
Mitosis Compiler:
An Infrastructure for Speculative Threading

Based on Pre-Computation Slices
Carlos García Quiñones†, Carlos Madriles†, Jesús Sánchez†,

Pedro Marcuello†, Antonio González† and Dean M. Tullsen‡1

† Intel Barcelona Research Center
Intel Labs, Universitat Politècnica de Catalunya, Barcelona

‡ Dept. of Computer Science and Engineering
University of California, San Diego

e-mail: {carlos.garcia.quinones, carlos.madriles.gimeno, f.jesus.sanchez,
pedro.marcuello, antonio.gonzalez}@intel.com, tullsen@cs.ucsd.edu

Abstract
Speculative parallelization can provide significant sources of
additional thread-level parallelism, especially for irregular
applications that are hard to parallelize by conventional
approaches. In this paper, we present the Mitosis compiler, which
partitions applications into speculative threads, with special
emphasis on applications for which conventional parallelizing
approaches fail.
The management of inter-thread data dependences is crucial for
the performance of the system. The Mitosis framework uses a pure
software approach to predict/compute the thread’s input values.
This software approach is based on the use of pre-computation
slices (p-slices), which are built by the Mitosis compiler and
added at the beginning of the speculative thread. P-slices must
compute thread input values accurately but they do not need to
guarantee correctness, since the underlying architecture can
detect and recover from misspeculations. This allows the compiler
to use aggressive/unsafe optimizations to significantly reduce
their overhead. The most important optimizations included in the
Mitosis compiler and presented in this paper are branch pruning,
memory and register dependence speculation, and early thread
squashing.
Performance evaluation of Mitosis compiler/architecture shows
an average speedup of 2.2.

Categories and Subject Descriptors C.1.4 [Processor
Architectures]: Parallel Architectures, D.3.4 [Programming
Languages] Processors – compilers, code generation,
optimization.
General Terms Performance, Design
Keywords Speculative multithreading; thread-level parallelism;
automatic parallelization; pre-computation slices.

1. Introduction
Several microprocessor vendors have recently introduced single
chip architectures that can execute multiple threads in parallel,
exploiting thread-level parallelism. Two different approaches
have been used to architect these systems: simultaneous
multithreading [25][7] and multiple cores [24][22][16]. These
architectures increase throughput by executing independent jobs
in parallel, or reduce execution time by parallelizing applications.
This latter case has proved to be successful for regular numerical
applications, but less so for non-numerical, irregular applications,
for which the compiler usually fails to discover a significant
amount of thread-level parallelism.1
Speculative multithreading (SpMT for short) attempts to speed up
the execution of applications through speculative thread-level
parallelism. Threads are speculative in the sense that they may be
data and control dependent on previous threads (that have not
completed) and their execution may be incorrect.
There are two main strategies for speculative thread-level
parallelism: (1) use helper threads to reduce the execution time of
high-latency instructions/events through side effects, and (2)
parallelize applications into speculative parallel threads, each of
which contributes by executing a part of the original application.
Helper Threads [6][5][18][27] attempt to reduce the execution
time of the application by using speculative threads to reduce the
cost of high-latency operations (such as load misses and branch
mispredicts). For instance, in [5][27] this is done by executing a
subset of instructions from the original code to pre-compute load
addresses or branch directions. Instructions executed by
speculative threads do not compute/modify any architectural state
of the processor, and thus, all architectural state must still be
computed by the main, conventional thread.
With speculative parallelization ([10][1][13] among others), each
of the speculative threads executes a different part of the program.
This partitioning is based on relaxing the parallelization
constraints and allowing the spawning of speculative threads even
when the compiler cannot guarantee correct execution. When a
speculative thread finishes, the speculation is verified. Unlike
helper threads, the values produced by a speculative thread are

1 This work was done while he was a visiting professor at Intel Barcelona
Research Center

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
PLDI’05, June 12–15, 2005, Chicago, Illinois, USA.
Copyright 2004 ACM 1-59593-056-6/05/0006…$5.00.

Published in the 2005 Conference on Programming Language Design and Implementation, June, 2005

committed. In case of a misspeculation (control or data), the work
done by the speculative thread is discarded. The Mitosis
architecture used in this work follows this approach.
A potential speculative thread is defined by a spawning pair,
which consists of the point in which the spawning instruction is
inserted and the point where the speculative thread will start
execution when it is spawned. Prior work has demonstrated that
well chosen speculative threads (or spawning pairs) can result in
significant speedups [15]. Conversely, a poorly chosen pair can
hurt performance.
A key point in any SpMT system is how to deal with inter-thread
data dependences. Two mechanisms have been studied so far: (1)
synchronization mechanisms and (2) value prediction. The
synchronization approach imposes a high overhead when
dependences are frequent, as in the workload presented here.
Value prediction has more potential – if the values that are
computed by one thread and consumed by another can be
predicted, the consumer thread can be executed in parallel with
the producer thread since these values are only needed for
validation at a later stage. It is typically assumed that these value
predictions are computed in hardware. The Mitosis system
presents a novel approach, which adds code (derived from the
original program) to predict in software the live-ins (values
consumed, but not produced by, the thread) for each speculative
thread. Because mechanisms for recovery of incorrect threads are
already in place, the code to produce the values need not always
be correct, and can be highly optimized. We refer to this code as
pre-computation slices (p-slices). The main advantages of p-slices
are: (1) they are potentially more accurate in the prediction of
live-ins than a hardware-based predictor, since it is derived from
the original code, (2) they can encapsulate multiple control flows
that contribute to the prediction of live-ins, and (3) they can
accelerate the detection of incorrectly spawned threads.
In this work, we present the Mitosis compiler. One objective of
the Mitosis compiler is to identify the most effective points in any
program to spawn speculative threads. This entails, among other
tasks, locating regions of code where the live-ins can be
accurately predicted through p-slices with a low overhead.
The Mitosis compiler provides the following features: (1) it
identifies effective spawning pairs, (2) generates pre-computation
slices, (3) optimizes pre-computation slices to minimize their
overhead, and (4) maximizes the accuracy of pre-computation
slices. The main contributions of this work are:

• A general compilation framework to analyze and insert
spawning pairs at any point of any program.

• The use of pre-computation slices to predict values
corresponding to inter-thread dependences.

• A mechanism to build and optimize (in terms of both
accuracy and overhead) pre-computation slices.

• A model to estimate the benefit of any set of spawning pairs
for a given SpMT configuration, and a scheme to select the
most effective set.

Evaluation of the proposed compilation technique shows very
encouraging results. Performance results reported for the Mitosis
compiler show a speedup of about 2.2 for a subset of the Olden
benchmark suite. This is code that state-of-the-art parallelizing
compilers/architectures cannot parallelize.
The rest of the paper is organized as follows. Section 2 describes
basic concepts of the Mitosis SpMT architecture that are relevant
to the Mitosis compiler. In Section 3, the Mitosis compiler
infrastructure is presented. The scheme to build and optimize
speculative pre-computation slices is further detailed in Section 4.
Section 5 evaluates the Mitosis compiler. Finally, Section 6
discusses some related work and Section 7 summarizes the main
conclusions of this work.

