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ABSTRACT 
 
We propose a fully-automated mitosis event detector using 
hidden conditional random fields for cell populations 
imaged with time-lapse phase contrast microscopy. The 
method consists of two stages that jointly optimize recall and 
precision. First, we apply model-based microscopy image 
preconditioning and volumetric segmentation to identify 
candidate spatiotemporal sub-regions in the input image 
sequence where mitosis potentially occurred. Then, we apply 
a learned hidden conditional random field classifier to 
classify each candidate sequence as mitosis or not.  The 
proposed detection method achieved 95% precision and 
85% recall in very challenging image sequences of 
multipolar-shaped C3H10T1/2 mesenchymal stem cells. The 
superiority of the method was further demonstrated by 
comparisons with conditional random field and support 
vector machine classifiers. Moreover, the proposed method 
does not depend on empirical parameters, ad hoc image 
processing, or cell tracking; and can be straightforwardly 
adapted to different cell types. 

Index Terms— Mitosis, Hidden Conditional Random 
Field, Image Preconditioning, Phase Contrast Microscopy 
 

1. INTRODUCTION 
 
Measurement of the proliferative behaviors of cells in vitro 
is important to many biomedical applications ranging from 
basic biological research to advanced applications, such as 
drug discovery, stem cell manufacturing, and tissue 
engineering. Critical to such measurement is the accurate 
counting and localization of occurrences of mitosis, or cell 
division, in a cell culture. For short-period, small-scale 
studies, it is possible to manually identify incidents of 
mitosis because mitotic cells in culture tend to retract, round 
up, and exhibit intensified surrounding halos under phase 
contrast illumination. However, the need for extended-time 
observation and the proliferation of high-throughput imaging 
have made automated image analysis mandatory. 

Automated mitosis detection methods in prior art can be 
categorized into tracking-based, tracking-free, and hybrid 
approaches. Tracking-based approaches [1] rely on cell 
tracking to determine individual cell trajectories, and then 

identify mitosis based on the temporal progression of cell 
features along their trajectories. The dependency on cell 
tracking is a severe burden because tracking per se is a 
challenging task. Tracking-free approaches alleviate this 
burden and can detect mitosis directly in an image sequence. 
One representative technique was proposed by Li et al [4], 
which applies a cascade classifier to classify volumetric 
sliding windows of an image sequence with 3D Haar-like 
features. Major drawbacks of this approach include the 
requirement of a large amount of training data and the lack 
of location specificity of detection.  Hybrid approaches aim 
to construct a self-contained solution by leveraging the 
advantages of the previous two methods. These approaches 
typically consist of candidate sequence detection, sequence 
feature extraction, and classification as consecutive steps. To 
detect mitosis candidates, earlier methods [5] apply 
thresholding and morphological filtering to extract bright 
halos surrounding potentially mitotic cells in each image, 
and then group the extracted regions in successive images 
based on their spatial relationship. Subsequently, to identify 
mitosis, Eccles et al [5] employed a ring shape detector to 
locate the mother and two daughter cells; Gallardo et al [6] 
adopted a hidden Markov model to classify candidates based 
on temporal patterns of cell shape and appearance features. 

Our method follows the spirit of the hybrid approach. It 
takes a phase contrast microscopy image sequence as input, 
and automatically outputs localized sub-regions in the 
sequence where mitosis occurred. As shown in Fig. 1, the 
algorithm consists of two steps. First, microscopy image 
preconditioning [7] and volumetric segmentation are utilized 
to locate spatiotemporal sub-regions in the input image 
sequence where mitosis potentially occurred. Then, a hidden 
conditional random field classifier [9] is applied to classify 
each candidate sequence as mitosis or not. These two steps 
jointly maximize recall and precision, achieving accurate 
detection. We will present the technical detail of each step in 
the subsequent sections, with emphasis on the second step. 
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Fig. 1. Mitosis Detection Workflow 
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Fig. 2. Key Steps of the Proposed Method 
 

