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Abstract. Breast cancer (BCa) grading plays an important role in predicting disease aggressiveness and patient
outcome. A key component of BCa grade is the mitotic count, which involves quantifying the number of cells in
the process of dividing (i.e., undergoing mitosis) at a specific point in time. Currently, mitosis counting is done
manually by a pathologist looking at multiple high power fields (HPFs) on a glass slide under a microscope, an
extremely laborious and time consuming process. The development of computerized systems for automated
detection of mitotic nuclei, while highly desirable, is confounded by the highly variable shape and appearance
of mitoses. Existing methods use either handcrafted features that capture certain morphological, statistical, or
textural attributes of mitoses or features learned with convolutional neural networks (CNN). Although hand-
crafted features are inspired by the domain and the particular application, the data-driven CNN models tend
to be domain agnostic and attempt to learn additional feature bases that cannot be represented through
any of the handcrafted features. On the other hand, CNN is computationally more complex and needs
a large number of labeled training instances. Since handcrafted features attempt to model domain pertinent
attributes and CNN approaches are largely supervised feature generation methods, there is an appeal in
attempting to combine these two distinct classes of feature generation strategies to create an integrated set
of attributes that can potentially outperform either class of feature extraction strategies individually. We present
a cascaded approach for mitosis detection that intelligently combines a CNN model and handcrafted features
(morphology, color, and texture features). By employing a light CNN model, the proposed approach is far less
demanding computationally, and the cascaded strategy of combining handcrafted features and CNN-derived
features enables the possibility of maximizing the performance by leveraging the disconnected feature sets.
Evaluation on the public ICPR12 mitosis dataset that has 226 mitoses annotated on 35 HPFs (400× magnifi-
cation) by several pathologists and 15 testing HPFs yielded an F -measure of 0.7345. Our approach is accurate,
fast, and requires fewer computing resources compared to existent methods, making this feasible for clinical use.
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Keywords: mitosis; breast cancer; convolutional neural networks; cascaded ensemble; handcrafted feature; digital pathology.

Paper 14061PRR received May 16, 2014; revised manuscript received Sep. 14, 2014; accepted for publication Sep. 16, 2014; pub-
lished online Oct. 10, 2014.

1 Introduction

Bloom Richardson grading,1 the most commonly used system

for histopathologic diagnosis of invasive breast cancers (BCa),2

comprises three main components: tubule formation, nuclear

pleomorphism, and mitotic count. Mitotic count, which refers

to the number of dividing cells (i.e., mitoses) visible in hema-

toxylin and eosin (H&E) stained histopathology, is widely

acknowledged as a good predictor of tumor aggressiveness.3

In clinical practice, pathologists define mitotic count as the num-

ber of mitotic nuclei identified visually in a fixed number of

high power fields (HPFs, 400× magnification). However, the

manual identification of mitotic nuclei often suffers from poor

inter-interpreter agreement due to the highly variable texture

and morphology between mitoses. Additionally, this is a very

laborious and time consuming process involving the pathologist

manually looking at and counting mitoses from multiple high

power view fields on a glass slide under a microscope.

Computerized detection of mitotic nuclei will lead to increased

accuracy and consistency while simultaneously reducing the

time and cost needed for BCa diagnosis.4

The detection of mitotic nuclei in H&E stained histopathol-

ogy is a difficult task (see Fig. 1). First, mitosis is a complex

biological process during which the cell nucleus undergoes

various morphological transformations. This leads to highly

variable sizes and shapes across mitotic nuclei within the same

image. Another issue is rare event detection, which complicates

classification tasks where one class (i.e., mitotic nuclei) is con-

siderably less prevalent than the other class (i.e., nonmitotic

nuclei). In this paper, we present a new automatic mitosis detec-

tion approach to address the aforementioned challenges and

*Address all correspondence to: Haibo Wang, E-mail: hbwang1427@gmail
.com 0091-3286/2014/$25.00 © 2014 SPIE

Journal of Medical Imaging 034003-1 Oct–Dec 2014 • Vol. 1(3)

