior is observed for both families

884 and 1463, our results question whether such DNA

collections represent an appropriate source of material

for studying mtDNA polymorphism.

Discussion

Method design

One of the pillar of MitoRS is the rolling circle amplifica-

tion of mtDNA. We selected RCA rather than PCR be-

cause 1) it does not require primer design; 2) it amplifies

preferentially the circular mtDNA over linear nuclear

DNA, thereby reducing the NUMTS contamination; 3) it

involves a single reaction per sample, and 4) it is easy to

setup. The main difficulty of a PCR approach lies in the

design of PCR primers which should be efficient and

specific, but tolerant to polymorphisms. Designing a PCR

primer first requires a reference sequence of quality. This

is the case for a growing number of species though many

new full mtDNA genomes are still being published

[41, 42]. The human mtDNA is very well characterized

with more than 32’000 full length mtDNA sequences

compiled into the MITOMAP database [27]. This

large number of sequences actually raises the question

of the potential impact of mtDNA variants on PCR.

The PCR reaction can indeed be influenced by the

presence of a polymorphism in a primer binding site

since it can reduce amplification efficiency, or even

prevent the amplification of a whole mtDNA (sub)-

population. In both cases, this would lead to errone-

ous variant frequency quantification in a situation of

heteroplasmy. To note, most of the PCR primers de-

scribed in the literature actually takes in account the

known polymorphisms, though some of them maybe

questionable. Overall, RCA presents the great advantage

of offering a universal and technically simple approach as

compared to PCR. Combined with the tagmentation-

based library generation and the magnetic bead-based

DNA purification, the entire MitoRS procedure is tailored

to be high throughput and requires less than a day of

work. To the best of our knowledge, this represents a

significant improvement compared to classical PCR-

based or capture-based methods previously described

in the literature.

Efficient DNA amplification requires high quality DNA

templates. For instance, DNA nicks or abasic sites can be

a major obstacle for faithful RCA reactions, and it has

been previously reported that low quality samples (such as

some forensic samples) may be challenging to amplify by

RCA [43]. This constraint is however not specific to RCA

as it also impacts applications involving long range PCR

amplification. As a consequence, heavily degraded mtDNA

may only be amenable to focused analysis (i.e. small

regions covered by short PCR products [23]), whereas

extensive full length analysis, as described by this method

and others, requires good quality template.

Eventually, standard tools developed for the analysis of

NGS data were combined and parametrized to meet the

special requirements of mtDNA sequencing datasets,

which involve a small reference genome, an extremely

deep coverage, and the presence of low frequency het-

eroplasmic variants. Importantly, variants close to the

origin can readily be detected because the circular nature

of mtDNA is taken into consideration. The tools we used

are open access and the script parameters are described,

simplifying the pipeline deployment in any laboratory with

access to NGS technology. Note that read mapping by

BWA is performed on the mitochondrial DNA only and

not on the nuclear genome, which reduces the computa-

tion effort required. The final csv-based reporting file was

specifically designed to simplify data handling and sample-

to-sample comparison. The compilation of variant fre-

quency over multiple samples and positions can then be

performed by the end user using spreadsheet management

tools, and without the need for advanced bioinformatics

tools. Classical VarScan outputs are also available for more

advanced analysis.

Method benchmarking

With MitoRS, our objective is to present a trustable

method which could easily be implemented. We therefore

performed an extensive set of benchmarking experiments

in order to describe the performances and the limitations

of the pipeline.
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The low error rate of the Phi29 polymerase is not

problematic for diploid genome analysis, while it could

be critical for more demanding applications which require

the detection of low frequency variants. By comparing

sequencing results from RCA treated to non-amplified

plasmid DNA, we demonstrate that the RCA is ex-

tremely accurate with only few differences identified

with a maximum frequency below 0.4% for SNV and

2% for indels. To the best of our knowledge similar per-

formance benchmarking is not available for mtDNA

amplification methods based on long range PCR.