2. Overview of the Mitosis Architecture
This section presents an overview of the underlying speculative
multithreaded architecture, with special emphasis on those
features that are relevant to the compiler for generating effective
speculative threads.

2.1. Features
The Mitosis SpMT architecture is composed of several thread
units (TUs), each able to execute a thread. A thread unit contains
its own register file, instruction/data caches, functional units and
program counter. This means that the compiler can see a thread
unit as an independent entity of execution. The thread units can be
organized in various ways. For instance, one can implement this
architecture in a SMT (Simultaneous Multithreaded) or a CMP
(Chip Multiprocessor) fashion. For this study, we assume a CMP-
like design for simplicity and scalability.

2.2. Execution Model
In the Mitosis architecture there is always one (and only one) non-
speculative thread, which is the only one allowed to commit its
results. All other threads are speculative. A speculative thread is
created when a spawn instruction is found. A spawn instruction
basically describes a spawning pair. A spawning pair is defined as
a set of two points in the program (each at the beginning of a basic
block). The former is called the spawning point (SP), marked by
the spawn instruction, and identifies when a new speculative
thread is created. The latter is called the control quasi-
independent point (CQIP) and represents where the speculative
thread starts executing (after some initialization), and is identified
as an operand of the spawn instruction. Figure 1 shows the

Figure 1. Sequential vs SpMT parallel execution

Figure 2. Stages in the life of a speculative thread (a) Sequential version

SP

CQIP
Se

qu
en

tia
l E

xe
cu

tio
n T

im
e

CQIP

CQIPSP

Pa
ra

lle
l E

xe
cu

tio
n

Ti
m

e

(b) SpMT version(a) Sequential version

SP

CQIP
Se

qu
en

tia
l E

xe
cu

tio
n T

im
e

SP

CQIP
Se

qu
en

tia
l E

xe
cu

tio
n T

im
e

CQIP

CQIPSP

Pa
ra

lle
l E

xe
cu

tio
n

Ti
m

e

CQIP

CQIPSP

Pa
ra

lle
l E

xe
cu

tio
n

Ti
m

e

(b) SpMT version

INITINIT P-SLICEP-SLICE BODYBODY WAITWAIT COMMITCOMMIT

SP CQIP

Spawn
time

Start
time

End
time

Commit
time

INITINIT P-SLICEP-SLICE BODYBODY WAITWAIT COMMITCOMMIT

SP CQIP

Spawn
time

Spawn
time

Start
time
Start
time

End
time
End
time

Commit
time

Commit
time

difference between sequential and SpMT parallel execution of
code.
Any thread can spawn a new thread. The requirements to spawn a
thread are: (i) there is a free thread unit, or (ii) there is at least one
running thread more speculative (further in sequential time) than
the thread is to be created. In the latter case, the most speculative
thread is cancelled and the freed thread unit is assigned to the
spawned thread.
Correct execution of the code following the CQIP requires that the
future state (memory and register values) of the processor at the
CQIP is correctly predicted. Our SpMT model differs from prior
proposals in that we assume that each speculative thread includes
a pre-computation slice (p-slice for short) that computes the live-
ins of the thread. A speculative thread has two operation modes,
depending on whether it is executing code from the pre-
computation slice or the body of the thread. In particular, data
produced while in p-slice mode is stored in a special buffer (called
the slice buffer) and will be used as input for the body of the
speculative thread. Data produced by the speculative thread is
kept in the regular structures of the thread unit (register file and
memory) and will be committed once the thread becomes non-
speculative. This distinction arises from the fact that the p-slice
only predicts machine state, while the speculative thread body
(following the p-slice) calculates actual machine state; thus, data
produced by the p-slice must be confirmed, but never committed.
Threads commit in sequential order. This means that a thread
must wait to become the oldest one (i.e., the non-speculative
thread) to commit. A thread finishes when it reaches the start
(CQIP) of another thread that is active. Then, the latter thread is
validated. If the validation is correct, the latter thread is allowed to
commit once it is the oldest thread. Otherwise, it is squashed (as
well as its successors) and the former thread proceeds to execute
the instructions beyond the CQIP. Figure 2 shows a scheme with
the different stages in the life of a speculative thread.

3. Selecting Spawning Pairs
The Mitosis compiler for this architecture performs the following
tasks: (1) generate the p-slices for each pair, (2) optimize the p-

slices to minimize overhead, and (3) select the best candidate
spawning pairs. These tasks are heavily inter-related; however, we
will discuss each separately. This section describes the selection
of spawning pairs. Generation and optimization of p-slices are
described in Section 4. The proposed scheme has been
implemented in the code generation phase (after optimizations) of
the ORC compiler [11]. The compiler makes use of the
information provided by an edge profile. This information
includes the probability of going from any basic block to each of
its successors and the execution count of each basic block.
Selecting the best set of spawning pairs requires assessing the
benefit of any given candidate pair. However, determining the
benefits of a particular spawning pair is not straightforward. The
effectiveness of a pair depends on the control flow between the
spawning point and the start of the thread, the control flow after
the start of the thread, the accuracy of the p-slice, the overhead of
the p-slice, the number of hardware contexts available to execute
speculative threads, and interactions with other speculative
threads running at the same time.
This analysis requires a model of program execution. To avoid
capturing and repeatedly traversing a full path trace of the
program, we generate a (much smaller) synthetic trace of
execution that captures the dynamic behavior. The key idea is to
traverse this trace while keeping track of the threads that are
active at any time. For each thread, its state (see Figure 2) is
maintained to emulate its evolution during its lifetime. This
analysis emulates the timing behavior of the speculative threads,
assuming a simple model where each instruction takes a fixed
time. Based on this, the compiler can estimate the expected
benefits of any set of spawning pairs, and select those that are
expected to minimize total execution time.

3.1. Building the Synthetic Trace
We build a synthetic trace of the program to translate the edge
profile into path information, without having to capture and
maintain a full path profile. The synthetic trace is built based on
edge profiling information at the basic block level. The analysis
performs a reverse topological traversal of the call graph. This
means that callee routines are analyzed before callers.
For each routine, we compute a set of paths. A routine path is
defined as a list of connected nodes in the CFG from the entry
node to an exit node. We assume here that a routine has only one
entry. A path node can be one of these types: basic block (BB),
loop, or call. Loop and call nodes are macronodes in the sense
that they include more than a single basic block. A loop node
consists of the header of a given loop and contains all the nodes
(basic blocks, inner loops or calls) that belong to that loop. A call
node is just a basic block that ends with a call to a particular
function. The exit node of a routine path could be either a return
(node with no successor) or a call to the exit function. Thus, there
are two types of routine paths: return paths and exit paths. Each
routine path is characterized by its total length (in instructions)
and its probability (using the edge profiling information). This is
summarized in the following expressions:
ROUTINE = SET OF { ROUTINE PATH }
ROUTINE PATH = LIST OF { NODE } + TYPE + LENGTH + PROB
ROUTINE PATH TYPE = { RETURN | EXIT }
NODE = { BB | LOOP | CALL }

A loop node requires more analysis. For each loop, we compute a
set of loop paths. A loop path is defined as a sequence of nodes in
the CFG of the loop from the head of the loop to a possible loop