Journal of Medical Imaging 1(3), 034003 (Oct–Dec 2014)

http://dx.doi.org/10.1117/1.JMI.1.3.034003
http://dx.doi.org/10.1117/1.JMI.1.3.034003
http://dx.doi.org/10.1117/1.JMI.1.3.034003
http://dx.doi.org/10.1117/1.JMI.1.3.034003
http://dx.doi.org/10.1117/1.JMI.1.3.034003
http://dx.doi.org/10.1117/1.JMI.1.3.034003
mailto:hbwang1427@gmail.com
mailto:hbwang1427@gmail.com


outperform the majority of state-of-the-art approaches in mitosis

detection.

The organization of the rest of this paper is as follows.

In Sec. 2, we describe motivations of the proposal. In Sec. 3,

we describe details of the new methodology. In Sec. 4, we

present experimental results. Finally, in Sec. 5, we present our

concluding remarks.

2 Motivation and Previous Work

Recently, the development of computerized systems for auto-

mated mitosis detection has become an active area of research

with the goal of developing decision support systems to be able

to relieve the workload of the pathologist. In a contest held in

conjunction with the ICPR 2012 conference5,6 to identify the best

automated mitosis detection algorithm, a variety of approaches

competed against each other. These approaches can be catego-

rized as handcrafted feature based or feature learning based. The

commonly used handcrafted features include various morpho-

logical, shape, statistical, and textural features that attempt to

model the appearance of the domain and, in particular, the

appearance of the mitoses within the digitized images.7–10

Although domain inspired approaches (hand crafted) are use-

ful in that they allow for explicit modeling of the kinds of fea-

tures that pathologists look for when identifying mitoses, there

is another category of feature generation inspired by convolu-

tional neural networks (CNN),11,12 CNN are multilayer neural

networks that learns a bank of convolutional filters at each

layer.13,14 In contrast to handcrafted features, CNN is fully data-

driven, therefore, it is more accurate in representing training

samples and is able to find feature patterns that handcrafted

features fail to describe. However, CNN is computationally

demanding and sensitive to the scalability of the training data.

The winner14 of the ICPR contest used two 11 layers to achieve

an F-measure of 0.78. However, this approach is not feasible for

clinical use since each layer of the CNN model comprised hun-

dreds of neurons and required a large amount of time (several

weeks) for both training and testing.

Other methods achieved an F-measure of up to 0.71, based

primarily on combining various handcrafted features. Although

handcrafted feature approaches are faster, drawbacks include

(1) the fact that the identification of salient features is highly

dependent on the evaluation dataset used and (2) the lack of

a principled approach for combining disparate features. Hence,

it stands to reason that a combination of CNN and handcrafted

features will allow us to exploit the high accuracy of CNN while

also reducing the computational burden (in terms of time) of

training deep CNN models. By employing a light CNN model,

the proposed approach is far less demanding computationally,

and the cascaded strategy of combining handcrafted features

and CNN-derived features enables the possibility of maximizing

performance by leveraging the disconnected feature sets.

Previous work in this approach includes the Nippon Electric

Company (NEC) team,13 where an attempt was made to stack

the CNN-learned features and handcrafted features yielded an

F-measure of 0.659, suggesting that more intelligent combina-

tions of CNN and handcraft features are required.

In this paper, we present a cascaded approach to combining

CNN and handcrafted features for mitosis detection. The work-

flow of the new approach is depicted in Fig. 2. The first step is to

(a) (b) (c) (d) (e) (f)

Fig. 1 An illustration of the visual similarity between true mitotic processes and confounding false pos-
itives. (a)–(c) True mitoses. (d)–(f) Confounding nonmitotic figures.

