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ABSTRACT

Understanding the heterogeneous behavior of hematopoietic
stem cells (HSCs) is required for the expansion of the cells
without loss of their regenerative capacity. As such, it is
essential to establish their lineage relationships by tracking
the history of individual cells in a cell population. However,
the quality of lineage relationships is often degraded because
of undetected or misdetected mitotic events, which lead to
missed or inaccurate mother-daughter cell relationships. In
this paper, we present an automated mitosis detection method
for HSCs in time-lapse phase-contrast microscopy images.
Since HSCs are nonadherent, i.e., free-floating in the culture
medium, the method is distinguished from the recent mitosis
detection methods developed for adherent cells that are at-
tached to the surface of a petri dish. The proposed mitosis
detection method detects individual cells in each image frame
and subsequently tracks them over time and in so doing iden-
tifies newly appeared cells, each of which is considered as a
candidate of a newborn cell. Each candidate is then examined
to determine whether it is indeed a newborn cell based on
temporal change of cell sizes of potential mother and daugh-
ter cells. Our method was quantitatively evaluated with 14
HSC populations, each of which is observed for four days,
resulting in a precision of 97.4% and a recall of 96.6%.

Index Terms— hematopoietic stem cells (HSC), mitosis
detection, cell tracking, probabilistic temporal modeling, mi-
croscopy time-lapse image analysis

1. INTRODUCTION

Hematopoietic stem cells (HSCs) are blood-forming stem
cells and give rise to all blood cell types in the body for cell
replacement therapy. In the last decades, the regenerative ca-
pacity of HSCs has been utilized to treat bone marrow failure
as well as rescue blood function for hematopoietic disor-
ders (e.g., sickle cell anemia, leukemia, lymphoma, immune
deficiency disorders and autoimmune diseases) by transplan-
tation of HSCs into patients [1, 2]. However, HSC therapy
is limited by the low cell dose available for transplantation
as well as the lack of knowledge on how to expand HSCs ex
vivo without loss of its regenerative capacity [3, 4].

As such, it is essential to establish the lineage relation-
ships between HSCs and their progeny within a population of
HSCs. The lineage relationships can provide information on
how mechanisms controlling self-renewal and proliferation
can be altered in response to the addition of exogenous bio-
chemical signals during in vitro culture to facilitate the study
and ex vivo expansion of HSCs. To construct accurate lineage
trees, mitosis detection is important since it provides informa-
tion on mother-daughter relationships. In fact, undetected or
misdetected mitosis is a major cause of failure in automated
stem cell tracking systems [5].

Recent work has shown great success at detecting mito-
sis in time-lapse phase-contrast microscopy images; for the
review of previous work, we refer to [6]. The most recent
work [7] shows that mitosis detection can be automated even
under high cell confluence where cells are in contact with one
another. This method, however, relies on dramatic morpho-
logical and brightness changes of mitotic cells, which happen
to adherent cells that are attached to the surface of a petri
dish. Therefore, the existing methods may not be applica-
ble to HSCs, which are nonadherent, i.e., free-floating in the
culture medium. Due to its nonadherence, such dramatic al-
terations in cell shape and intensity do not accompany HSC
mitosis.

In this paper, we present an automated mitosis method in
time-lapse phase-contrast images developed particularly for
HSCs. We adopt a recent framework for mitosis detection [6,
7], which comprises detection of spatio-temporal regions for
mitosis candidates and validation of the candidates using a
temporal probabilistic model. Contrary to the previous work
that examines cell appearance and intensity changes, mitosis
candidate detection is performed based on cell region detec-
tion and tracking, which is fairly tractable in an HSC pop-
ulation due to their limited variation in cell shape and size.
For each newly appeared cell during cell tracking, we exam-
ine it with its potential mother and sibling cells to determine
whether it is a newborn cell as a result of mitosis. For this
examination, we present a temporal probabilistic model that
models cell size change over time around mitosis. We per-
formed experiments on 14 HSC populations, each of which
was captured for four days, to show the effectiveness of our
method.



Fig. 1. HSC populations (a) in a microwell array and (b) in a
single microwell, imaged with phase contrast microscopy.

2. METHODS

In this section, we propose a three-step mitosis detection
method: (1) cell region detection and tracking, (2) candidate
detection and feature extraction, and (3) candidate validation.

2.1. Cell Region Detection and Tracking

We detect cell regions in each image and link them over con-
secutive frames using a tracking method based on frame-by-
frame data association.

2.1.1. Cell Region Detection

HSCs generally appear as round objects surrounded by bright
halos in phase-contrast microscopy images as shown in Fig-
ure 1. Hence, the method based on a template matching with
ring filters [8] is effective for the detection of HSCs and is
known to outperform other methods [8]. The brief summary
of the method is as follows.

