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Abstract 
Speculative parallelization can provide significant sources of 
additional thread-level parallelism, especially for irregular 
applications that are hard to parallelize by conventional 
approaches. In this paper, we present the Mitosis compiler, which 
partitions applications into speculative threads, with special 
emphasis on applications for which conventional parallelizing 
approaches fail. 
The management of inter-thread data dependences is crucial for 
the performance of the system. The Mitosis framework uses a pure 
software approach to predict/compute the thread’s input values. 
This software approach is based on the use of pre-computation 
slices (p-slices), which are built by the Mitosis compiler and 
added at the beginning of the speculative thread. P-slices must 
compute thread input values accurately but they do not need to 
guarantee correctness, since the underlying architecture can 
detect and recover from misspeculations. This allows the compiler 
to use aggressive/unsafe optimizations to significantly reduce 
their overhead. The most important optimizations included in the 
Mitosis compiler and presented in this paper are branch pruning, 
memory and register dependence speculation, and early thread 
squashing.  
Performance evaluation of Mitosis compiler/architecture shows 
an average speedup of 2.2. 
 
Categories and Subject Descriptors C.1.4 [Processor 
Architectures]: Parallel Architectures, D.3.4 [Programming 
Languages] Processors – compilers, code generation, 
optimization. 
General Terms Performance, Design 
Keywords Speculative multithreading; thread-level parallelism; 
automatic parallelization; pre-computation slices. 

1. Introduction 
Several microprocessor vendors have recently introduced single 
chip architectures that can execute multiple threads in parallel, 
exploiting thread-level parallelism.  Two different approaches 
have been used to architect these systems: simultaneous 
multithreading [25][7] and multiple cores [24][22][16]. These 
architectures increase throughput by executing independent jobs 
in parallel, or reduce execution time by parallelizing applications. 
This latter case has proved to be successful for regular numerical 
applications, but less so for non-numerical, irregular applications, 
for which the compiler usually fails to discover a significant 
amount of thread-level parallelism.1 
Speculative multithreading (SpMT for short) attempts to speed up 
the execution of applications through speculative thread-level 
parallelism. Threads are speculative in the sense that they may be 
data and control dependent on previous threads (that have not 
completed) and their execution may be incorrect. 
There are two main strategies for speculative thread-level 
parallelism: (1) use helper threads to reduce the execution time of 
high-latency instructions/events through side effects, and (2) 
parallelize applications into speculative parallel threads, each of 
which contributes by executing a part of the original application. 
Helper Threads [6][5][18][27] attempt to reduce the execution 
time of the application by using speculative threads to reduce the 
cost of high-latency operations (such as load misses and branch 
mispredicts). For instance, in [5][27] this is done by executing a 
subset of instructions from the original code to pre-compute load 
addresses or branch directions. Instructions executed by 
speculative threads do not compute/modify any architectural state 
of the processor, and thus, all architectural state must still be 
computed by the main, conventional thread. 
With speculative parallelization ([10][1][13] among others), each 
of the speculative threads executes a different part of the program. 
This partitioning is based on relaxing the parallelization 
constraints and allowing the spawning of speculative threads even 
when the compiler cannot guarantee correct execution. When a 
speculative thread finishes, the speculation is verified. Unlike 
helper threads, the values produced by a speculative thread are 
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committed. In case of a misspeculation (control or data), the work 
done by the speculative thread is discarded.  The Mitosis 
architecture used in this work follows this approach. 
A potential speculative thread is defined by a spawning pair, 
which consists of the point in which the spawning instruction is 
inserted and the point where the speculative thread will start 
execution when it is spawned.  Prior work has demonstrated that 
well chosen speculative threads (or spawning pairs) can result in 
significant speedups [15]. Conversely, a poorly chosen pair can 
hurt performance. 
A key point in any SpMT system is how to deal with inter-thread 
data dependences. Two mechanisms have been studied so far: (1) 
synchronization mechanisms and (2) value prediction. The 
synchronization approach imposes a high overhead when 
dependences are frequent, as in the workload presented here. 
Value prediction has more potential – if the values that are 
computed by one thread and consumed by another can be 
predicted, the consumer thread can be executed in parallel with 
the producer thread since these values are only needed for 
validation at a later stage. It is typically assumed that these value 
predictions are computed in hardware. The Mitosis system 
presents a novel approach, which adds code (derived from the 
original program) to predict in software the live-ins (values 
consumed, but not produced by, the thread) for each speculative 
thread. Because mechanisms for recovery of incorrect threads are 
already in place, the code to produce the values need not always 
be correct, and can be highly optimized. We refer to this code as 
pre-computation slices (p-slices). The main advantages of p-slices 
are: (1) they are potentially more accurate in the prediction of 
live-ins than a hardware-based predictor, since it is derived from 
the original code, (2) they can encapsulate multiple control flows 
that contribute to the prediction of live-ins, and (3) they can 
accelerate the detection of incorrectly spawned threads.  
In this work, we present the Mitosis compiler. One objective of 
the Mitosis compiler is to identify the most effective points in any 
program to spawn speculative threads. This entails, among other 
tasks, locating regions of code where the live-ins can be 
accurately predicted through p-slices with a low overhead.  
The Mitosis compiler provides the following features: (1) it 
identifies effective spawning pairs, (2) generates pre-computation 
slices, (3) optimizes pre-computation slices to minimize their 
overhead, and (4) maximizes the accuracy of pre-computation 
slices.  The main contributions of this work are: 

• A general compilation framework to analyze and insert 
spawning pairs at any point of any program. 

• The use of pre-computation slices to predict values 
corresponding to inter-thread dependences. 

• A mechanism to build and optimize (in terms of both 
accuracy and overhead) pre-computation slices. 

• A model to estimate the benefit of any set of spawning pairs 
for a given SpMT configuration, and a scheme to select the 
most effective set. 