Figure 3. Construction of a loop macronode

A

B C

D

E

GF

0.6 0.40.5

0.5

0.2 0.3 0.7

1.0
0.8

(a) Control-flow graph of the a loop

G0.120{A C E}Break
A0.280{A C E}Continue
F0.060{A B D}Break
G0.072{A B D E}Break
A0.168{A B D E}Continue
A0.300{A B}Continue

NEXTPROBPATHTYPE

(b) Loop paths

GF

Loop A

0.238 0.762

(c) Loop macronode

A

B C

D

E

GF

0.6 0.40.5

0.5

0.2 0.3 0.7

1.0
0.8

(a) Control-flow graph of the a loop

A

B C

D

E

GF

0.6 0.40.5

0.5

0.2 0.3 0.7

1.0
0.8

A

B C

D

E

GF

0.6 0.40.5

0.5

0.2 0.3 0.7

1.0
0.8

(a) Control-flow graph of the a loop

G0.120{A C E}Break
A0.280{A C E}Continue
F0.060{A B D}Break
G0.072{A B D E}Break
A0.168{A B D E}Continue
A0.300{A B}Continue

NEXTPROBPATHTYPE

(b) Loop paths

G0.120{A C E}Break
A0.280{A C E}Continue
F0.060{A B D}Break
G0.072{A B D E}Break
A0.168{A B D E}Continue
A0.300{A B}Continue

NEXTPROBPATHTYPE

G0.120{A C E}Break
A0.280{A C E}Continue
F0.060{A B D}Break
G0.072{A B D E}Break
A0.168{A B D E}Continue
A0.300{A B}Continue

NEXTPROBPATHTYPE

(b) Loop paths

GF

Loop A

0.238 0.762

(c) Loop macronode

GF

Loop A

0.238 0.762

GF

Loop A

0.238 0.762

(c) Loop macronode

exit node. A loop exit node can be a node with an edge to the loop
head (continue path), an edge outside the loop (break path) or a
call to a function that may call the exit function (exit path). We
are assuming here that a loop has a single header. As in the case
of routines, each loop path has its length (in instructions) and
probability. This is summarized with the following expressions:
LOOP PATH = LIST OF { NODE } + TYPE + LENGTH + PROB
LOOP PATH TYPE = { CONTINUE | BREAK | EXIT }

Next, a set of synthetic traces are built for each loop. A loop
synthetic trace consists of selecting NITER – 1 loop paths of type
continue and 1 loop path of type break or exit, where NITER is
the average trip count. For large loops, we build the trace
assuming a fixed maximum value for the trip count. The rest of
the iterations are considered to have the same behavior as the
analyzed ones. The selection of the paths inside the loop consists
of a random weighted model according to each path probability.
The number of loop synthetic traces that are built per loop is a
parameter of the tool and can be adjusted depending on time and
memory space requirements. We call each loop’s synthetic trace a
loop instance. For each loop node the compiler keeps a list of
instances and a pointer to one of them (initially the first one), that
is updated in a circular fashion.
LOOP = CIRCULAR LIST OF { LOOP INSTANCE } + POINTER +
 TRIP COUNT + LENGTH
LOOP INSTANCE = LIST OF { LOOP PATH }

The length of a loop node is computed as the weighted average
length of the loop instances. Figure 3 shows an example of how a
given loop is split in its different paths and the shape of the
resultant loop macronode.
A call node also has attached a list of instances. A call instance
refers to a possible path in the callee routine. The compiler builds
this list of instances, similarly to loops, by randomly selecting
(based on the probabilities) routine paths from the callee routine.
In the same way, a pointer is also attached.
CALL = CIRCULAR LIST OF { CALL INSTANCE } +
 POINTER + LENGTH
CALL INSTANCE = ROUTINE PATH

The length of a call node is computed as the weighted length of
routine paths in the callee function.
The synthetic trace will be traversed by starting the path at the
main routine of the program. As the main routine is called only

once, there is only one routine path for that function. When a loop
node is found, the traversal proceeds through the loop instance
pointed by the loop instance pointer and the pointer is set to the
next instance. In the case of a call node, the traversal proceeds
through the path in the callee routine described by the call pointer
and the pointer is set to the next one in the same way as for loops.
When an exit path (or the only path in the main routine) is
completely traversed, the program traversal finishes.

3.2. Candidate Pairs
A key feature of the proposed compilation tool is its generality, in
the sense that it can discover speculative thread-level parallelism
in any region of the program. The tool is not constrained to
analyze potential spawning pairs at loop or subroutine boundary,
but practically any pair of basic blocks is considered a candidate
spawning pair. To reduce the search space we first apply the
following filters to eliminate candidate pairs that are likely to have
little potential:

1) Spawning pairs in routines whose contribution to the total
execution of the program is lower than a threshold are
discarded.

2) Both basic blocks of the spawning pair must be located in
the same routine and at the same loop level.

3) The length of the spawning pair (as the average length of all
the paths from the SP to the CQIP) must be higher than a
certain minimum size in order to overcome the initialization
overhead when a speculative thread is created. It must also
be lower than a certain maximum size in order to avoid very
large speculative threads and avoid stalls due to the lack of
space to store speculative state.

4) The probability of reaching the CQIP from the SP must be
higher than a certain threshold.

5) Finally, the ratio between the length of the p-slice and the
estimated length of the speculative thread must be lower
than a threshold. This ratio is a key factor for the benefits of
the thread. In Section 4 we describe in detail how the pre-
computation slices are built and optimized to reduce this
overhead.

This step analyzes the different routines in the program one by
one. For each routine, all combinations of basic blocks are
considered and passed through the different filters. The result of

Figure 4. Greedy algorithm to select spawning pairs

[1] t_exec = SeqExecTime;
[2] Selected_Pairs = ∅;
[3] exit = FALSE;
[4] while (!exit) {
[5] select = NULL;
[6] for (cand=First_Cand(Candidate_Pairs); cand; cand = Next_Cand(cand)) {
[7] Analized_Pairs = Selected_Pairs + cand;
[8] t_exec_tmp = Model_Set_of_Pairs(Analyzed_Pairs, Trace, N_TUs);
[9] if (t_exec_tmp < t_exec) {
[10] t_exec = t_exec_tmp;
[11] select = cand;
[12] }
[13] }
[14] if (select == NULL)
[15] exit = TRUE;
[16] else {
[17] Candidate_Pairs = Candidate_Pairs – select;
[18] Selected_Pairs = Selected_Pairs + select;
[19] }
[20] }

this process is a set of candidate spawning pairs (candidate pairs
for short) of the whole program. For each candidate pair the
following information is kept: (i) basic block for the spawning
point, (ii) basic block for the CQIP, (iii) probability that the p-
slice reaches the CQIP and average length in this case, and (iv)
average length of the p-slice when the CQIP is not reached (in this
case, the speculative thread is cancelled before its body is started).