Fig. 2 Workflow of our methodology. Blue-ratio thresholding15 is first applied to segment mitosis can-
didates. On each segmented blob, handcrafted features are extracted and classified via a random forests
classifier. Meanwhile, on each segmented 80 × 80 patch, convolutional neural networks (CNN)11 are
trained with a fully connected regression model as part of the classification layer. For those candidates
that are difficult to classify (ambiguous result from the CNN), we train a second-stage random forests
classifier on the basis of combining CNN-derived and handcrafted features. Final decision is obtained via
a consensus of the predictions of the three classifiers.
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segment likely mitosis regions. This initial phase serves as a

triage to remove obviously nonmitotic regions. For each candi-

date region, both CNN-learned and handcrafted features were

extracted independently. Independently trained classifiers were

constructed using the handcrafted and CNN-learned features

alone. For the regions on which the two individual classifiers

highly disagree, they are further classified by a third classifier

that was trained based on the stacking of handcrafted and CNN-

learned features. The final prediction score is a weighted average

of the outputs of all the classifiers.

Our approach differs from the NEC system in two key

aspects. First, we perform classification via CNN and hand-

crafted features separately, only using their combination to deal

with confounders. Simply stacking handcrafted and CNN fea-

tures will bias the classifier toward the feature set with the larger

number of attributes. Our approach is less prone to this issue.

Second, CNN works on a 80 × 80 pixels patch size while hand-

crafted features are extracted from clusters of segmented nuclei

(normally ≤30 × 30 pixels). This way we capture attributes of

not only mitotic nuclei, but also of the local context. Local con-

text around candidate mitoses is an important factor for pathol-

ogists in correctly identifying mitoses. In summary, key

contributions of this work include:

• A cascaded approach for combination of CNN and hand-

crafted features.

• Learning multiple attributes that characterize mitosis via

the combination of CNN and handcrafted features.

• Achieving a high level of mitosis detection while mini-

mizing the computing resources required.

3 Methodology

3.1 Candidate Segmentation

We segment likely mitosis candidates by first converting RGB

images into blue-ratio images.15 By assigning a higher value to a

pixel with a high blue intensity relative to its red and green com-

ponents, blue-ratio is proven capable of highlighting nuclei

regions.15 Laplacian of Gaussian16 responses are then computed

to discriminate the nuclei region from the background, followed

by integrating globally fixed thresholding and local dynamic

thresholding to identify candidate nuclei. One segmentation

example is shown in Fig. 3. We can see that most dark-blue

spots are retained as potential mitotic figures.

3.2 Detection with Convolutional Neural Networks

3.2.1 CNN architecture

First, each HPF is converted from the RGB space to the YUV

space and normalized to a mean of 0 and variance of 1. The

CNN architecture employs three layers (Fig. 4): two consecutive

convolutional and pooling layers and a final fully connected

layer. The convolution layer applies a two-dimensional convo-

lution of the input feature maps and a convolution kernel.

The pooling layer applies an L2 pooling function over a spatial

window without overlapping (pooling kernel) per each output

feature map. Learning invariant features will be allowed through

the L2 pooling. The output of the pooling layer is subsequently

fed to a fully connected layer, which produces a feature vector.

The outputs of the fully connected layer are two neurons (mito-

sis and nonmitosis) activated by a logistic regression model.

The three-layer CNN architecture comprises 64, 128, and

256 neurons, respectively. For each layer, a fixed 8 × 8 convolu-

tional kernel and 2 × 2 pooling kernel were used.

3.2.2 Training stage

To deal with class-imbalance and achieve rotational invariance,

candidate image patches containing mitotic nuclei were dupli-

cated with artificial rotations and mirroring. The whole CNN

model was trained using stochastic gradient descent17 to mini-

mize the loss function:

LðxÞ ¼ − log

�

exi
P

j

exj

�

;

where xi corresponds to outputs of a fully connected layer multi-

plied by logistic model parameters. Thus, the outputs of CNN

are the log likelihoods of class membership.

3.2.3 Testing stage

An exponential function is applied to the log likelihoods of

each candidate nucleus belonging to the positive (mitosis)

class in order to calculate the probability that it is mitotic. In

our experiments, a candidate nucleus is classified as mitosis

if the probability is larger than an empirically determined thresh-

old of 0.58.