A deeper benchmarking of MitoRS was subsequently

performed with mtDNA, the actual target of the method.

To this end, we analyzed multiple ratio mixtures of two

mtDNA sources differing at ~90 homoplasmic positions,

representing a large diversity of sequence context sur-

rounding variants. The accuracy obtained is extremely

high since, for SNV or indels, the frequency of variants

measured experimentally was perfectly corresponding to

the expected frequency (Pearson coefficient > 0.999).

We demonstrate the high sensitivity of MitoRS as we

could detect all the expected SNV at a frequency as low

as 0.4%. However, these variants are actually to be con-

sidered as “not detected” because of a VarScan p-value

above the 0.001 threshold. For this reason, we defined a

conservative minimal frequency threshold for the detec-

tion of SNV heteroplasmy at 1%. This performance was

not improved by increasing ten-fold the sequencing

depth. With this dataset, the limit of detection can in-

deed be lowered below a frequency of 0.5%, but this is

achieved at the expense of an increased number of false

positive SNV, resulting in the same final threshold for

the detection of true positives. Reaching a higher level of

sensitivity rather requires alternative more accurate se-

quencing strategies involving several sequencing rounds

on the same molecule, for example with duplex sequen-

cing [13] or circular sequencing [44]. The long read

based circular consensus sequencing strategy offered by

the Pacific Biosciences sequencing platforms may yet be

an alternative suitable approach to this end.

The detection of indels in mouse mtDNA was also ac-

curate in the frequency range of 1%. The analysis suffers

however from a higher false positive background noise,

which imposes a conservative minimal frequency thresh-

old at 10%. This high false positive rate mainly results

from the difficulty to properly align sequencing reads in

the context of homopolymeric repeats. A potential ap-

proach to improve the precision in the quantification of

the short indels frequency may be to perform a local re-

alignment around the problematic positions.

Large indels are not considered in this analysis. By

lengthening or shortening the reference sequence (there-

fore artificially simulating deletions or insertions), we

observed that large indels from few bases to several kb

could be readily identified (data not shown). The diffi-

culty does not actually lie in the detection of large

indels, but rather in estimating the heteroplasmy level of

truncated mtDNA populations. The quantification of

large indels indeed requires a very homogenous coverage

as described with an approach involving mtDNA enrich-

ment from a single PCR product [26]. The precise quan-

tification of low level heteroplasmy for large indels and/

or multiple co-existing truncated mtDNA is a complex

task for which NGS technology may not be the most ap-

propriate tool.

In all the human samples we processed, the entire

mtDNA genome could be analyzed with the exception

of approximately ~15-nucleotides around the position

310 C-stretch. This difficulty has already been reported

[40, 45] and this region is generally excluded from the

analysis. In our pipeline, this position is automatically

excluded (coverage below 1% of the average sample

coverage), and Ns are actually populated in the output

consensus sequence to prevent false positive variant

reporting. There are also a few additional positions for

which we identified variants but did not report them be-

cause they were flagged for low coverage (e.g. positions

263, 513, 16’182, and 16’188 in CEPH family 1463). Our

strategy is actually to output the analysis results from all

the reference genome positions. The different quality

metrics available from the output files, together with the

benchmarking results presented here leave the choice to

the end user to decide what is considered as a reliable

variant. One may for instance disregards indels, adjust

the coverage filter, or consider a lower SNV threshold at

0.5%. Refer to the Additional file 2: Supporting Informa-

tion for details on the procedure we used to handle low

complexity regions.

In summary, MitoRS allows to call with high confi-

dence variants of heteroplasmy frequencies as low as 1%

for SNV, and 10% for indels, for more than 99% of the

mitochondrial genome.