Evaluation of the proposed compilation technique shows very 
encouraging results.  Performance results reported for the Mitosis 
compiler show a speedup of about 2.2 for a subset of the Olden 
benchmark suite. This is code that state-of-the-art parallelizing 
compilers/architectures cannot parallelize. 
The rest of the paper is organized as follows.  Section 2 describes 
basic concepts of the Mitosis SpMT architecture that are relevant 
to the Mitosis compiler. In Section 3, the Mitosis compiler 
infrastructure is presented. The scheme to build and optimize 
speculative pre-computation slices is further detailed in Section 4. 
Section 5 evaluates the Mitosis compiler.  Finally, Section 6 
discusses some related work and Section 7 summarizes the main 
conclusions of this work.  

2. Overview of the Mitosis Architecture  
This section presents an overview of the underlying speculative 
multithreaded architecture, with special emphasis on those 
features that are relevant to the compiler for generating effective 
speculative threads.  

2.1. Features 
The Mitosis SpMT architecture is composed of several thread 
units (TUs), each able to execute a thread. A thread unit contains 
its own register file, instruction/data caches, functional units and 
program counter. This means that the compiler can see a thread 
unit as an independent entity of execution. The thread units can be 
organized in various ways.  For instance, one can implement this 
architecture in a SMT (Simultaneous Multithreaded) or a CMP 
(Chip Multiprocessor) fashion. For this study, we assume a CMP-
like design for simplicity and scalability. 

2.2. Execution Model 
In the Mitosis architecture there is always one (and only one) non-
speculative thread, which is the only one allowed to commit its 
results. All other threads are speculative. A speculative thread is 
created when a spawn instruction is found. A spawn instruction 
basically describes a spawning pair. A spawning pair is defined as 
a set of two points in the program (each at the beginning of a basic 
block). The former is called the spawning point (SP), marked by 
the spawn instruction, and identifies when a new speculative 
thread is created.  The latter is called the control quasi-
independent point (CQIP) and represents where the speculative 
thread starts executing (after some initialization), and is identified 
as an operand of the spawn instruction. Figure 1 shows the 

Figure 1. Sequential vs SpMT parallel execution 

Figure 2. Stages in the life of a speculative thread (a) Sequential version
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difference between sequential and SpMT parallel execution of 
code. 
Any thread can spawn a new thread.  The requirements to spawn a 
thread are: (i) there is a free thread unit, or (ii) there is at least one 
running thread more speculative (further in sequential time) than 
the thread is to be created. In the latter case, the most speculative 
thread is cancelled and the freed thread unit is assigned to the 
spawned thread. 
Correct execution of the code following the CQIP requires that the 
future state (memory and register values) of the processor at the 
CQIP is correctly predicted.  Our SpMT model differs from prior 
proposals in that we assume that each speculative thread includes 
a pre-computation slice (p-slice for short) that computes the live-
ins of the thread. A speculative thread has two operation modes, 
depending on whether it is executing code from the pre-
computation slice or the body of the thread. In particular, data 
produced while in p-slice mode is stored in a special buffer (called 
the slice buffer) and will be used as input for the body of the 
speculative thread.  Data produced by the speculative thread is 
kept in the regular structures of the thread unit (register file and 
memory) and will be committed once the thread becomes non-
speculative. This distinction arises from the fact that the p-slice 
only predicts machine state, while the speculative thread body 
(following the p-slice) calculates actual machine state; thus, data 
produced by the p-slice must be confirmed, but never committed. 
Threads commit in sequential order. This means that a thread 
must wait to become the oldest one (i.e., the non-speculative 
thread) to commit. A thread finishes when it reaches the start 
(CQIP) of another thread that is active. Then, the latter thread is 
validated. If the validation is correct, the latter thread is allowed to 
commit once it is the oldest thread. Otherwise, it is squashed (as 
well as its successors) and the former thread proceeds to execute 
the instructions beyond the CQIP. Figure 2 shows a scheme with 
the different stages in the life of a speculative thread. 

3. Selecting Spawning Pairs 
The Mitosis compiler for this architecture performs the following 
tasks: (1) generate the p-slices for each pair, (2) optimize the p-

slices to minimize overhead, and (3) select the best candidate 
spawning pairs. These tasks are heavily inter-related; however, we 
will discuss each separately. This section describes the selection 
of spawning pairs.  Generation and optimization of p-slices are 
described in Section 4. The proposed scheme has been 
implemented in the code generation phase (after optimizations) of 
the ORC compiler [11]. The compiler makes use of the 
information provided by an edge profile. This information 
includes the probability of going from any basic block to each of 
its successors and the execution count of each basic block.  
Selecting the best set of spawning pairs requires assessing the 
benefit of any given candidate pair.  However, determining the 
benefits of a particular spawning pair is not straightforward. The 
effectiveness of a pair depends on the control flow between the 
spawning point and the start of the thread, the control flow after 
the start of the thread, the accuracy of the p-slice, the overhead of 
the p-slice, the number of hardware contexts available to execute 
speculative threads, and interactions with other speculative 
threads running at the same time.  
This analysis requires a model of program execution. To avoid 
capturing and repeatedly traversing a full path trace of the 
program, we generate a (much smaller) synthetic trace of 
execution that captures the dynamic behavior.  The key idea is to 
traverse this trace while keeping track of the threads that are 
active at any time. For each thread, its state (see Figure 2) is 
maintained to emulate its evolution during its lifetime. This 
analysis emulates the timing behavior of the speculative threads, 
assuming a simple model where each instruction takes a fixed 
time. Based on this, the compiler can estimate the expected 
benefits of any set of spawning pairs, and select those that are 
expected to minimize total execution time.  