(a) (b)

Fig. 3 Example of blue-ratio segmentation. (a) is the original high
power field (HPF) slice while (b) is the segmentation mask. Note
that a majority of the objects identified via this approach in (b) are
indeed mitotic figures.

Fig. 4 Architecture of the CNN model. The CNN architecture com-
prises three layers: two consecutive convolutional-pooling layers
and a fully connected classification layer. The two convolutional-
pooling layers use the same fixed 8 × 8 convolutional kernel and
2 × 2 pooling kernel, but have 64 and 128 neurons, respectively.
The last layer has 256 neurons, which are all connected to the final
two neurons for mitosis/nonmitosis classification.
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3.3 Detection with Handcrafted Features

3.3.1 Features and their selection

The handcrafted features can be categorized into three groups:

morphology, intensity, and texture (Table 1). The morphological

features are extracted from the binary mask of the mitosis

candidate, which is generated by blue-ratio thresholding15 and

local nonmaximum suppression. The morphological features re-

present various attributes of mitosis shape. Intensity and textural

features are extracted from seven distinctive channels of squared

candidate patches (blue-ratio, red, blue, green, L in LAB, and V,

L in LUV) according to Ref. 7. The intensity features capture

statistical attributes of mitosis intensity and the texture features

capture textural attributes of the mitosis region. The total length

of handcrafted features is 15þ 8 × 7þ 26 × 7 ¼ 253. We then

perform dimensionality reduction with principal component

analysis (PCA).18 The best features are retained in PCA by keep-

ing 98% of the total component variations.

3.3.2 Class balancing and classifier

We correct for the classification bias that occurs due to the rel-

atively small number of mitotic nuclei compared to nonmitotic

nuclei. To train a balanced classifier, we (1) reduce nonmitotic

nuclei by replacing overlapping nonmitotic nuclei with their

clustered center; (2) oversample mitotic cells by applying the

synthetic minority oversampling technique,21 and (3) use an

empirically selected threshold 0.58. For classification, a random

forest classifier with 50 trees is used. Using more trees tends to

cause overfitting while using less trees leads to low classifica-

tion accuracy.

3.4 Cascaded Ensemble

The cascaded ensemble consists of two stages (shown in Fig. 5).

First, we perform classification with CNN and handcrafted fea-

tures individually. During training, we denote via Ld and Lh the

classification labels associated with using CNN and handcrafted

features, respectively. For instances with Ld ≠ L or Lh ≠ L,

where L is the ground truth label, we combine their CNN

and handcrafted features to train a second-stage classifier ℏ.

During testing, given the output probabilities Pd and Ph of

CNN and handcrafted feature classifiers, respectively, we calcu-

late their combined probabilities P ¼ wdPd þ whPh, where wd

and wh are weighting factors. In the second stage, for instances

with P ∈ ½λl; λu� (λl and λu are certain lower and upper bounds,

respectively), we let ℏ classify them again. The instance having

a final probability p larger than a certain threshold is categorized

as mitosis, otherwise, as nonmitosis.

4 Experimental Results

4.1 ICPR Dataset

The dataset includes 50 images corresponding to 50 HPF in five

different biopsy slides stained with H&E (illustrated in Fig. 6).

Each field represents a 512 × 512 μm2 area, and is acquired

using three different setups: two slide scanners and a multispec-

tral microscope. Here, we consider images acquired by the

widely used Aperio XT scanner. The Aperio scanner has a res-

olution of 0.2456 μm∕pixel, resulting in a 2084 × 2084 pixels

RGB image for each field. A total of 326 mitotic nuclei are man-

ually annotated by an expert pathologist. The centroids of these

mitoses are used as ground truth. According to the test, the first

35 HPF images (226 mitosis) are used for training, while the

remaining 15 HPF images (100 mitosis) are used for evaluation.

4.2 Performance Measures

Evaluation is performed according to the ICPR 2012 contest cri-

teria, where true positives (TP) are defined as detected mitoses

whose coordinates are closer than 5 μm (20.4 pixel) to the

ground truth centroid. Nuclei that do not meet this criteria

are defined as false positive (FP) and false negative (FN) errors.