MitoRS applications

We applied MitoRS to further investigate the heritability

of mtDNA in humans by sequencing the full-length

mtDNA from 35 samples with minimal laboratory work-

load and analysis efforts. The sensitivity and the accuracy

achieved enabled us to exclude paternal mtDNA transmis-

sion, even at low frequency, confirming and strengthening

previous findings [39]. We could also follow the heritabil-

ity of mtDNA polymorphisms of maternal origin. We ob-

served that the transmission of homoplasmic variant is

the general rule even though several instances of high

amplitude shifts between homoplasmy and high frequency

heteroplasmy could be reported. With a single tissue and

three generations analyzed, it is difficult to distinguish
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variant heritability from de novo somatic/ex vivo muta-

tions. Here, it may therefore be more accurate to state for

variant sharing rather than for variant inheritance.

The MitoRS method could actually help clarifying this

type of question by promoting large-scale studies on

mtDNA variant inheritance.

Being based on RCA, MitoRS does not require prior

knowledge of the target mtDNA sequence, as it is the

case when PCR primers have to be designed. Mitochondrial

DNA from poorly characterized organisms can therefore be

easily sequenced and even screened for heteroplasmy.

Importantly, this is not limited to the characterization

of mtDNA but may also be applied to small to moder-

ate size circular DNA such as viral DNA, or bacterial

plasmid DNA.

Whole genome or whole exome sequencing datasets ini-

tially generated to study variants from the nuclear genome

have been successfully exploited for the analysis of mtDNA

variant [6, 7, 17, 31–33]. The very large and ever increasing

public genotyping datasets (from WGS or exome sequen-

cing) can therefore be a valuable source of information.

However, mtDNA analysis studies should be able to capture

tissue specificity and variability over multiple time points

(see Li et al. [10] for instance). Together with the fact that

the extent of NUMTs contamination from whole genome

or exome sequencing datasets is not completely deter-

mined, it is unlikely that these public data would be ad-

equate for extensive mtDNA research. To the best of our

knowledge, the largest study fully dedicated to mtDNA ana-

lysis is based on a capture protocol. It includes nearly 2’000

samples (12 tissues from 157 individuals) with a variant fre-

quency detection sensitivity threshold stated at 0.5% [10].

The ability to include such a large number samples and to

work with such a low detection sensitivity was key for the

authors to make ground breaking observations about

mtDNA heteroplasmy (tissue specificity, active variant se-

lection, influence of age and other parameters). Such

throughput is however an exception in the field and is not

accessible to most laboratories because of the large work-

load required to generate the sequencing libraries. The pro-

tocols proposed to date are indeed labor intensive in terms

of library generation since they can involve a large number

of steps such as multiple PCR reactions, DNA shearing, se-

quencing adaptors ligation, or capture-based enrichment

for instance. MitoRS greatly reduces and simplifies these

steps, making large-scale analysis more amenable and af-

fordable. In terms of sequencing load, the results presented

here were obtained with the equivalent of ~120 samples

loaded per lane of a HiSeq flow cell, a high multiplexing

rate which strongly reduces the cost per sample.

In numerous fields as for instance forensic science,

haplogroup assignment, or population genetics, there is

a growing interest in gaining discrimination power by

analyzing the full-length mtDNA as opposed to limit the

study to the hypervariable regions or to a single mito-

chondrial gene. In addition, being able to accurately de-

tect and quantify low frequency heteroplasmy is highly

relevant. Most observed heteroplasmic positions indeed

have frequencies below 10% [6, 7, 10], probably explain-

ing why homoplasmy was thought to be the rule before

NGS was deployed. It is therefore crucial to be as sensi-

tive as possible in order to obtain the most comprehen-

sive and accurate assessment of heteroplasmy. With

MitoRS, the easy access to increased sensitivity makes

possible the follow up of low frequency variants over

multiple tissues and time points, for example in the

course of ageing studies. Similarly, it can be used as tool

to control mitochondrial genome integrity in the context

of induced pluripotent stem cells (iPSC) generation since

it has been recently demonstrated that some repro-

grammed clones may accumulate deleterious variants

present only at low frequency in the donor cells [12, 18].