3.1. Building the Synthetic Trace 
We build a synthetic trace of the program to translate the edge 
profile into path information, without having to capture and 
maintain a full path profile. The synthetic trace is built based on 
edge profiling information at the basic block level. The analysis 
performs a reverse topological traversal of the call graph. This 
means that callee routines are analyzed before callers. 
For each routine, we compute a set of paths. A routine path is 
defined as a list of connected nodes in the CFG from the entry 
node to an exit node. We assume here that a routine has only one 
entry. A path node can be one of these types: basic block (BB), 
loop, or call.  Loop and call nodes are macronodes in the sense 
that they include more than a single basic block. A loop node 
consists of the header of a given loop and contains all the nodes 
(basic blocks, inner loops or calls) that belong to that loop. A call 
node is just a basic block that ends with a call to a particular 
function. The exit node of a routine path could be either a return 
(node with no successor) or a call to the exit function. Thus, there 
are two types of routine paths: return paths and exit paths. Each 
routine path is characterized by its total length (in instructions) 
and its probability (using the edge profiling information).  This is 
summarized in the following expressions: 
ROUTINE = SET OF { ROUTINE PATH } 
ROUTINE PATH = LIST OF { NODE } + TYPE + LENGTH + PROB 
ROUTINE PATH TYPE = { RETURN | EXIT } 
NODE = { BB | LOOP | CALL } 

A loop node requires more analysis. For each loop, we compute a 
set of loop paths. A loop path is defined as a sequence of nodes in 
the CFG of the loop from the head of the loop to a possible loop 

Figure 3. Construction of a loop macronode 
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exit node. A loop exit node can be a node with an edge to the loop 
head (continue path), an edge outside the loop (break path) or a 
call to a function that may call the exit function (exit path).  We 
are assuming here that a loop has a single header. As in the case 
of routines, each loop path has its length (in instructions) and 
probability. This is summarized with the following expressions: 
LOOP PATH = LIST OF { NODE } + TYPE + LENGTH + PROB 
LOOP PATH TYPE = { CONTINUE | BREAK | EXIT } 

Next, a set of synthetic traces are built for each loop. A loop 
synthetic trace consists of selecting NITER – 1 loop paths of type 
continue and 1 loop path of type break or exit, where NITER is 
the average trip count. For large loops, we build the trace 
assuming a fixed maximum value for the trip count. The rest of 
the iterations are considered to have the same behavior as the 
analyzed ones. The selection of the paths inside the loop consists 
of a random weighted model according to each path probability. 
The number of loop synthetic traces that are built per loop is a 
parameter of the tool and can be adjusted depending on time and 
memory space requirements. We call each loop’s synthetic trace a 
loop instance. For each loop node the compiler keeps a list of 
instances and a pointer to one of them (initially the first one), that 
is updated in a circular fashion. 
LOOP = CIRCULAR LIST OF { LOOP INSTANCE } + POINTER +  
       TRIP COUNT + LENGTH 
LOOP INSTANCE = LIST OF { LOOP PATH } 

The length of a loop node is computed as the weighted average 
length of the loop instances. Figure 3 shows an example of how a 
given loop is split in its different paths and the shape of the 
resultant loop macronode. 
A call node also has attached a list of instances. A call instance 
refers to a possible path in the callee routine. The compiler builds 
this list of instances, similarly to loops, by randomly selecting 
(based on the probabilities) routine paths from the callee routine.  
In the same way, a pointer is also attached. 
CALL = CIRCULAR LIST OF { CALL INSTANCE } +  
       POINTER + LENGTH 
CALL INSTANCE = ROUTINE PATH 

The length of a call node is computed as the weighted length of 
routine paths in the callee function. 
The synthetic trace will be traversed by starting the path at the 
main routine of the program. As the main routine is called only 

once, there is only one routine path for that function. When a loop 
node is found, the traversal proceeds through the loop instance 
pointed by the loop instance pointer and the pointer is set to the 
next instance. In the case of a call node, the traversal proceeds 
through the path in the callee routine described by the call pointer 
and the pointer is set to the next one in the same way as for loops.  
When an exit path (or the only path in the main routine) is 
completely traversed, the program traversal finishes. 

3.2. Candidate Pairs 
A key feature of the proposed compilation tool is its generality, in 
the sense that it can discover speculative thread-level parallelism 
in any region of the program. The tool is not constrained to 
analyze potential spawning pairs at loop or subroutine boundary, 
but practically any pair of basic blocks is considered a candidate 
spawning pair. To reduce the search space we first apply the 
following filters to eliminate candidate pairs that are likely to have 
little potential: 

1) Spawning pairs in routines whose contribution to the total 
execution of the program is lower than a threshold are 
discarded. 

2) Both basic blocks of the spawning pair must be located in 
the same routine and at the same loop level. 

3) The length of the spawning pair (as the average length of all 
the paths from the SP to the CQIP) must be higher than a 
certain minimum size in order to overcome the initialization 
overhead when a speculative thread is created. It must also 
be lower than a certain maximum size in order to avoid very 
large speculative threads and avoid stalls due to the lack of 
space to store speculative state.  

4) The probability of reaching the CQIP from the SP must be 
higher than a certain threshold.  

5) Finally, the ratio between the length of the p-slice and the 
estimated length of the speculative thread must be lower 
than a threshold. This ratio is a key factor for the benefits of 
the thread. In Section 4 we describe in detail how the pre-
computation slices are built and optimized to reduce this 
overhead. 