3.3. Pair Selection
Once the set of candidate pairs is built, the selection of pairs from
it follows the greedy algorithm shown in Figure 4. The basic idea
is to include pairs in the selected set until negligible benefit is
obtained. Among all candidate pairs, the new pair chosen (if any)
is the one that provides the best improvement among all pairs in
the candidate set. The benefit is computed using a model that
estimates the execution behavior of a set of pairs for a given
number of thread units.
The inputs to this algorithm are: (i) the program trace (see Section
3.1), (ii) the set of candidate pairs (see Section 3.2) and (iii) the
number of thread units. Initially, the execution time is set to the
equivalent execution time when no spawning pairs are considered
(SeqExecTime) and the set of selected pairs is empty (lines 1 and 2
in Figure 4). Then, the greedy loop begins (line 4). At each
iteration, all individual pairs in the candidate set are tried one by
one, in conjunction with the pairs already selected (line 7). The
execution time of the program for each of these new sets of
spawning pairs is estimated. The model for this estimation is
explained in detail in Section 3.3.1. If any new set of pairs is
better than the current one (line 9), the new pair is kept in the
SELECT variable and execution time is updated. If no new set
results in significant improvement, the greedy algorithm finishes
(lines 14 and 15). However, if a given combination improved the
previous execution time, the SELECT pair, which contains the best
pair in the candidate set, is removed from the candidate set (line
17) and added to the selected set (line 18).
Depending on the parameterization of the filters, this exhaustive
search can still be a lengthy process. However, this is a research
compiler optimizing code for, and facilitating the understanding

of, a research architecture. As we achieve success and experience
with finding effective pairs, we expect to be able to refine the
search process significantly.

3.3.1. SpMT Estimation Model
As we have seen before, the core of the selection algorithm is a
function able to estimate the execution time of a program for a
given set of spawning pairs (line 8 in Figure 4). The inputs of that
model are: (i) the number of thread units, (ii) a program trace, and
(iii) a set of spawning pairs.
The goal of this model is to analyze the behavior and interactions
of the set of spawning pairs when the program is executed on the
given SpMT processor. The output of the model is the SpMT
execution time. For the sake of simplicity we assume below that
the execution of any instruction takes a unit of time. However, the
model can be extended in a straightforward manner to include
different execution times for each static instruction (e.g., using
average memory latencies obtained through profiling).
The model analyzes the evolution of threads during execution.
The model works as follows: the program trace is analyzed
sequentially. Just key basic blocks need to be analyzed. Key basic
blocks are: the first and last basic blocks in the trace, and SP and
CQIP basic blocks.
During the trace traversal, two global variables are being updated:

• Current time: the time at which the current basic block
instance is being executed.

• Current thread: the thread that executes the current basic
block instance under analysis.

The core of the model is shown in Figure 5. Initially, a single non-
speculative thread is assumed. This thread is allocated to any
thread unit and is supposed to be responsible for the execution of
the whole trace, so its end time is accordingly initialized.
When a basic block that corresponds to an SP in the set of pairs is
found, some actions are required. If the basic block corresponding
to the CQIP does not exist in the remainder of the trace or the
given CQIP has been already executed by another thread, the
thread is marked as a CANCEL thread (a thread that exits before the

Figure 5. Flowchart describing the modeling of SpMT execution

Look for CQIP

Set as CANCEL thread

Exist?

Look for a free TU

NOYES

Any?
NOYES

Spawn a new thread

Look for a more
speculative thread

Any?

Cancel thread

YES

Thr = Look for thread
being started at CQIP

Any?
YES

Finish current thread

CurThr = Thr

CurTime = SpawnTime(Thr)

Thr = Spawn init thread

CurThr = Thr

CurTime = 0

Finish current thread

First?First?

SP?SP?

CQIP?CQIP?

Last?Last?

YES

Update current timeUpdate current time

YES

YES

YES

Do
nothing

NO

Do not
spawn

NO

Look for CQIP

Set as CANCEL thread

Exist?

Look for a free TU

NOYES

Any?
NOYES

Spawn a new thread

Look for a more
speculative thread

Any?

Cancel thread

YES

Thr = Look for thread
being started at CQIP

Any?
YES

Finish current thread

CurThr = Thr

CurTime = SpawnTime(Thr)

Thr = Spawn init thread

CurThr = Thr

CurTime = 0

Finish current thread

First?First?

SP?SP?

CQIP?CQIP?

Last?Last?

YES

Update current timeUpdate current time

YES

YES

YES

Do
nothing

NO

Do not
spawn

NO

CQIP is reached); otherwise, we mark it as a NORMAL thread. In
either case we look for a thread unit. If a thread unit is free we
assign it to the new thread. Otherwise, we check if the most
speculative thread (the one whose next thread is NULL) is further in
program order (more speculative) than the new thread. If so, the
most speculative thread is cancelled and the freed unit is allocated
to the new thread. Otherwise, the spawn is discarded.
When a basic block that corresponds to a CQIP in the set of pairs
is found, it is checked whether any more speculative active thread
was started at this basic block instance. If this is the case, the
current thread is terminated and current thread and current time
variables are updated accordingly.
Finally, the last basic block of the trace just terminates the current
thread. The commit time of this last thread represents the SpMT
execution time of the program.
Spawning a new thread requires the following actions:

1) Identify the order of this new thread with respect to the
current ones. Its previous thread is the thread that contains
the CQIP of the new thread (i.e., the linked list of threads
starting at the current thread is traversed until the first that
contains the CQIP is found). Its next thread is the thread that
was the successor (before spawning) of its previous thread.

2) Decide whether this is a CANCEL thread or a NORMAL one: this
is randomly selected based on the cancel probability of each
type for this particular thread.

3) Record the start and end basic blocks of the thread. The
former is the current CQIP and the later is the start of the
next thread.

Finally, canceling a thread requires the following actions: (1)
identify previous and next threads, and (2) update links and end
information of the previous thread.

4. Speculative P-Slices
This architecture handles inter-thread dependences through the
execution of a pre-computation slice inserted at the beginning of
every speculative thread. The goal of the p-slice is to calculate the
live-ins of the new speculative thread very quickly. Regardless of
the code we generate for a given p-slice, the architecture
guarantees a functionally correct execution of the program. Thus
accuracy of p-slices only affects performance, not correctness.
This is a key observation, since it allows the compiler to perform
aggressive, unsafe optimizations when generating these p-slices.
The steps to build a p-slice for a given spawning pair are:

1) Identify live-ins.
2) Generate conservative p-slice.
3) Optimize the p-slice.

4.1. Identifying Live-ins
Identifying the live-ins of a speculative thread requires a top-
down traversal of its control-flow graph starting at the CQIP to
identify register and memory values read before being written by
the speculative thread. Each path is explored until a certain length.
This length represents the time that previous threads take to
compute and commit these values. This is because once the
previous thread commits, the speculative thread need no longer
rely on predicted values, but can read committed values. This time
is estimated as the time it takes to sequentially execute all the
code between the SP and CQIP minus the thread spawn overhead.