By allowing a systematic variant analysis, MitoRS may also

help in better understanding the biological relevance of the

increasing list of mitochondria-encoded short peptides de-

scribed in the literature [3]. Furthermore, mitochondrial

dysfunction has been linked to cancer [46] though the exact

role of mtDNA itself remains unclear [32, 47]. In the het-

erogeneous cancer tissue, the excess of non-polymorphic

DNA may mask the presence of a variant of interest. The

problem of heteroplasmy is in this context also a concern

for nucDNA somatic mutations, but the question of sensi-

tivity is further exacerbated in the case of mtDNA given

that heteroplasmy can already be present at baseline under

normal (not cancer-affected) conditions. Mitochondrial

DNA analysis must therefore be able to detect very low

frequency variants. The lower limit of detection becomes

particularly key when mtDNA variants are exploited as a

biomarker for early detection of tumor or prediction of

relapse for instance [8, 24].

Conclusions

We describe MitoRS, a novel mitochondrial DNA variant

analysis method. The main particularity of MitoRS is to

use Rolling Circle amplification as an alternative to PCR

for the enrichment of mtDNA. Compared to PCR, this ap-

proach enables a universal (not species-specific, and in-

sensitive to NUMTs and to mtDNA polymorphism) and

simpler reaction setup, and opens the way for larger scale

studies. Importantly, this simplification is not achieved at

the expense of quality since the robustness, accuracy and

sensitivity performance we obtain are similar or outper-

form the methods classically described in the field.

We anticipate that MitoRS will advance the more

systematic analysis of mtDNA and will help to assess the

contribution of mtDNA heteroplasmy to the develop-

ment of metabolic disorders, cognitive decline, cancer,

or age-dependent loss of tissue function. In addition,
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given the very low requirement of input material, our

method is an important step towards the investigation of

mtDNA heteroplasmy in single cells.

Methods

DNA source

Human DNA from the CEPH families 884 and 1463 was

obtained from the NIGMS Human Genetic Cell Reposi-

tory at the Coriell Institute for Medical Research (extrac-

tion performed from immortalized white blood cells).

For the 143-B cell line and its mitochondria depleted

counterpart (143-B-Rho0), DNA was obtained from

RhoZero Technologies (Uettingen, Germany). Unused

livers from mice sacrificed for other experimental purpose

were obtained from the EPFL animal facility (authorization

number VD 1832.3 Lausanne, Switzerland). Livers were

minced with scissors and homogenized in Sucrose buffer

(250 mM Sucrose, 5 mM Hepes, 2 mM EGTA, pH 7.4).

DNA was extracted from the homogenate using the

DNeasy Blood & Tissue Kit (Qiagen).

qPCR quantification of mtDNA

Quantitative PCR was performed from 5 ng total DNA

or 15 ng RCA product with the LightCycler1536 DNA

Green Master on a LightCycler 480 Instrument II (Roche).

Two nuclear genes and two mitochondrial genes were

measured, both for mouse and human samples (see pri-

mer and probe sequences in Additional file 12: Table S3).

Absolute quantification was performed thanks to a

standard curve (E1 to E9 copies per microliter) in-

cluded in each run. The standard curve was generated

by cloning the four PCR amplicons in plasmid DNA.

Plasmid DNA was then precisely quantified by fluo-

rimetry (Quant-iT Picogreen dsDNA assay, Thermo

Fischer) and pooled at an equimolar ratio.