This step analyzes the different routines in the program one by 
one. For each routine, all combinations of basic blocks are 
considered and passed through the different filters. The result of 

Figure 4. Greedy algorithm to select spawning pairs 

[ 1] t_exec = SeqExecTime;
[ 2] Selected_Pairs = ∅;
[ 3] exit = FALSE;
[ 4] while (!exit) {
[ 5]   select = NULL;
[ 6]   for (cand=First_Cand(Candidate_Pairs); cand; cand = Next_Cand(cand)) {
[ 7]     Analized_Pairs = Selected_Pairs + cand;
[ 8]     t_exec_tmp = Model_Set_of_Pairs(Analyzed_Pairs, Trace, N_TUs);
[ 9]     if (t_exec_tmp < t_exec) {
[10]       t_exec = t_exec_tmp;
[11]       select = cand;
[12]     }
[13]   }
[14]   if (select == NULL)
[15]     exit = TRUE;
[16]   else {
[17]     Candidate_Pairs = Candidate_Pairs – select;
[18]     Selected_Pairs = Selected_Pairs + select;
[19]   }
[20] }



this process is a set of candidate spawning pairs (candidate pairs 
for short) of the whole program. For each candidate pair the 
following information is kept: (i) basic block for the spawning 
point, (ii) basic block for the CQIP, (iii) probability that the p-
slice reaches the CQIP and average length in this case, and (iv) 
average length of the p-slice when the CQIP is not reached (in this 
case, the speculative thread is cancelled before its body is started). 

3.3. Pair Selection 
Once the set of candidate pairs is built, the selection of pairs from 
it follows the greedy algorithm shown in Figure 4. The basic idea 
is to include pairs in the selected set until negligible benefit is 
obtained. Among all candidate pairs, the new pair chosen (if any) 
is the one that provides the best improvement among all pairs in 
the candidate set. The benefit is computed using a model that 
estimates the execution behavior of a set of pairs for a given 
number of thread units. 
The inputs to this algorithm are: (i) the program trace (see Section 
3.1), (ii) the set of candidate pairs (see Section 3.2) and (iii) the 
number of thread units. Initially, the execution time is set to the 
equivalent execution time when no spawning pairs are considered 
(SeqExecTime) and the set of selected pairs is empty (lines 1 and 2 
in Figure 4). Then, the greedy loop begins (line 4). At each 
iteration, all individual pairs in the candidate set are tried one by 
one, in conjunction with the pairs already selected (line 7). The 
execution time of the program for each of these new sets of 
spawning pairs is estimated.  The model for this estimation is 
explained in detail in Section 3.3.1. If any new set of pairs is 
better than the current one (line 9), the new pair is kept in the 
SELECT variable and execution time is updated. If no new set 
results in significant improvement, the greedy algorithm finishes 
(lines 14 and 15).  However, if a given combination improved the 
previous execution time, the SELECT pair, which contains the best 
pair in the candidate set, is removed from the candidate set (line 
17) and added to the selected set (line 18). 
Depending on the parameterization of the filters, this exhaustive 
search can still be a lengthy process. However, this is a research 
compiler optimizing code for, and facilitating the understanding 

of, a research architecture.  As we achieve success and experience 
with finding effective pairs, we expect to be able to refine the 
search process significantly. 

3.3.1. SpMT Estimation Model 
As we have seen before, the core of the selection algorithm is a 
function able to estimate the execution time of a program for a 
given set of spawning pairs (line 8 in Figure 4). The inputs of that 
model are: (i) the number of thread units, (ii) a program trace, and 
(iii) a set of spawning pairs.  
The goal of this model is to analyze the behavior and interactions 
of the set of spawning pairs when the program is executed on the 
given SpMT processor. The output of the model is the SpMT 
execution time. For the sake of simplicity we assume below that 
the execution of any instruction takes a unit of time. However, the 
model can be extended in a straightforward manner to include 
different execution times for each static instruction (e.g., using 
average memory latencies obtained through profiling). 
The model analyzes the evolution of threads during execution. 
The model works as follows: the program trace is analyzed 
sequentially. Just key basic blocks need to be analyzed.  Key basic 
blocks are: the first and last basic blocks in the trace, and SP and 
CQIP basic blocks. 
During the trace traversal, two global variables are being updated: 

• Current time: the time at which the current basic block 
instance is being executed. 

• Current thread: the thread that executes the current basic 
block instance under analysis. 

The core of the model is shown in Figure 5. Initially, a single non-
speculative thread is assumed. This thread is allocated to any 
thread unit and is supposed to be responsible for the execution of 
the whole trace, so its end time is accordingly initialized. 
When a basic block that corresponds to an SP in the set of pairs is 
found, some actions are required. If the basic block corresponding 
to the CQIP does not exist in the remainder of the trace or the 
given CQIP has been already executed by another thread, the 
thread is marked as a CANCEL thread (a thread that exits before the 

Figure 5. Flowchart describing the modeling of SpMT execution
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CQIP is reached); otherwise, we mark it as a NORMAL thread. In 
either case we look for a thread unit. If a thread unit is free we 
assign it to the new thread. Otherwise, we check if the most 
speculative thread (the one whose next thread is NULL) is further in 
program order (more speculative) than the new thread.  If so, the 
most speculative thread is cancelled and the freed unit is allocated 
to the new thread. Otherwise, the spawn is discarded. 
When a basic block that corresponds to a CQIP in the set of pairs 
is found, it is checked whether any more speculative active thread 
was started at this basic block instance. If this is the case, the 
current thread is terminated and current thread and current time 
variables are updated accordingly. 
Finally, the last basic block of the trace just terminates the current 
thread.  The commit time of this last thread represents the SpMT 
execution time of the program.  
Spawning a new thread requires the following actions: 

1) Identify the order of this new thread with respect to the 
current ones. Its previous thread is the thread that contains 
the CQIP of the new thread (i.e., the linked list of threads 
starting at the current thread is traversed until the first that 
contains the CQIP is found). Its next thread is the thread that 
was the successor (before spawning) of its previous thread. 

2) Decide whether this is a CANCEL thread or a NORMAL one: this 
is randomly selected based on the cancel probability of each 
type for this particular thread. 