4.2. Generating Conservative P-Slices
The p-slice for a spawning pair is built by traversing the control-
flow graph backwards from the CQIP until the SP. The input to
that step is the set of live-ins, both register and memory values.
The first instructions included in the slice are those that directly
produce the thread live-ins. Then the process inserts ancestors of
these instructions, taking into account both data and control
dependences, provided that they are below the SP.
Initially, all dependences among instruction as given by the
compiler in the conventional, conservative way are considered.
This means that the only reason why a p-slice may be incorrect is
if not all the live-ins of the thread are being considered (e.g. the
length of the thread, as described in the previous section, may
have been incorrectly estimated).
Upon finding a call to a subroutine, the side-effects of that
subroutine as well as the use of the returned value(s) are analyzed,
and if there is any dependence, the call instruction to the
subroutine is included into the slice. This means that the slice
includes the whole subroutine, although the full code of that
subroutine may not be needed. A possible optimization (not
considered in the results presented in this paper) would be the in-
lining or specialization of some functions.

4.2.1. Early Cancellation
A safe optimization that we have implemented is called early
cancellation. Starting from the SP, we can analyze whether a path
in the control-flow graph will reach the CQIP or not. In the latter
case, the thread would keep executing useless instructions
(wasting power and keeping a thread unit busy) until it is
squashed by a less speculative thread. A reachability analysis of
the CFG from the SP to the CQIP is used to identify the points in
the program where we can guarantee that the CQIP will never be
reached. The compiler inserts a cancel instruction in each of
these points, which will squash the thread when executed.

4.3. Speculative Optimizations
The p-slices built using the conservative assumptions of the
compiler, as described above, are normally very large. Large p-
slices significantly constrain the benefits of speculative threads.
However, a key feature of the Mitosis SpMT architecture is that it
can detect and recover from misspeculations. This opens the door
to new types of aggressive/unsafe optimizations that otherwise
could not be applied by the compiler, and which have the potential
to significantly reduce the overhead of p-slices. In the following
subsections, we describe the set of speculative optimizations
currently included in the Mitosis compiler.
Speculative optimizations require a new factor in the analysis: the
misspeculation probability. This factor represents the probability
that a given p-slice is incorrect. This happens when some live-ins
are not computed or they are incorrect. This probability is
attached to each candidate pair and used by the model described
in Section 3.3.1 when deciding whether a spawned pair is NORMAL
or CANCEL.

4.3.1. Memory Dependence Speculation
Modern compilers often fail to parallelize applications because of
ambiguous memory dependences. Many memory dependences are
only included because the compiler cannot prove that the
corresponding instructions are independent, but in fact they are. In
many other cases, two static instructions do have a memory

dependence, but this dependence only happens for a very few
dynamic instances of these instructions.
We have implemented a memory dependence profile to minimize
the number of unnecessary dependences considered when
generating p-slices. The profiler computes the dependence
frequency between any pair of store-load, store-call, call-
load or call-call instructions for each routine (the SP and
CQIP of a spawning pair are in the same routine). Dependences
for calls refer to dependences due to any memory reference inside
the called routine.
The compiler only considers that two instructions have a
dependence whenever this dependence has happened with a
frequency above a given threshold. In other words, dependences
that never occur in practice, or occur very infrequently, are
discarded.

4.3.2. Branch Pruning
Branch pruning consists of ignoring those paths that exhibit low
probability of being taken when generating p-slices. These paths
may belong to either the body of a speculative thread or its p-
slice, with different consequences in each case.
Pruning branches of the body of speculative threads is done
during the process of identifying the live-ins of the threads
(Section 4.1). A pruned branch is still included in the thread body
code, but any live-in in the pruned path is ignored when the p-
slice is generated, which reduces the size of the p-slice.
On the other hand, pruning a branch in the p-slice removes all the
instructions of the pruned path from the p-slice. Additionally,
predecessors of these removed instructions are also removed if
their output is not used elsewhere. In the place of a pruned path, a
cancel instruction is inserted; if this path happens to be taken, the
thread input values will likely be miscomputed, and it is
preferable to cancel the thread and free this hardware context for

another thread. We call this optimization speculative early
cancellation.
Examples of both types of branch pruning are shown in Figure 6.
On the left, (a) shows a control-flow graph that includes a SP and
a CQIP. Each edge is annotated with its probability of being
taken (edges without label have probability 1.0). On the right (b),
the control-flow graph of the conservative p-slice is shown. Basic
blocks are labeled with prime letters to indicate that they contain
just a subset of the instructions of the original basic blocks. Some
data dependences among instructions in some basic blocks are
also listed in Figure 6(c) (lower case letters represent instructions
in basic blocks with the corresponding capital letter, e.g.,
instruction ‘a’ is in basic block ‘A’). A possible edge (i.e., branch)
to be pruned in the speculative thread is L→N, which will remove
a live-in (data dependence d→n) and then some instructions in the
slice (dependence b→d is not needed). On the other hand, an
example of pruning in the p-slice would be for edge E→G, which
will remove the data dependence g→o. This will remove in turn
the need for dependence c→g in the p-slice. In this example, as no
instructions are needed from basic blocks B and C (since their
dependences have been removed), the control dependence a→b,c
can also be removed from the slice. The resulting optimized p-
slice is show in Figure 6(d).

4.3.3. Dependence Pruning
Data dependences that are infrequent can also be ignored. For
memory dependences, the profiler described in Section 4.3.1 is
used for this purpose. In the case of register dependences, the
probability of reaching the producer once the spawn has been
executed is computed and multiplied by the probability of
reaching the consumer after executing the producer. Note that a
consumer can be located either in the slice or the speculative
thread body. As in the case of memory dependences, if this
probability is lower than a threshold, the dependence is ignored
for the purpose of generating the final p-slice.

4.3.4. Cancel Elimination
As previously discussed, cancel instructions are inserted at points
where the compiler can guarantee that the speculative thread is
incorrect or the flow cannot reach the CQIP. This allows the
processor to squash early a speculative thread in order to free the
thread unit for other threads. However, this means that the branch
instruction leading to the pruned code must be preserved (and all
its ancestors in the dependence graph). This overhead may be
large in some cases, which significantly impacts the effectiveness
of the speculative thread. In these cases, it may be more effective
just to remove the cancel operation and the associated branch
instruction (which will also remove some of its ancestors). This
will make the slice always follow the frequent path, which can be
incorrect in some infrequent cases. The architecture will still
detect these misspeculations, and squash the thread.

5. Experimental Evaluation
5.1. Framework
The Mitosis compiler has been implemented on top of the ORC
compiler [11] to generate IPF code. The performance of the
Mitosis compiler/architecture has been evaluated through a
detailed, execution-driven microarchitectural simulator built on
top of SMTSIM [25]. The modeled Mitosis processor is a research
Itanium® CMP processor with 4 hardware contexts. Each
hardware context is a 6-way issue, in-order core. The main

Figure 6. Example of p-slice

a → b,c CTRL
b → d REG
c → g REG
f → l REG
d → j MEM (p=0.01)
g → o REG
d → n MEM (p=1.00)
h → k REG

D

E F

G

H

J

I

0.2 08

0.1

0.9

K L

M N

QPO

0.30.7

0.4 0.6

0.1

0.9

CQIP

SP

D’

E’ F’

G’

H’

0.2 0.8

0.1
0.9

cancel

A

CB

0.5 0.5
A’

C’B’

0.5 0.5

D’

E’ F’

H’

0.2 0.8

1.0

cancel

(a) Control-flow graph

(b) Conservative slice (d) Optimized slice

(c) Some DDG dependences

a → b,c CTRL
b → d REG
c → g REG
f → l REG
d → j MEM (p=0.01)
g → o REG
d → n MEM (p=1.00)
h → k REG

D

E F

G

H

J

I

0.2 08

0.1

0.9

K L

M N

QPO

0.30.7

0.4 0.6

0.1

0.9

CQIP

SP

D’

E’ F’

G’

H’

0.2 0.8

0.1
0.9

cancel

A

CB

0.5 0.5
A’

C’B’

0.5 0.5

D’

E’ F’

H’

0.2 0.8

1.0

cancel

(a) Control-flow graph

(b) Conservative slice (d) Optimized slice

(c) Some DDG dependences

parameters of the processor configuration are shown in Table 1.
The figures in the table are per thread unit.