MitoRS library generation and sequencing

The RCA is performed in 96-multiwell plate from 5 ng

DNA with the REPLI-g Mitochondrial DNA Kit from

Qiagen, strictly following the manufacturer’s recommen-

dations. Irrespective of the source of DNA (human,

mouse or plasmid), the supplied human mtDNA specific

oligonucleotides are used (with no effect on yield, data

not shown). The reaction is purified with Ampure beads

(Beckman) at a 0.5X ratio. Purified DNA is quantified by

fluorimetry (Quant-iT Picogreen dsDNA assay, Thermo

Fischer) and its size estimated with the Tapestation

(Genomic DNA ScreenTape, Agilent). DNA is normal-

ized and 1 ng used to generate a sequencing library with

the Nextera XT kit (Illumina) strictly following the manu-

facturer’s recommendations, followed by a final Ampure

bead purification at a 0.6X ratio. Purified DNA is quanti-

fied by fluorimetry and the library quality monitored with

the DNA High Sensitivity Reagent kit on a LabChip

GX (Perkin Elmer). Libraries are pooled equimolar

and run at 6 picomolar (spiked with 3% PhiX) for a

paired end rapid sequencing run of 2 x 150 cycles on a

HiSeq 2500 (Rapid SBS kit v1, Illumina). The number

of sample loaded per flow cell was variable but, when

necessary, sequencing data were all downsized to an

equivalent of ~120 samples loaded per HiSeq flow cell

lane (corresponding to ~1.5 million reads per sample).

An overview of the laboratory procedures is shown in

Additional file 3: Figure S1.

Analysis

The fastQ files are first aligned with the Burrows-

Wheeler Aligner (BWA-MEM version 0.7.4, [48]) using

default parameters (v = 1 and t = 5). The mtDNA reference

sequences used are the rCRS sequence (NC_012920.1) for

human, and the NC_005089 for mouse, respectively. The

resulting bam files are then computed with mpileup (Sam-

tools v0.1.19) to filter for high quality bases and alignment

(Q = 35, q = 50 and C = 50). Variant are subsequently

called with VarScan2 (version 2.3.6) using default parame-

ters (p-value < 0.001 and min-var-freq = 0.1%). The clas-

sical VarScan commands mpileup2snp and mpileup2indel

were run to identify single nucleotide variants and small

indels respectively. We also used the mpileup2cns com-

mand in order to generate an output file including all

positions of the reference genome. A relative coverage was

computed by normalizing the absolute coverage at a given

position by the average coverage measured over the entire

reference genome for the same sample. This relative

coverage is flagged as “GOOD”, “WARNING”, and

“EXCLUDE” based on thresholds at 10 and 1%. When a

given position is flagged as “EXCLUDE”, the reported

consensus is an N and the variant frequency is set to

0% to prevent the pipeline from reporting false positive

variants. An additional column is added to the mpi-

leup2cns output. It is filled with a per position sequence

output in which only the major allele is reported (taking in

account all quality filters mentioned), or an N in case vari-

ants analysis fell outside the quality criteria. This column

is used to report a major haplotype in a fastA format. The

overall procedure is performed twice, once with the

original reference sequence and the second time with a

reference from which the +1 position is shifted approxi-

mately to the center of the reference sequence (“shifted

reference”). Refer to the Additional file 2: Supporting In-

formation for further details. The two output files are sub-

sequently merged, keeping only the per position data from

the file for which the coverage is the highest. The script

overview is available in Additional file 4: Figure S2.

Haplogroup assignment is performed with the HAP-

LOFIND tool [38]. The input used is the consensus

fastA file generated by the pipeline.
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Sanger sequencing validation of human high frequency

heteroplasmy variants

Five regions encompassing high frequency heteroplasmy

variants were PCR amplified: region A (position 652 to

934), region B (position 2865 to 3457), region C (position

6’129 to 6’467), region D (position 12’359 to 12’990), and

region E position (15’873 to 16’295). Attention was given

to avoid primer binding site overlapping a polymorphic

position identified by MitoRS. Primers are listed in

Additional file 12: Table S3. PCR was performed for

35 cycles from 30 ng input DNA using the Hot Start

HiFi polymerase (Kapa Biosystems). PCR products were

purified with Ampure beads (Beckman) at a 1.8X ratio.