We compute the following performance measures:

Recall ¼
TP

TPþ FN
; Precision ¼

TP

TPþ FP
;

F-measure ¼
2 × Precision × Recall

Precisionþ Recall
: (1)

We compare the proposed approach (HC + CNN) with

approaches using handcrafted features only (HC), using CNN

only (CNN), as well as the reported approaches in Ref. 5.

4.3 Results

The mitosis detection results on the ICPR12 dataset are shown

in Table 2. The HC + CNN approach yields a higher F-measure

(0.7345) than all other methods except that of Istituto Dalle

Molle di Studi sull'Intelligenza Artificiale (IDSIA) (0.7821).

Table 1 Brief description of handcrafted features used for mitosis
detection.

Category Length Features

Morphology 15 Area, eccentricity, equiv diameter, Euler
number, extent, perimeter, solidity, major
axis length, minor axis length, area overlap
ratio, average radial ratio, compactness,
Hausdorff dimension, smoothness, and
standard distance ratio

Intensity 8 × 7 Mean, median, variance, maximum/minimum
ratio, range, interquartile range, kurtosis and
skewness of patch intensities at seven color
channels

Texture 26 × 7 Concurrence features: mean and standard
deviation of 13 Haralick19 gray-level
concurrence features grabbed at four
orientations. Run-length features:20 mean
and standard deviation of gray-level
run-length matrices at four orientations

Fig. 5 Workflow of the cascaded ensemble, which comprises two
stages. First, we perform classification with CNN-learned and
handcrafted features individually, and if the two classification scores
are consistent, a binary decision (mitosis/nonmitosis) will be made
directly. Second, for those instances whose individual classification
scores are highly inconsistent, we classify them again by combining
their CNN and handcrafted features.
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The FN rate associated with HC + CNN is relatively high com-

pared to other methods. As Table 3 illustrates, this is partially

due to the fact that the blue-ratio segmentation has an

FN error of seven mitoses. In addition, HC + CNN outperforms

NEC (F-measure ¼ 0.6592), the only other approach to com-

bine CNN and handcrafted features. Note that CNN-based

approaches (HC + CNN, IDSIA, and NEC) tend to produce

fewer FP errors, reflecting the capacity of CNN to accurately

recognize nonmitotic nuclei.

The most critical parameter of the HC + CNN classifier is the

classification threshold that is used to decide mitosis/nonmito-

sis. Based off our empirical results, the optimal threshold was

identified to be ≈0.6. In general, a larger threshold will lead to

fewer TPs, FPs and more FNs, and vice versa. In order to evalu-

ate the influence of this threshold parameter, we generate the

precision-recall curves by varying the threshold from 0.45 to

0.7. Figure 7 shows that the performances of the other methods

(except IDSIA) lie in the interior of the areas spanned by the

curve. This fact suggests that the performance of HC + CNN

(a) (b) (c)

Fig. 6 Hematoxylin and eosin-stained HPF examples from the ICPR dataset. The HPFs are acquired
by a Aperio XT scanner with a resolution of 0.2456 μm per pixel. Each HPF has a size of
2084 × 2084 pixels, representing a 512 × 512 μm2 area annotated by pathologists.

Table 2 Evaluation results for mitosis detection using HC + CNN and
comparative methods on the ICPR12 dataset.

Dataset Method TP FP FN Precision Recall F -measure

Scanner
Aperio

HC + CNN 65 12 35 0.84 0.65 0.7345

HC 64 22 36 0.74 0.64 0.6864

CNN 53 32 47 0.63 0.53 0.5730

IDSIA14 70 9 30 0.89 0.70 0.7821

IPAL7 74 32 26 0.70 0.74 0.7184

SUTECH 72 31 28 0.70 0.72 0.7094

NEC13 59 20 41 0.75 0.59 0.6592

Note: The bold value highlights the result of the proposed HC + CNN
approach.