Table 1. Mitosis processor configuration

Fetch, in-order issue and commit
bandwidth 2 bundles (6 instructions)

I-Cache 64KB

L0-Cache 4-way associative 16KB – hit latency: 1 cycle

L1-Cache 4-way associative 1MB – hit latency: 4 cycles

L2-Cache (share) 4 way associative 8 MB – hit latency: 8; miss
latency: 250

Local Register File Latency = 1 cycle

Remote Register File Latency = 6 cycles

Spawn overhead 5 cycles

Validation overhead 15 cycles

Commit overhead 5 cycles

To evaluate the potential performance of the Mitosis architecture,
a set of non-automatic parallelizable codes have been used. These
benchmarks correspond to a subset of the Olden benchmark suite.
The benchmarks used are bh, em3d, health, mst and perimeter.
We have used a train input for profiling of around 10M
instructions per benchmarks, and a different input set that on
average executes around 300M instructions for the simulation.
Statistics in the next section correspond to the whole execution of
these programs. The rest of the suite has not been considered due
to the recursive nature of the programs. The Mitosis compiler is
not currently able to extract speculative thread-level parallelism in
recursive routines. This feature will be targeted in future work.
The ORC compiler has been used with full optimizations enabled
(-O3) except software pipelining and if-conversion. For the
Mitosis optimizations, we have considered a 5% threshold for
dependence pruning and 15% for branch pruning. We have not
paid special attention to the compilation time. Our first attempt at
using filters to trim the search space is very promising, but timing
aspects require further work in the future.
Olden benchmarks have been chosen since they are pointer
intensive programs for which automatic parallel compilers are
unable to extract thread-level parallelism. To corroborate this, we
have compiled the Olden suite with the Intel® C++ production
compiler which produces parallel code. Almost no part of the
code was parallelized for any benchmark.

5.2. Results
The first results we will show focus on the benefit of the proposed
optimization for the p-slices. For that, we will use a metric that
we call average benefit per pair. It is an approximation of the
number of parallelized instructions by each instance of the pair.
The expected benefit of a single pair is computed as follows:
Overlap = PairLength – (SliceLength + Init)
ProbCorrect = (1-Cancel) * (1-Misspec)
Benefit = Overlap * Count * ProbCorrect

PairLength and SliceLength show the average length of the pair
and the slice, respectively. Init, as shown in Figure 2, represents
the latency of the spawn instruction. Cancel shows the probability
that the slice is cancelled, and Misspec is the probability that the
slice is incorrect due to speculative optimizations. Finally, Count

is the number of times the spawning instruction is executed. From
those expressions, the average benefit per pair is computed as:
AvgBenefitPerPair = SUM(Benefiti) / SUM(Counti), for all PAIRi

To quantify the effect of the different optimizations applied to p-
slices, Table 2 shows the average benefit per pair for all pairs after
filtering (that is, the set of candidate pairs that will be later
considered by the pair selection scheme). We show in the
different columns the proposed metric without any speculative
optimization (DFL), after dependence pruning (DPR), after
branch pruning (BPR) and finally after cancel elimination (CCL).
Each optimization is added on top of previous ones.

Table 2. Benefit of p-slice optimizations on all candidate pairs

Default Dependence
pruning

Branch
pruning

Cancel
elimination

1.9 106.5 106.5 287.6

We can observe that all optimizations significantly improve the
quality of p-slices, with the exception of branch pruning. However
branch pruning is necessary for cancel elimination, which is
shown to be quite effective.
Figure 7 shows the estimated speedup (using the model proposed
in Section 3.3.1) for the different optimizations. As in the
previous table, each optimization is applied on top of the previous
one. We can observe that the improvement in the p-slice
overheads shown in Table 2 actually translate into speedup. We
can observe that, on average, the expected speedup grows from
1.15x without optimizations up to almost 2x when all
optimizations are set.
Table 3 presents some statistics of the speculative threads
generated by the Mitosis system with fully optimized p-slices. The
last row shows the arithmetic mean for the evaluated benchmarks.
The second column shows the number of spawned threads by
benchmark and the second column the average number of
speculative instructions executed by speculative threads. It can be
observed that bh spawns the fewest threads but their average size
is about 30 times larger than for the rest of benchmarks. On the
other hand, mst spawns the most but the average size of its
speculative threads is the lowest. The fourth column shows the
average dynamic size of the p-slices and the fourth column the
relationship between the sizes of the speculative threads and their
corresponding p-slices. This percentage is consistently quite low
for all the studied benchmarks and on average represents less than
3%. The sixth column shows the average number of thread input

Figure 7. Total speedup estimated by the compiler for
the proposed optimizations

0

0,5

1

1,5

2

2,5

3

3,5

4

bh em3d health mst perimeter H.Mean

OLDEN Benchmarks

E
st

ia
m

te
d

S
pe

ed
-U

p

DFL
DPR
BPR
CCL

values that are computed by the p-slice, which is only three values
on average. The seventh column represents the percentage of
threads that are squashed. This percentage is rather low for all the
benchmarks except for health, for which about one out of every
four threads is squashed. We have observed that for this particular
benchmark, memory dependences for the profiling and simulated
inputs are significantly different, which result in many memory
dependence misspeculations.
Finally, the right-most column shows the degree of speculative
thread-level parallelism that is exploited by Mitosis. This column
represents the average number per cycle of active threads that are
executing correct code. It can be observed that, even though
parallelizing compilers cannot find parallelism in these
benchmarks, there is still a high degree of thread-level parallelism
that is exploited by the Mitosis compiler/architecture. On average,
the number of active and correct threads per cycle is slightly
higher than 2.5.