3) Record the start and end basic blocks of the thread. The 
former is the current CQIP and the later is the start of  the 
next thread. 

Finally, canceling a thread requires the following actions: (1) 
identify previous and next threads, and (2) update links and end 
information of the previous thread. 

4. Speculative P-Slices 
This architecture handles inter-thread dependences through the 
execution of a pre-computation slice inserted at the beginning of 
every speculative thread. The goal of the p-slice is to calculate the 
live-ins of the new speculative thread very quickly. Regardless of 
the code we generate for a given p-slice, the architecture 
guarantees a functionally correct execution of the program. Thus 
accuracy of p-slices only affects performance, not correctness. 
This is a key observation, since it allows the compiler to perform 
aggressive, unsafe optimizations when generating these p-slices. 
The steps to build a p-slice for a given spawning pair are: 

1) Identify live-ins. 
2) Generate conservative p-slice. 
3) Optimize the p-slice. 

4.1. Identifying Live-ins 
Identifying the live-ins of a speculative thread requires a top-
down traversal of its control-flow graph starting at the CQIP to 
identify register and memory values read before being written by 
the speculative thread. Each path is explored until a certain length. 
This length represents the time that previous threads take to 
compute and commit these values. This is because once the 
previous thread commits, the speculative thread need no longer 
rely on predicted values, but can read committed values. This time 
is estimated as the time it takes to sequentially execute all the 
code between the SP and CQIP minus the thread spawn overhead.  

4.2. Generating Conservative P-Slices 
The p-slice for a spawning pair is built by traversing the control-
flow graph backwards from the CQIP until the SP. The input to 
that step is the set of live-ins, both register and memory values. 
The first instructions included in the slice are those that directly 
produce the thread live-ins. Then the process inserts ancestors of 
these instructions, taking into account both data and control 
dependences, provided that they are below the SP.  
Initially, all dependences among instruction as given by the 
compiler in the conventional, conservative way are considered. 
This means that the only reason why a p-slice may be incorrect is 
if not all the live-ins of the thread are being considered (e.g. the 
length of the thread, as described in the previous section, may 
have been incorrectly estimated). 
Upon finding a call to a subroutine, the side-effects of that 
subroutine as well as the use of the returned value(s) are analyzed, 
and if there is any dependence, the call instruction to the 
subroutine is included into the slice. This means that the slice 
includes the whole subroutine, although the full code of that 
subroutine may not be needed. A possible optimization (not 
considered in the results presented in this paper) would be the in-
lining or specialization of some functions. 

4.2.1. Early Cancellation 
A safe optimization that we have implemented is called early 
cancellation.  Starting from the SP, we can analyze whether a path 
in the control-flow graph will reach the CQIP or not. In the latter 
case, the thread would keep executing useless instructions 
(wasting power and keeping a thread unit busy) until it is 
squashed by a less speculative thread. A reachability analysis of 
the CFG from the SP to the CQIP is used to identify the points in 
the program where we can guarantee that the CQIP will never be 
reached. The compiler inserts a cancel instruction in each of 
these points, which will squash the thread when executed.   

4.3. Speculative Optimizations 
The p-slices built using the conservative assumptions of the 
compiler, as described above, are normally very large. Large p-
slices significantly constrain the benefits of speculative threads. 
However, a key feature of the Mitosis SpMT architecture is that it 
can detect and recover from misspeculations. This opens the door 
to new types of aggressive/unsafe optimizations that otherwise 
could not be applied by the compiler, and which have the potential 
to significantly reduce the overhead of p-slices. In the following 
subsections, we describe the set of speculative optimizations 
currently included in the Mitosis compiler. 
Speculative optimizations require a new factor in the analysis: the 
misspeculation probability.  This factor represents the probability 
that a given p-slice is incorrect.  This happens when some live-ins 
are not computed or they are incorrect.  This probability is 
attached to each candidate pair and used by the model described 
in Section 3.3.1 when deciding whether a spawned pair is NORMAL 
or CANCEL. 

4.3.1. Memory Dependence Speculation 
Modern compilers often fail to parallelize applications because of 
ambiguous memory dependences. Many memory dependences are 
only included because the compiler cannot prove that the 
corresponding instructions are independent, but in fact they are. In 
many other cases, two static instructions do have a memory 



dependence, but this dependence only happens for a very few 
dynamic instances of these instructions. 
We have implemented a memory dependence profile to minimize 
the number of unnecessary dependences considered when 
generating p-slices. The profiler computes the dependence 
frequency between any pair of store-load, store-call, call-
load or call-call instructions for each routine (the SP and 
CQIP of a spawning pair are in the same routine).  Dependences 
for calls refer to dependences due to any memory reference inside 
the called routine. 
The compiler only considers that two instructions have a 
dependence whenever this dependence has happened with a 
frequency above a given threshold. In other words, dependences 
that never occur in practice, or occur very infrequently, are 
discarded. 

4.3.2. Branch Pruning 
Branch pruning consists of ignoring those paths that exhibit low 
probability of being taken when generating p-slices. These paths 
may belong to either the body of a speculative thread or its p-
slice, with different consequences in each case. 
Pruning branches of the body of speculative threads is done 
during the process of identifying the live-ins of the threads 
(Section 4.1). A pruned branch is still included in the thread body 
code, but any live-in in the pruned path is ignored when the p-
slice is generated, which reduces the size of the p-slice. 
On the other hand, pruning a branch in the p-slice removes all the 
instructions of the pruned path from the p-slice. Additionally, 
predecessors of these removed instructions are also removed if 
their output is not used elsewhere. In the place of a pruned path, a 
cancel instruction is inserted; if this path happens to be taken, the 
thread input values will likely be miscomputed, and it is 
preferable to cancel the thread and free this hardware context for 