Ring filters with different radii are convolved with a given
image. In order to prevent the background regions surrounded
by cells from being detected, the roundness of ring pattern
is computed and multiplied to the convolved result. After
thresholding the weighted filter outputs, local maxima are
found among them in the space dimension for each radius.
Each local peak is then adjusted with a fitting scheme using a
quadratic polynomial surface model. For each adjusted local
peak, which is considered the center of a cell, the radius with
the maximum filtered output in the radius space is selected as
the radius of the cell. Fig. 2 shows a sample input image and
the detected cell regions on the image.

2.1.2. Cell Tracking

Cell regions detected on each image are linked over consec-
utive frames based on a typical one-to-one frame-by-frame
data association method. Specifically, in order to associate a
set of tracks up to frame t − 1, denoted by {Ti}, with a set
of cells at frame t, denoted by {Cj}, the likelihood that each
track is associated with each cell is computed based on the
distance between them as follows:

Fig. 2. (a) Sample input image. (b) Cell regions detected on
the sample image.
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where a is a constant, pi is the number of frames for which
Ti is unassigned to a cell in a row until reaching frame t− 1,
and dmax is the maximum distance that a cell can move be-
tween two successive frames. e−a·pi is multiplied to penalize
the tracks that fail to be associated with a cell. Morphological
similarity is not taken into account for the likelihood compu-
tation because it is not informative due to the limited variation
in shape and size among HSCs.

We find the best set of one-to-one correspondences be-
tween tracks {Ti} and cells {Cj} that maximizes the total
likelihood using a typical global nearest neighbor (GNN)
scheme based on the Munkres algorithm [9]. After the asso-
ciation, there may be several tracks and cells that are not as-
sociated with any cell and track, respectively. Such remaining
tracks undergo another round of association between tracks
and cells in the following frame with the penalty e−a·pi in
Eq. (1). If a track is not associated with any cell for K frames
in a row, the track is determined to be lost and thus no longer
considered. Remaining cells are tracked and observed for
K following frames. If a remaining cell is detected for at
least d0.5Ke frames out of the K frames, it is considered a
newly appeared cell and a new track initiates from the cell.
Otherwise, the remaining cell is regarded as misdetected and
thus ignored.

2.2. Candidates Detection and Feature Extraction

Among newly appeared cells, we select candidate newborn
cells and locate their potential sibling and mother cells. From
each of candidates, we extract information on cell size change
over time around mitosis.

2.2.1. Candidate Detection

A newly appeared cell, denoted by Cextra, is considered a
candidate newborn cell only if it satisfies two criteria; (1)
Cextra is in contact with another cell; (2) the potential mother



Fig. 3. (a,c) Patch sequences containing mitosis. (b,d) Detection results of a candidate newborn cell (yellow), and its potential
sibling (green) and mother (cyan) cells on (a) and (c), respectively. A circle and a cross in it indicate the boundary and the
center of a cell detected, respectively. Newly appeared cells are first detected at frame t. (Best viewed in color.)

cell of Cextra is sufficiently greater than Cextra and its po-
tential sibling cell. Note that, during the cell cycle, newborn
daughter cells are smaller in size than the mother cell and
eventually grow and reach a similar size to the mother cell.
The detailed process to locate mitosis candidates is as fol-
lows.

Suppose that a newly appeared cell (Cextra) is first de-
tected at frame t. We find the cells in contact with Cextra at
frame t as candidate sibling cells. If there is no such a cell, the
first criterion is violated and thus Cextra is not further consid-
ered. For each of the possible sibling cells (Csibling), we find
a cell that is associated with Csibling at frame t−1 and regard
the cell as the potential mother cell (Cmother) of Cextra and
Csibling. In other words, we set a hypothesis that Cmother at
frame t− 1 divides into Cextra and Csibling at frame t. From
the tracking results, we obtain the trajectory of Cmother for
K frames prior to frame t, and the trajectories of Cextra and
Csibling for K frames at and after frame t. If the average ra-
dius of Cmother at frames t−K through t− 1 is not at least
10% greater than either of the average radii of Cextra and
Csibling at frames t through t +K − 1, the second criterion
is not satisfied and thus Cextra is disqualified as a candidate
newborn cell. Fig. 3 shows examples of a candidate newborn
cell and its potential sibling and mother cells.

2.2.2. Feature Extraction

From the tracks of Cextra, Csibling, and Cmother, we extract
the following properties:

• At each of frames t−K through t− 1

- the radius of Cmother (rm1:K)

• At each of frames t through t+K − 1

- the radii of Cextra and Csibling (re1:K and rs1:K)

We set K to be 20 in our experiments because 10 min,
which is equivalent to 20 frames in our setting, is sufficient
for investigating the change of mother or daughter cells due
to mitosis. This parameter should be determined based on the
image acquisition interval and mitosis duration.