Table 3. Characterization of the Olden benchmarks

OLDEN Spawned
Threads

Thread
Size

Slice
Size

Slice /
Thread

Thread
Liveins

Squash
Pctg

Active
Threads/cycle

bh 422 15543 196 1.3% 4.4 0.7% 2.68

em3d 396638 422 9 2.1% 1.0 0.3% 2.87

health 198497 1112 41 3.7% 2.7 26.9% 2.35

mst 1367114 271 5 2.1% 2.3 0.8% 2.62

perimeter 493725 576 24 4.2% 3.6 1.0% 2.08

MEAN 491279 3585 55 2.7% 2.8 6.0% 2.52

Figure 8 shows the performance of the Mitosis processor
compared to other single- and multi-threaded architectures.
Performance is reported as speedup over execution on a single
Mitosis thread unit. The compared architectures are: a) an out-of-
order superscalar processor, with twice the resources of an in-
order Mitosis thread unit, and b) a single thread unit with perfect
memory. This represents an upper bound on the performance that
can be achieved by helper threads that target memory latency [5].
The main conclusion of this study is that the Mitosis system is
very effective at exploiting thread-level parallelism for irregular
applications. An average speedup of 2.2 is observed, and
significant speedup is achieved for all benchmarks. It can be
observed that the Mitosis processor clearly outperforms the other
architectures. Average speedups for the big out-of-order core and
perfect memory are 1.26 and 1.23 respectively.
The last bar in each group of bars in Figure 8 shows the speedup
estimated by our model with full optimizations for the selected
pairs. In three of the five benchmarks (em3d, health and
perimeter) the speedup predicted by the model is relatively close
to that of the simulation. In the case of mst we have observed that
the difference is due to many high-latency instructions. Note that
for mst the Perfect Memory scheme performs better than Mitosis.
We expect that including a more accurate latency for each
instruction in the model (instead of the fixed 1-cycle currently
assumed) will significantly improve performance in these cases.
In the case of bh, the main source of discrepancy between
simulated and estimated speedups are due to the use of average
lengths to estimate the timing of the p-slices and speculative

threads. We have observed that for this program, these lengths
experience a significant variability, and thus, the selected
threading scheme is not optimal for the cases that significantly
depart from the average.
Looking at particular benchmarks, we can observe that the big
out-of-order core is comparable to Mitosis only for em3d. This is
due to the fact that this program has abundant ILP, which could
also benefit more aggressive configurations of Mitosis, for
instance based on out-of-order cores. Perfect memory is
comparable to Mitosis only for mst. For this program, the
performance of the memory system is rather poor; for a single-
threaded execution, the L0 and L1 miss ratios are around 50% and
70% respectively. This clearly points out that memory is the main
bottleneck for this program, and any technique that tries to
accelerate it should focus on memory. Obviously, perfect memory
attacks this problem but the results show that Mitosis solves it
effectively too.
To summarize, we find the Mitosis architecture and compiler to
represent a highly flexible parallel architecture. Whether the code
contains traditional thread-level parallelism (not shown in these
benchmarks, but easily handled by this system), instruction-level
parallelism (em3d), or memory-level parallelism (mst), Mitosis
exploits it effectively. Additionally, codes that exhibit none of the
above also experience high speedups.

6. Related Work
Several speculative multithreaded architectures have been
proposed, along with hardware and compiler techniques to extract
speculative threads. In this section we review the main works,
with regard to the schemes used to identify speculative threads
and to manage inter-thread data dependences, which are the topic
of this paper.
The Expandable Split Window Paradigm [10] and the follow-up
work, the Multiscalar processor [19][26] were pioneering works
in the area of SpMT. Speculative threads (called tasks) are
created by the compiler based on several heuristics that tried to
minimize the data dependences among threads as well as
maximize the workload balance, among other compiler criteria.
The process consists of walking the control-flow graph and
accumulating basic blocks into tasks. Inter-thread data
dependences are managed differently depending on whether they
are through memory or registers. For register dependences, the
compiler is responsible for detecting the instruction that performs
the last write on this register in order to bypass the value to the
consumer thread. Memory dependences are handled through the
ARB mechanism.

Figure 8. Speedup over single-threaded execution

0

0,5

1

1,5

2

2,5

3

3,5

4

bh em3d health mst perimeter H.Mean

OLDEN Benchmarks

Sp
ee

d-
Up

2xOOO
Perfect Mem
Mitosis (simulated)
Mitosis (estimated)

Several studies propose architectures and schemes to create
speculative threads based on well-known program constructs such
as loop iterations, loop continuations and subroutine continuations
([23][9][1][4][13][2][20][17] among others) either through
hardware or software mechanisms. The Superthreaded [23] and
the SPSM [9] system are two examples where the loop
parallelization task is performed by the compiler.
These schemes differ in the mechanism used to deal with inter-
thread data dependences. Most detect memory dependence
violations based on modifications of traditional snoop-based
cache coherence protocols. Memory data value prediction has also
been proposed, but these values usually show lower predictability
[3][21]. Register dependent values are either synchronized or
hardware predicted. Some compiler-based schemes, such as the
Superthreaded architecture [23], reorder the code in order to
compute the dependent value earlier.
Du et al. [8] have recently proposed a cost-driven compilation
framework that statically determines which loops are good
candidates to parallelize. They compute a cost graph from the
CFG and DDG and estimate the probability of misspeculations.
Inter-thread data dependences are handled by moving producer
instructions before the spawn of the next iteration.
A more complex scheme to partition the program into speculative
threads is presented in a recent work [15]. That scheme is based
on profiling information. As in Mitosis, any combination of basic
blocks is considered a candidate spawning pair. In that work,
inter-thread data dependences are handled by means of hardware
value prediction. Our work differs from that in the fact that we use
a software approach to predict thread inputs, which implies a
significantly different microarchitecture, and the compiler support
presented in this paper.
The use of Helper Threads, which speculatively execute a subset
of the original code to reduce the latency of high-cost instructions,
has been thoroughly studied [5][12][18][27]. This research
borrows some concepts from that body of work to create the pre-
computation slices for thread live-ins. However, the need of
Mitosis to pre-compute a set of values accurately (as opposed to a
single load address or branch result), and an increased cost of
misspeculation, requires significantly more careful creation of
slices, and the inclusion of more accurate control flow in the slice
– previous work on helper threads typically followed only a single
control flow path in a slice.
Finally, Zilles’s et al. Master/Slave Speculative Parallelization
(MSSP) [28] represents a different scheme to exploit speculative
thread-level parallelism via distilled programs. Distilled programs
are a small subset of instructions of a given program that compute
the input values of the speculative threads. In that execution
model, the distilled program runs as a master thread and when all
the input values for a speculative thread are computed, it is
spawned on an idle context while the master starts computing new
input values for the next thread. Our execution model differs from
that previous work in the fact that the computation of the thread
live-in values are done by speculative threads, which allows the
processor to spawn threads out of the program order, and to often
compute the live-ins for speculative threads in parallel.

7. Conclusions
In this work we have presented and evaluated the Mitosis
compiler for exploiting speculative thread-level parallelism. This
compiler includes a mechanism to build a synthetic trace, a

scheme to generate and speculatively optimize pre-computation
slices, a model to estimate the benefits of any set of spawning
pairs for a given SpMT configuration, and a greedy algorithm to
select the best set of pairs. The two major novelties of the
proposal are: (1) the use of pre-computation slices (i.e., software
value prediction) to handle inter-thread data dependences, and (2)
a model of the whole system that helps the compiler to identify
which parts of the program will provide the highest benefit when
parallelized through speculative threads. This model takes into
account possible misspeculations, overheads, and load balancing.
A key contribution of this work is a set of compiler optimizations
that reduce the length (and thus the overhead) of pre-computation
slices. Branch pruning, memory and register dependence
speculation, and early thread squashing are the main techniques
proposed in this paper.
The results obtained by the Mitosis compiler/architecture for a
subset of the Olden benchmarks are impressive. It outperforms
single-threaded execution by 2.2x. When compared with a big
out-of-order core, the speedup is close to 2x. We have also shown
that the benefits of Mitosis do not come only from reducing
memory latency since it outperforms an ideal system with perfect
memory by about 60%.
Overall, this work shows that significant amounts of thread-level
parallelism can be exploited in irregular codes, with a rather low
overhead in terms of extra/wasted activity.