another thread. We call this optimization speculative early 
cancellation. 
Examples of both types of branch pruning are shown in Figure 6.  
On the left, (a) shows a control-flow graph that includes a SP and 
a CQIP.  Each edge is annotated with its probability of being 
taken (edges without label have probability 1.0).  On the right (b), 
the control-flow graph of the conservative p-slice is shown. Basic 
blocks are labeled with prime letters to indicate that they contain 
just a subset of the instructions of the original basic blocks. Some 
data dependences among instructions in some basic blocks are 
also listed in Figure 6(c) (lower case letters represent instructions 
in basic blocks with the corresponding capital letter, e.g., 
instruction ‘a’ is in basic block ‘A’). A possible edge (i.e., branch) 
to be pruned in the speculative thread is L→N, which will remove 
a live-in (data dependence d→n) and then some instructions in the 
slice (dependence b→d is not needed).  On the other hand, an 
example of pruning in the p-slice would be for edge E→G, which 
will remove the data dependence g→o.  This will remove in turn 
the need for dependence c→g in the p-slice. In this example, as no 
instructions are needed from basic blocks B and C (since their 
dependences have been removed), the control dependence a→b,c 
can also be removed from the slice.  The resulting optimized p-
slice is show in Figure 6(d). 

4.3.3. Dependence Pruning 
Data dependences that are infrequent can also be ignored. For 
memory dependences, the profiler described in Section 4.3.1 is 
used for this purpose. In the case of register dependences, the 
probability of reaching the producer once the spawn has been 
executed is computed and multiplied by the probability of 
reaching the consumer after executing the producer. Note that a 
consumer can be located either in the slice or the speculative 
thread body. As in the case of memory dependences, if this 
probability is lower than a threshold, the dependence is ignored 
for the purpose of generating the final p-slice. 

4.3.4. Cancel Elimination 
As previously discussed, cancel instructions are inserted at points 
where the compiler can guarantee that the speculative thread is 
incorrect or the flow cannot reach the CQIP. This allows the 
processor to squash early a speculative thread in order to free the 
thread unit for other threads. However, this means that the branch 
instruction leading to the pruned code must be preserved (and all 
its ancestors in the dependence graph).  This overhead may be 
large in some cases, which significantly impacts the effectiveness 
of the speculative thread. In these cases, it may be more effective 
just to remove the cancel operation and the associated branch 
instruction (which will also remove some of its ancestors). This 
will make the slice always follow the frequent path, which can be 
incorrect in some infrequent cases. The architecture will still 
detect these misspeculations, and squash the thread. 

5. Experimental Evaluation 
5.1. Framework 
The Mitosis compiler has been implemented on top of the ORC 
compiler [11] to generate IPF code. The performance of the 
Mitosis compiler/architecture has been evaluated through a 
detailed, execution-driven microarchitectural simulator built on 
top of SMTSIM [25]. The modeled Mitosis processor is a research 
Itanium® CMP processor with 4 hardware contexts. Each 
hardware context is a 6-way issue, in-order core. The main 

Figure 6. Example of p-slice 
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parameters of the processor configuration are shown in Table 1. 
The figures in the table are per thread unit. 

Table 1. Mitosis processor configuration 

Fetch, in-order issue and commit 
bandwidth 2 bundles (6 instructions) 

I-Cache 64KB 

L0-Cache 4-way associative 16KB – hit latency: 1 cycle 

L1-Cache 4-way associative 1MB – hit latency: 4 cycles 

L2-Cache (share) 4 way associative 8 MB – hit latency: 8; miss 
latency: 250 

Local Register File Latency = 1 cycle 

Remote Register File Latency = 6 cycles 

Spawn overhead 5 cycles 

Validation overhead 15 cycles 

Commit overhead 5 cycles 

 
To evaluate the potential performance of the Mitosis architecture, 
a set of non-automatic parallelizable codes have been used. These 
benchmarks correspond to a subset of the Olden benchmark suite. 
The benchmarks used are bh, em3d, health, mst and perimeter.  
We have used a train input for profiling of around 10M 
instructions per benchmarks, and a different input set that on 
average executes around 300M instructions for the simulation. 
Statistics in the next section correspond to the whole execution of 
these programs. The rest of the suite has not been considered due 
to the recursive nature of the programs. The Mitosis compiler is 
not currently able to extract speculative thread-level parallelism in 
recursive routines. This feature will be targeted in future work. 
The ORC compiler has been used with full optimizations enabled 
(-O3) except software pipelining and if-conversion. For the 
Mitosis optimizations, we have considered a 5% threshold for 
dependence pruning and 15% for branch pruning.  We have not 
paid special attention to the compilation time.  Our first attempt at 
using filters to trim the search space is very promising, but timing 
aspects require further work in the future. 
Olden benchmarks have been chosen since they are pointer 
intensive programs for which automatic parallel compilers are 
unable to extract thread-level parallelism. To corroborate this, we 
have compiled the Olden suite with the Intel® C++ production 
compiler which produces parallel code. Almost no part of the 
code was parallelized for any benchmark.  

5.2. Results 
The first results we will show focus on the benefit of the proposed 
optimization for the p-slices.  For that, we will use a metric that 
we call average benefit per pair. It is an approximation of the 
number of parallelized instructions by each instance of the pair. 
The expected benefit of a single pair is computed as follows: 
Overlap = PairLength – (SliceLength + Init) 
ProbCorrect = (1-Cancel) * (1-Misspec) 
Benefit = Overlap * Count * ProbCorrect 

PairLength and SliceLength show the average length of the pair 
and the slice, respectively. Init, as shown in Figure 2, represents 
the latency of the spawn instruction. Cancel shows the probability 
that the slice is cancelled, and Misspec is the probability that the 
slice is incorrect due to speculative optimizations.  Finally, Count 

is the number of times the spawning instruction is executed. From 
those expressions, the average benefit per pair is computed as: 
AvgBenefitPerPair = SUM(Benefiti) / SUM(Counti), for all PAIRi 

To quantify the effect of the different optimizations applied to p-
slices, Table 2 shows the average benefit per pair for all pairs after 
filtering (that is, the set of candidate pairs that will be later 
considered by the pair selection scheme). We show in the 
different columns the proposed metric without any speculative 
optimization (DFL), after dependence pruning (DPR), after 
branch pruning (BPR) and finally after cancel elimination (CCL). 
Each optimization is added on top of previous ones. 