Sanger sequencing was performed with the big Dye ter-

minator version 3.1 (Thermo Fischer) using both forward

and reverse PCR primers. The level of heteroplasmy at the

positions of interest was evaluated with the ab1 Peak

Reporter software (Thermo Fischer, https://apps.thermo

fisher.com/ab1peakreporter/). The quantification results

are presented in in the Additional file 11.

Additional files

Additional file 1: Figure S3. RCA enriches circular versus linear

templates. A. Principle of circular DNA enrichment. A single priming

event will generate several concatenated copies of a circular template. At

the opposite, a single copy will be amplified if the template DNA is

linear. B. The RCA amplified material is mostly mtDNA. Digestion of the

mouse DNA RCA product with the SpeI restriction endonuclease results

in the expected mtDNA digestion product with only low amount of

undigested DNA left. SpeI restriction digest is expected to result in four

fragments for the B6D2F1 strain (7’398, 3’759, 3’105, and 2’035 bp) and

five fragments for the NMRI strain (7’398, 3’105, 2’150, 2’037, and

1609 bp). Ladder sizes imprecision is in accordance with the Agilent

Genomic DNA ScreenTape specifications. (PPTX 133 kb)

Additional file 2: Supporting Information. (DOCX 56 kb)

Additional file 3: Figure S1. Overview of the MitoRS wet lab method.

Total DNA (5 ng) is amplified by RCA. Sequencing libraries are subsequently

generated using the Nextera XT kit from Illumina, starting from 1 ng

amplification product. Libraries are pooled at equimolar ratios and

sequenced on a HiSeq 2500 (Illumina) using rapid mode for a paired-end

run of 2 x 150 cycles. (PPTX 40 kb)

Additional file 4: Figure S2. Overview of the MitoRS analysis methods.

FastQ files are aligned with BWA to the original, and an origin-shifted

version, of the DNA reference sequence (refer to Additional file 2 for

details). Variant frequency is evaluated by samtools mpileup. Low frequency

variants are finally identified using VarScan 2. Datasets generated from both

the original reference and the shifted reference are merged, keeping only

the per position values from the dataset with the highest coverage. Data are

further processed to generate 1) a csv file summarizing the sequencing

results observed at each individual mitochondrial DNA position and 2)

a fastA file representing the corresponding consensus sequence. More

details can be found in the Methods section. (PPTX 264 kb)

Additional file 5: Figure S4. The RCA procedure is robust. A. RCA does

not introduce technical variability. Each individual plasmid DNA was run

as four independent replicates for both conditions (with or without RCA).

The technical reproducibility of the variant frequency call was evaluated

by calculating the standard deviation within the four replicates. Value are

plotted for each individual position of the reference sequence, for the

two plasmids sequenced. Data are directly extracted from mpileup

analysis applying a VarScan p-value threshold of 0.001. Left panels:

plasmid 1, right panels: plasmid 2, top panels: crude plasmid DNA (no

RCA amplification), bottom panels: RCA amplified plasmid DNA. B. Origin

of the nonspecific RCA products. The sequences surrounding the unique

position for which a large difference was observed between the crude

plasmid DNAs and the RCA products were aligned. The sequence obtained

from contaminating NTC reads is shown. The common (between the two

plasmids) non-accurate position is boxed (“G” in the NTC, “A” in the two

plasmids). This region is part of the plasmid DNA origin of replication.