Acknowledgments
We would like to thank Peter Rundberg (currently at Gridcore,
Sweden) for his valuable collaboration at the first stages of this
work. Also, we would like to thank John Shen and Hong Wang
(from MRL, Santa Clara) for their collaboration in the definition
of the Mitosis architecture and the ORC team for their support in
the compiler implementation. This work has been partially
supported by the Spanish Ministry of Education and Science
under contract TIN2004-03072 and Feder funds. Finally, we
would like to thank the reviewers for their helpful and
constructive comments.

References
[1] H. Akkary and M.A. Driscoll, “A Dynamic Multithreading

Processor”, in Proc. of the 31st Int. Symp. on
Microarchitecture, 1998

[2] M. Cintra, J.F. Martinez and J. Torrellas, “Architectural
Support for Scalable Speculative Parallelization in Shared-
Memory Systems”, in Proc. of the 27th Int. Symp. on
Computer Architecture, 2000

[3] M. Cintra and J.Torrellas, “Eliminating Squashes through
Learning Cross-thread Violations in Speculative
Parallelization for Multiprocessors”, in Proc. of the 8th Int.
Symp. on High Performance Computer Architecture, 2002

[4] L. Codrescu and D. Wills, “On Dynamic Speculative Thread
Partitioning and the MEM-Slicing Algorithm”, in Proc. of
the Int. Conf. on Parallel Architectures and Compilation
Techniques, pp. 40-46, 1999

[5] J.D. Collins, H. Wang, D.M. Tullsen, C. Hughes, Y-F. Lee,
D. Lavery and J.P. Shen, ”Speculative Precomputation:
Long Range Prefetching of Delinquent Loads”, in Proc. of
the 28th Int. Symp. on Computer Architecture, 2001

[6] R.S. Chapel, J. Stark, S.P. Kim, S.K. Reinhanrdt and Y.N.
Patt, “Simultaneous Subordinate Microthreading (SSMT)”,

in Procs. of the 26th Int. Symp. on Computer Architecture,
pp. 186-195, 1999

[7] K. Diekendorff, ¨Compaq Chooses SMT for Alpha¨,
Microprocessor Report, December, 1999

[8] Z.-H. Du, C-Ch. Lim, X.-F. Li, Q. Zhao and T.-F. Ngai, “A
Cost-Driven Compilation Framework for Speculative
Parallelization of Sequential Programs”, in Procs. of the
Conf. on Programming Language Design and
Implementation, June 2004

[9] P.K. Dubey, K. O’Brien, K.M. O’Brien and C. Barton,
“Single-Program Speculative Multithreading (SPSM)
Architecture: Compiler-Assisted Fine-Grained
Multithreading”, in Proc. of the Int. Conf. on Parallel
Architectures and Compilation Techniques, 1995

[10] M. Franklin and G.S. Sohi, “The Expandable Split Window
Paradigm for Exploiting Fine Grain Parallelism”, in Proc. of
the 19th Int. Symp. on Computer Architecture, 1992

[11] R. Ju, S. Chan and C. Wu, “Open Research Compiler for the
ItaniumTM Family”, in Tutorial in the 34th Int. Symp. on
Microarchitecture, 2001

[12] C. Luk, “Tolerating Memory Latency through Software-
Controlled Pre-Execution in Simultaneous Multithreading
Processors”, in Proc. of the 28th Int. Symp. on Computer
Architecture, pp. 40-51, 2001

[13] P, Marcuello and A. González, “Clustered Speculative
Multithreaded Processors”, in Proc. of the 13th Int. Conf. on
Supercomputing, pp. 365-372, 1999

[14] P. Marcuello, J. Tubella and A. González, “Value Prediction
for Speculative Multithreaded Architectures”, in Proc. of the
32nd. Int. Conf,. on Microarchitecture, pp. 203-236., 1999

[15] P. Marcuello and A. González, “Thread-Spawning Schemes
for Speculative Multithreaded Architectures”, in Proc. of the
8th Int. Symp, on High Performance Computer
Architectures, 2002

[16] T. Marr et al., “Hyper-threading Technology Architecture
and Microarchtiecture”, Intel technology Journal, 6(1), 2002

[17] J. Oplinger et. al., “Software and Hardware for Exploiting
Speculative Parallelism in Multiprocessors”, Technical
Report CSL-TR-97-715, Stanford University, 1997

[18] Roth and G.S. Sohi, “Speculative Data-Driven
Multithreading”, in Proc. of the 7th. Int. Symp. On High
Performance Computer Architecture, pp. 37-48, 2001

[19] G.S. Sohi, S.E. Breach and T.N. Vijaykumar, “Multiscalar
Processors”, in Proc. of the 22nd Int. Symp. on Computer
Architecture, pp.414-425, 1995

[20] J. Steffan and T. Mowry, “The Potential of Using Thread-
level Data Speculation to Facilitate Automatic
Parallelization”, in Proc. of the 4th Int. Symp. on High
Performance Computer Architecture, pp. 2-13, 1998

[21] J. Steffan, C. Colohan, A. Zhai and T. Mowry, “Improving
Value Communication for Thread-Level Speculation”, in
Proc. of the 8th Int. Symp. on High Performance Computer
Architecture, pp. 58-62, 1998

[22] S. Storino an dJ. Borkenhagen, “A Multithreaded 64-bit
PowerPC Commercial RISC Processor Design”, in Proc. Of
the 11th Int. Conf. on High Performance Chips, 1999

[23] J.Y. Tsai and P-C. Yew, “The Superthreaded Architecture:
Thread Pipelining with Run-Time Data Dependence
Checking and Control Speculation”, in Proc. of the Int.
Conf. on Parallel Architectures and Compilation
Techniques, 1995

[24] M. Tremblay et al., “The MAJC Architecture, a synthesis of
of Parallelism and Scalability”, IEEE Micro, 20(6), 2000

[25] D. M. Tullsen, S.J. Eggers and H.M. Levy, “Simultaneous
Multithreading: Maximizing On-Chip Parallelism”, in Proc.
of the 22nd Int. Symp. on Computer Architecture, pp. 392-
403, 1995

[26] T.N. Vijaykumar, “Compiling for the Multiscalar
Architecture”, Ph.D. Thesis, Univ. of Wisconsin-Madison,
1998

[27] C.B. Zilles and G.S. Sohi, “Execution-Based Prediction
Using Speculative Slices”, in Proc. of the 28th Int. Symp. on
Computer Architecture, 2001

[28] C.B. Zilles and G.S. Sohi, “Master/Slave Speculative
Parallelization”, in Proc. of the 35th Int. Symp. on
Microarchitecture, 2002