Table 2. Benefit of p-slice optimizations on all candidate pairs 

Default Dependence
pruning 

Branch  
pruning 

Cancel 
elimination

1.9 106.5 106.5 287.6 

 
We can observe that all optimizations significantly improve the 
quality of p-slices, with the exception of branch pruning. However 
branch pruning is necessary for cancel elimination, which is 
shown to be quite effective.  
Figure 7 shows the estimated speedup (using the model proposed 
in Section 3.3.1) for the different optimizations. As in the 
previous table, each optimization is applied on top of the previous 
one.  We can observe that the improvement in the p-slice 
overheads shown in Table 2 actually translate into speedup.  We 
can observe that, on average, the expected speedup grows from 
1.15x without optimizations up to almost 2x when all 
optimizations are set. 
Table 3 presents some statistics of the speculative threads 
generated by the Mitosis system with fully optimized p-slices. The 
last row shows the arithmetic mean for the evaluated benchmarks. 
The second column shows the number of spawned threads by 
benchmark and the second column the average number of 
speculative instructions executed by speculative threads. It can be 
observed that bh spawns the fewest threads but their average size 
is about 30 times larger than for the rest of benchmarks. On the 
other hand, mst spawns the most but the average size of its 
speculative threads is the lowest. The fourth column shows the 
average dynamic size of the p-slices and the fourth column the 
relationship between the sizes of the speculative threads and their 
corresponding p-slices. This percentage is consistently quite low 
for all the studied benchmarks and on average represents less than 
3%. The sixth column shows the average number of thread input 

Figure 7. Total speedup estimated by the compiler for 
the proposed optimizations 
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values that are computed by the p-slice, which is only three values 
on average. The seventh column represents the percentage of 
threads that are squashed. This percentage is rather low for all the 
benchmarks except for health, for which about one out of every 
four threads is squashed. We have observed that for this particular 
benchmark, memory dependences for the profiling and simulated 
inputs are significantly different, which result in many memory 
dependence misspeculations. 
Finally, the right-most column shows the degree of speculative 
thread-level parallelism that is exploited by Mitosis. This column 
represents the average number per cycle of active threads that are 
executing correct code. It can be observed that, even though 
parallelizing compilers cannot find parallelism in these 
benchmarks, there is still a high degree of thread-level parallelism 
that is exploited by the Mitosis compiler/architecture. On average, 
the number of active and correct threads per cycle is slightly 
higher than 2.5.   

Table 3. Characterization of the Olden benchmarks 

OLDEN Spawned 
Threads 

Thread 
Size 

Slice 
Size 

Slice / 
Thread 

Thread 
Liveins 

Squash 
Pctg 

Active 
Threads/cycle 

bh 422 15543 196 1.3% 4.4 0.7% 2.68 

em3d 396638 422 9 2.1% 1.0 0.3% 2.87 

health 198497 1112 41 3.7% 2.7 26.9% 2.35 

mst 1367114 271 5 2.1% 2.3 0.8% 2.62 

perimeter 493725 576 24 4.2% 3.6 1.0% 2.08 

MEAN 491279 3585 55 2.7% 2.8 6.0% 2.52 

 
Figure 8 shows the performance of the Mitosis processor 
compared to other single- and multi-threaded architectures. 
Performance is reported as speedup over execution on a single 
Mitosis thread unit. The compared architectures are: a) an out-of-
order superscalar processor, with twice the resources of an in-
order Mitosis thread unit, and b) a single thread unit with perfect 
memory.  This represents an upper bound on the performance that 
can be achieved by helper threads that target memory latency [5].    
The main conclusion of this study is that the Mitosis system is 
very effective at exploiting thread-level parallelism for irregular 
applications. An average speedup of 2.2 is observed, and 
significant speedup is achieved for all benchmarks. It can be 
observed that the Mitosis processor clearly outperforms the other 
architectures. Average speedups for the big out-of-order core and 
perfect memory are 1.26 and 1.23 respectively. 
The last bar in each group of bars in Figure 8 shows the speedup 
estimated by our model with full optimizations for the selected 
pairs.  In three of the five benchmarks (em3d, health and 
perimeter) the speedup predicted by the model is relatively close 
to that of the simulation. In the case of mst we have observed that 
the difference is due to many high-latency instructions. Note that 
for mst the Perfect Memory scheme performs better than Mitosis. 
We expect that including a more accurate latency for each 
instruction in the model (instead of the fixed 1-cycle currently 
assumed) will significantly improve performance in these cases. 
In the case of bh, the main source of discrepancy between 
simulated and estimated speedups are due to the use of average 
lengths to estimate the timing of the p-slices and speculative 

threads. We have observed that for this program, these lengths 
experience a significant variability, and thus, the selected 
threading scheme is not optimal for the cases that significantly 
depart from the average. 
Looking at particular benchmarks, we can observe that the big 
out-of-order core is comparable to Mitosis only for em3d. This is 
due to the fact that this program has abundant ILP, which could 
also benefit more aggressive configurations of Mitosis, for 
instance based on out-of-order cores. Perfect memory is 
comparable to Mitosis only for mst. For this program, the 
performance of the memory system is rather poor; for a single-
threaded execution, the L0 and L1 miss ratios are around 50% and 
70% respectively. This clearly points out that memory is the main 
bottleneck for this program, and any technique that tries to 
accelerate it should focus on memory. Obviously, perfect memory 
attacks this problem but the results show that Mitosis solves it 
effectively too.  
To summarize, we find the Mitosis architecture and compiler to 
represent a highly flexible parallel architecture. Whether the code 
contains traditional thread-level parallelism (not shown in these 
benchmarks, but easily handled by this system), instruction-level 
parallelism (em3d), or memory-level parallelism (mst), Mitosis 
exploits it effectively.  Additionally, codes that exhibit none of the 
above also experience high speedups. 