Fig. 4. Graphical representations of the proposed model used
for the validation of mitosis candidates. This model combines
four Hidden Conditional Random Fields (HCRFs) that model
cell size change of a non-mitotic cell, a mother cell, and two
daughter cells.

2.3. Validation of Mitosis Candidates

By statistically modeling changes in cell size over time dur-
ing mitosis, we identify true mitosis among the candidates.
We formulate a probabilistic model that combines four Hid-
den CRFs (HCRF) [10] together, as shown in Fig. 4. In this
model, binary label variable y indicates the occurrence of
mitosis. The first HCRF component with hidden variables
hn1:2K , which are connected with the cell sizes of both can-
didate mother and sibling cells, models non-mitotic events;
if there occurs no mitosis, the candidate mother and sibling
cells, which are extracted from the same trajectory, are turned
to be one non-mitotic cell and thus the sequentially combined
features capture cell size change of a non-mitotic cell over
time. On the other hand, the other three HCRF components
model cell size change of a mother and two daughter cells
separately when mitosis occurs. Combining these four HCRF
components together, the proposed model can effectively dis-
tinguish mitotic events from non-mitotic ones.

More formally, we define an exponential model for the
conditional probability P (y|x, θ), where x is a set of features
and θ is a set of parameters, using the CRF formulation as
follows:
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where Z is a partition function. In this formulation, the state
function is defined as the radius of a cell and the transition
function is defined as the identity function.

In training phase, we maximize the regularized loglikeli-
hood of the entire training samples {(xi, yi)} to find the best
parameter θ. More formally,

θ∗ = argmax
θ

L(θ) =
n∑
i=1

logP (yi|xi, θ)−
1

2σ2
||θ||2 (3)

where σ is the variance of a Gaussian prior.
In testing phase, for each mitosis candidate sequence, we

compute P (y|x, θ∗), based on which the occurrence of mi-
tosis y is inferred. Due to the space constraint, we omit the
detailed learning and inference processes and refer to the re-
lated previous work [10, 6, 7].

3. EXPERIMENTS

3.1. Image and Ground Truth Acquisition

HSCs were imaged every 30 seconds over the course of 4
days using a Carl Zeiss Axiovert 200M equipped with a EC-
Plan Neofluar 5X phase objective (Carl Zeiss Microimaging,
Thornwood, NY), resulting in 11520 images. Each image
contains 1388×1040 pixels, capturing 14 HSC populations
in 3×5 array of microwells as no cell was seeded in one of
the wells.

We manually annotated the time and location that mitosis
is completed. More specifically, when the boundary between
two newborn cells clearly appear, we marked the contacting
point of the two cells, observing 117 mitotic events in total.

3.2. Results

We consider a detection a true positive if a contacting point
of two newborn cells is detected within spatially 5 pixels and
temporally 10 frames (5 min) from a manually annotated mi-
tosis. If the same mitosis is detected more than once, only one
detection is considered true positive, the others false positives.

In the candidate detection step, 234 mitosis candidates
were detected. Among the 117 mitosis annotated, 114 mi-
tosis were captured by the candidates but the other 3 mitosis
were missed. One mitosis was not captured because the mi-
totic cell overlaps with another cell during the mitosis pro-
cess. The other two were detected, but temporally beyond the
threshold (10 frames), and thus considered missed. As the
newborn cells stick to the boundary of the well, they do not
show bright and circular appearance; as a result, they were
not detected as a cell when they are born, but more than ten
frames later.

In the candidate validation step, 116 candidates were de-
termined to be mitosis. Among them, 113 cases were true
positives. Therefore, overall 97.4% precision and 96.6% re-
call were achieved for mitosis detection. F-measure and AUC
(Area under PR-curve) were 97.0% and 98.9%. PR-curve was
plotted by varying the decision probability for the conditional
probability P (y|x, θ), which is originally 0.5, from 0 to 1.

4. CONCLUSION AND FUTURE WORK

We have proposed a mitosis detection method for HSCs,
which are nonadherent, for which previous methods may not
be applicable due to the lack of obvious visual cues during
HSC mitosis. Our method based on candidate detection with
cell tracking and candidate validation with a probabilistic
model achieved 97.4% precision and 96.6% recall on 14 cell
populations.

The proposed method has an advantage over previous
methods in that mother-daughter relationships are explicitly
revealed so that it can be easily incorporated to cell tracking
systems. We leave the empirical analysis as future work.
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