(PPTX 178 kb)

Additional file 6: Figure S5. Mouse SNV frequencies are homogenous

within the 88 position analyzed. A. Individual SNV frequency. For the 12

mouse mtDNA mixture ratios tested, the frequencies measured for each

SNV (88 in total) were plotted and summarized as a boxplot. The

boxplot whiskers highlight the extreme values (min and max). Note that

the scale is different for each plot. The eight positions showing

the highest frequency underestimation are highlighted in blue. These

data were used to build the Fig. 4. The raw data are available from the

Additional file 7. B. The eight SNV with underestimated frequency are

located into two dense clusters. For each 88 SNV, the deviation from the

theoretical frequency was calculated and plotted versus their position in

the mitochondrial genome. The eight positions showing

a systematic frequency underestimation highlighted in A. are also shown

in blue. They cluster into two very short genomic regions.

(PPTX 484 kb)

Additional file 7: MitoRS output file for the pure and mixed B6D2F1

and NMRI samples sequenced for the benchmark of mitoRS accuracy and

sensitivity. Tab1: Raw MitoRS output for the mouse mtDNA mixtures.

Samples are named based on the theoretical mixture ratio (% B6D2F1

DNA) and replicates (A, B, or C) for a total of 36 samples analyzed.

Column headers are detailed in the Additional files 14: Table S1 legend.

Data from the 36 samples are populated in consecutive columns. Tab2:

List of variants identified from unmixed mouse B6D2F1 and NMRI

mtDNA. All NMRI and B6D2F1 mtDNA positions for which a variant was

identified compared to the mouse mtDNA reference are listed. Pos:

position in the mtDNA, Freq: variant frequency, SD: standard deviation

within the three replicates, p-value: VarScan calculated p-value, Ref:

Nucleotide from the reference genome, Var: Alternative nucleotide

identified by VarScan, Cons: Consensus nucleotide kept by VarScan, Type:

type of variant (highlighted with a color code). Tab3: SNV frequencies

from the different mixtures. For the 12 mouse mtDNA mixture ratios

tested, the frequencies measured for each SNV (88 in total) were

evaluated. Values are actually the average of the three replicate runs. The

eight positions showing a systematic frequency underestimation are

highlighted in blue. Tab4: Indel frequencies from the different mixtures.

For the 12 mouse mtDNA mixture ratios tested, the frequencies

measured for the two indels were evaluated (positions 5’204 and 9’820).

Data obtained from the triplicate, and corresponding averages and

standard deviations are shown. (XLSX 61996 kb)

Additional file 8: MitoRS output file for the analysis of the CEPH family

1463. Tab1: Raw MitoRS output for the CEPH family 1463 analysis.

Column headers are detailed in the Additional files 14: Table S1 legend.

Data from the 17 samples are populated in consecutive columns. As

explained in the Additional file 2, the rCRS position 3’107-N is deleted

from the reference for proper alignment. Positions are shifted accordingly

and match the rCRS numbering. Tab2: List of all variants identified in the

CEPH family 1463. The parameters used to identify a variant are

presented in the main text. Homoplasmic variants passing filters are

highlighted in red, high frequency heteroplasmy in orange, low

frequency heteroplasmy in yellow, and positions not passing filters are

left in blank. For each variant, the relative coverage (in percentage), the

nature of the variant (SNV or Indel), and the VarScan p-value are shown.

The positions highlighted in blue were validated by Sanger sequencing.

Tab 3 to Tab 7: Variant sharing within the CEPH family 1463. Same data

as Tab2 but from selected individuals to highlight how variant are shared

within the CEPH 1463 family. The data are similar to Tables 1 and 2 with

extra details. Tab8: Reminder of the CEPH family 1463 pedigree. Figure 5

data are shown as a reminder of the CEPH family 1463 pedigree. Tab9:

CEPH family 1463 haplogroup. Haplofind output obtained from the CEPH

family 1463 fastA file generated by MitoRS. See the Additional file 10:

Table S2 legend for details. (XLSX 29419 kb)
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Additional file 9: MitoRS output file for the analysis of the CEPH family

884. Legend similar to the Additional file 8 but for the CEPH family 884.

(XLSX 28519 kb)

Additional file 10: Table S2. Haplogroup determination for the CEPH

family 1463. The fastA file generated for each individual of the CEPH

family 1463 was submitted to the Haplofind tool. Note that N are

considered as deletion. When the completion status is “No”, Haplofind

was not able to determine the exact subhaplogroup. (DOCX 39 kb)

Additional file 11: Sanger sequencing validation for the inheritance of

high level heteroplasmy SNV. Slide 1. CEPH family 1463 pedigree chart.