6. Related Work 
Several speculative multithreaded architectures have been 
proposed, along with hardware and compiler techniques to extract 
speculative threads. In this section we review the main works, 
with regard to the schemes used to identify speculative threads 
and to manage inter-thread data dependences, which are the topic 
of this paper. 
The Expandable Split Window Paradigm [10] and the follow-up 
work, the Multiscalar processor [19][26] were pioneering works 
in the area of SpMT.  Speculative threads (called tasks) are 
created by the compiler based on several heuristics that tried to 
minimize the data dependences among threads as well as 
maximize the workload balance, among other compiler criteria. 
The process consists of walking the control-flow graph and 
accumulating basic blocks into tasks. Inter-thread data 
dependences are managed differently depending on whether they 
are through memory or registers. For register dependences, the 
compiler is responsible for detecting the instruction that performs 
the last write on this register in order to bypass the value to the 
consumer thread. Memory dependences are handled through the 
ARB mechanism. 

Figure 8. Speedup over single-threaded execution 
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Several studies propose architectures and schemes to create 
speculative threads based on well-known program constructs such 
as loop iterations, loop continuations and subroutine continuations 
([23][9][1][4][13][2][20][17] among others) either through 
hardware or software mechanisms. The Superthreaded [23] and 
the SPSM [9] system are two examples where the loop 
parallelization task is performed by the compiler.  
These schemes differ in the mechanism used to deal with inter-
thread data dependences. Most detect memory dependence 
violations based on modifications of traditional snoop-based 
cache coherence protocols. Memory data value prediction has also 
been proposed, but these values usually show lower predictability 
[3][21]. Register dependent values are either synchronized or 
hardware predicted. Some compiler-based schemes, such as the 
Superthreaded architecture [23], reorder the code in order to 
compute the dependent value earlier.  
Du et al. [8] have recently proposed a cost-driven compilation 
framework that statically determines which loops are good 
candidates to parallelize. They compute a cost graph from the 
CFG and DDG and estimate the probability of misspeculations. 
Inter-thread data dependences are handled by moving producer 
instructions before the spawn of the next iteration. 
A more complex scheme to partition the program into speculative 
threads is presented in a recent work [15]. That scheme is based 
on profiling information. As in Mitosis, any combination of basic 
blocks is considered a candidate spawning pair. In that work, 
inter-thread data dependences are handled by means of hardware 
value prediction. Our work differs from that in the fact that we use 
a software approach to predict thread inputs, which implies a 
significantly different microarchitecture, and the compiler support 
presented in this paper.  
The use of Helper Threads, which speculatively execute a subset 
of the original code to reduce the latency of high-cost instructions, 
has been thoroughly studied [5][12][18][27]. This research 
borrows some concepts from that body of work to create the pre-
computation slices for thread live-ins. However, the need of 
Mitosis to pre-compute a set of values accurately (as opposed to a 
single load address or branch result), and an increased cost of 
misspeculation, requires significantly more careful creation of 
slices, and the inclusion of more accurate control flow in the slice 
– previous work on helper threads typically followed only a single 
control flow path in a slice.  
Finally, Zilles’s et al. Master/Slave Speculative Parallelization 
(MSSP) [28] represents a different scheme to exploit speculative 
thread-level parallelism via distilled programs. Distilled programs 
are a small subset of instructions of a given program that compute 
the input values of the speculative threads. In that execution 
model, the distilled program runs as a master thread and when all 
the input values for a speculative thread are computed, it is 
spawned on an idle context while the master starts computing new 
input values for the next thread. Our execution model differs from 
that previous work in the fact that the computation of the thread 
live-in values are done by speculative threads, which allows the 
processor to spawn threads out of the program order, and to often 
compute the live-ins for speculative threads in parallel. 

7. Conclusions 
In this work we have presented and evaluated the Mitosis 
compiler for exploiting speculative thread-level parallelism. This 
compiler includes a mechanism to build a synthetic trace, a 

scheme to generate and speculatively optimize pre-computation 
slices, a model to estimate the benefits of any set of spawning 
pairs for a given SpMT configuration, and a greedy algorithm to 
select the best set of pairs. The two major novelties of the 
proposal are: (1) the use of pre-computation slices (i.e., software 
value prediction) to handle inter-thread data dependences, and (2) 
a model of the whole system that helps the compiler to identify 
which parts of the program will provide the highest benefit when 
parallelized through speculative threads. This model takes into 
account possible misspeculations, overheads, and load balancing.  
A key contribution of this work is a set of compiler optimizations 
that reduce the length (and thus the overhead) of pre-computation 
slices. Branch pruning, memory and register dependence 
speculation, and early thread squashing are the main techniques 
proposed in this paper. 
The results obtained by the Mitosis compiler/architecture for a 
subset of the Olden benchmarks are impressive. It outperforms 
single-threaded execution by 2.2x. When compared with a big 
out-of-order core, the speedup is close to 2x. We have also shown 
that the benefits of Mitosis do not come only from reducing 
memory latency since it outperforms an ideal system with perfect 
memory by about 60%. 
Overall, this work shows that significant amounts of thread-level 
parallelism can be exploited in irregular codes, with a rather low 
overhead in terms of extra/wasted activity. 
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