Table 3 Performances of the blue-ratio segmentation module and
the detection module. The blue-ratio segmentation finds 2484 mitosis
candidates, among which 93 are true mitoses while the other 2391 are
nonmitoses. Seven true mitoses are lost in this step. The detection
module identifies 65 true mitoses and 12 false mitoses from these
2484 candidates. Twenty-eight mitoses are misclassified as nonmi-
totic figures in this module.

Segmentation
module Detection module Final

TP FP FN TP FP FN TP FP FN

93 2391 7 65 12 28 65 12 35

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
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Fig. 7 Precision–recall curve of the proposed HC +CNNmethod. The
performance of the other methods is also plotted for comparison. The
curve is generated by varying the classification threshold between
0.45 and 0.7. (The threshold for each point is marked along the curve.)
The fact that the performance of the other methods (except IDSIA)
lie in the interior of the areas spanned by the curve suggests that
the performance of HC + CNN is resilient to the precise choice of
the classification threshold.

Table 4 The influence of the number of RF trees.

Number of trees 10 20 30 50 100 200

F -measure 0.57 0.57 0.67 0.7345 0.65 0.66
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is resilient to the precise choice of the classification threshold.

Table 4 shows the influence of the number of random forests

trees on mitosis detection. We can clearly see that fewer trees

will most likely lead to worse classification, while more trees

may cause overfitting.

Figure 8 shows some detected mitosis examples. As one can

see, the FNs tend to be poorly colored and textured while the

FPs have similar color and shape attributes compared to the TPs.

Although the textural patterns between FPs and TPs are differ-

ent, this difference is not well appreciated at this prespecified

HPF resolution. Figure 9 shows a mitosis detection example

using CNN and HC + CNN, respectively, revealing the

improvement obtained by integrating handcrafted features and

CNN in HC + CNN. Figure 10 shows two mitotic detection

results of HC + CNN, while also revealing some FN examples.

Both the segmentation and detection steps contribute to the loss

of these mitotic figures.

The two 11-layers neural networks used by IDSIA14 requires

roughly 30 epochs, which takes 2 days for training with GPU

optimization. Our three-layer CNN needs <10 epochs, and

requires only 11.4 h using nine epochs without GPU optimiza-

tion. Including the time needed to extract handcrafted features

(6.5 h in pure MATLAB implementation), the training stage for

HC + CNN was completed in <18 h. At the detection stage, the

Fig. 8 Mitoses identified by HC + CNN as TP (green rectangles), FN (yellow rectangles), and FP (red
rectangles) on the ICPR12 dataset. The TP examples have distinctive intensity, shape, and texture while
the FN examples are less distinctive in intensity and shape. The FP examples are visually more alike to
mitotic figures than the FNs.

Fig. 9 Mitoses identified by CNN and HC + CNN as TP (green circles), FN (yellow circles), and FP (red
circles) on a HPF of ICPR12 dataset. (a) Only using CNN leads to 7 TPs, 5 FNs and 3 FPs. (b) Using HC
and CNN leads to 9 TPs, 3 FNs and 1 FP, which clearly outperforms the use of CNN alone.
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MATLAB implementation of HC + CNN takes about 1.5 min to

process each H&E image, which is roughly 5× faster than the

winner of the ICPR challenge.14

5 Concluding Remarks

Mitosis detection is one of the three key factors in BCa grading.

Existing approaches attempt to detect mitosis using either stacked

handcrafted features or CNN-learned features. However, the

problem of low detection accuracy arises when only handcrafted

features are used while CNN-based approaches suffer from the

issue of high computational complexity. To tackle these problems,

we presented a new approach that combines handcrafted features

and a light CNN in a cascaded way. Our approach yields an

F-measure of 0.7345, which would have secured the second

rank in the ICPR contest, and is higher than the NEC approach

that combines CNN and handcrafted features at the feature level.

Compared to the leading methodology (two 11-layer CNN mod-

els) at the ICPR contest (F-measure ¼ 0.78), our approach is

faster, requiring far less computing resources.

Experimental results shows that it is still necessary to

improve the accuracy of the presented approach. Future work

will use a GPU to implement a multilayer (>3) CNN model.
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