Slide 2. Level of heteroplasmy calculated from the MitoRS data, and the

Sanger sequencing data in both forward and reverse orientation. MitoRS

calculated frequencies are highlighted in red (homoplasmy, > 98%) or

orange (high frequency heteroplasmy, between 10% and 98%). The

corresponding Sanger frequencies are highlighted in green for easier

visualization. Slides 3 to 10. Chromatograms highlighting a difference

between the two family members. The positions considered are shown

with a black arrowhead. Slide 10. Virtual gel visualization (on a LabChip

GX - Perkin Elmer) of the PCR amplification products analyzed by Sanger

sequencing. (PPTX 513 kb)

Additional file 12: Table S3. Primer sequences used for qPCR.

(DOCX 37 kb)

Additional file 13: MitoRS output file for the two plasmids sequenced

for the benchmark of RCA. Tab1: Raw MitoRS output for plasmid1 (P1).

Sample names are prefixed “Crude” when no amplification was done and

“RCA” when rolling circle amplification was performed. The four replicates

are named A, B, C and D. The data for the eight sequencing experiments

are populated in consecutive columns. Column headers are detailed in

the Additional files 14: Table S1 legend. Tab2: Raw MitoRS output for

plasmid2 (P2). Same as for Plasmid1. (XLSX 6141 kb)

Additional file 14: Table S1. Structure of the output csv table. Example

of an output file generate by the analysis pipeline. The table is populated

for all positions of the reference genome. Chrom: Reference genome

used, Position: Position in the reference genome, Covmp: Absolute depth

of coverage, PercentCov: relative depth of coverage expressed as a

percentage of the average coverage obtained for the sample, FilterCov:

Flagging for insufficient relative coverage, Ref: Nucleotide from the

reference genome, Var: Alternative nucleotide identified by VarScan,

Cons: Consensus nucleotide kept by VarScan, FastA: Nucleotide kept in

the exported fastA file, QDepth: Absolute depth of coverage, Reads1:

Reference nucleotide coverage by mpileup, Reads2: Alternative

nucleotide coverage by mpileup, Freq: Variant frequency, P-value: VarScan

p-value, StrandFilter: VarScan strand filter, R1+: Reference nucleotide

coverage from the positive strand, R1-: Reference nucleotide coverage

from the negative strand, R2+: Alternative nucleotide coverage from the

positive strand, R2-: Alternative nucleotide coverage from the negative

strand. When several samples are analyzed together, each sample data

are populated in consecutive columns of a single table. Full output tables

from data presented in this manuscript can be found in the Additional

files 7, 8, 9 and 13. (DOCX 46 kb)

Additional file 15: Figure S6. The large number of homoplasmic

variants identified in the NMRI strain does not have a major impact on

the mpileup reported coverage. The relative coverage reported by

mpileup was plotted against each single position of the mouse reference

genome for both the B6D2F1 and the NMRI datasets. The only noticeable

differences are two NMRI specific “extreme” drops of coverage (positions

5’205 and 9’821) resulting from near homoplasmic indels (see the

Additional file 2 for details on “extreme” coverage drops). (PPTX 264 kb)

Additional file 16: Figure S7. Coverage drop at the position 310

human C-stretch. The human sample #12878 from the CEPH family 1463

was sequenced either following the pipeline described in this paper or

from a whole genome PCR free library (generated in our lab). The relative

coverage reported by mpileup was plotted against each single position

of the reference genome with a zoom in the C-stretch at position 310.

(PPTX 233 kb)
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