2. MITOSIS CANDIDATE EXTRACTION 
 
The mitosis candidate extraction step serves the purposes of 
eliminating “easily” negative regions in the image sequence 
where mitosis is unlikely to occur, and extracting temporally 
continuous sub-sequences with potential mitosis to facilitate 
subsequent sequence classification. The algorithm consists 
of two sub-steps. First, we apply the nonnegative mixed-
norm algorithm proposed by Li et al [7] to precondition each 
input image. The algorithm leverages a phase contrast image 
formation model and transforms the input into an ideal 
image with zero background and nonzero foreground 
regions that correspond to potential mitotic cells (Fig. 2(b)). 
The image formation model is defined by an effective point 
spread function (or EPSF): 
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where ( )G � is a Dirac delta function, and ,D E are scaling 
factors. The EPSF approximates the imaging function of 
phase contrast optics, which accounts for the formation of 
halo effects around imaged cells. The ideal image is 
obtained by solving a linear inverse problem using an 
efficient multiplicative-update algorithm. We refer the 
interested readers to [7] for more details on the algorithm. 

After preconditioning, 3D seeded region growing is 
applied to the transformed image sequences to extract 
spatiotemporal sub-regions that correspond to candidate 
mitosis sequences (Fig. 2(c)). The algorithm relies on two 
automatically-determined thresholds: a seeding threshold 
computed by Otsu’s optimal thresholding algorithm is used 
to detect seeds; and a lower threshold determined by Rosin’s 
unimodal thresholding algorithm [8] is used as the stopping 
criterion of region growing. 

3. SEQUENCE CLASSIFICATION 
 

The core of the sequence classification step is the hidden 
conditional random field (HCRF) classifier. We briefly 
review the basics of HCRF and two closely related models. 

3.1. Hidden Conditional Random Fields 
Generative dynamic Bayesian network models, in particular 
the hidden Markov model (HMM), are widely used for 
labeling sequential data. A limitation of such models is that 
observations are assumed to be independent given the values 
of hidden variables (i.e., labels), which makes them 
unsuitable for incorporating long range dependencies 
between observations and their labels. This limitation leads 
to the introduction of discriminative models for sequence 
labeling, most notably the conditional random field (CRF) 
model [10]. A CRF model specifies the probabilities of 
possible label sequences given an observation sequence. The 
conditional dependency of each label on the observation 
sequence is specified through an arbitrary number of feature 
functions, and these feature functions can access the entire 
input sequence at any time during inference. These 
flexibilities enabled CRF to outperform HMM and become 
immensely popular for natural language part-of-speech 
tagging and biological sequence analysis.  

A drawback of CRF is that it assumes the label sequence 
to be fully observable, and thus all frames in every training 
sequence must be fully labeled. This makes it inconvenient 
for sequence classification tasks in which each sequence is 
to be assigned a single label. To mitigate this drawback, 
Quattoni et al [9] proposed a hidden(-state) CRF model. 
HCRFs use intermediate hidden states to model the latent 
structure of the input domain, and infer a single label for an 
input sequence.  This allows us to use training sequences not 
explicitly labeled frame-by-frame.  

Mathematically, HCRFs deal with the problem of 
predicting a label y given an observation sequence 

1 2{ , ,..., }Tx x x X , where y  is a member of a set Y  of all 
possible labels. Each observation ix is represented by a 
feature vector ( ) d

ixI �R . For each sequence, we also 
assume a vector of hidden variables 1 2{ , ,..., }Th h h h , 
which are not observed in the training examples. A graphical 
representation of the HCRF model is shown in Fig. 3.  

 
Fig. 3. Graphical Model of HCRF 

Given the definitions of the label y , the sequence of 
observations X , the hidden variables h  and the model 
parametersT , the HCRF model can be defined by: 
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where ( , , ; )y\ T �h X R  is a potential function 
parameterized by T as: 
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Here 1L is the set of node features, 2L is the set of edge 
features, 1,lf , 2,lf are functions defining the features in the 
model, and 1,lT , 2,lT are the components of T , corresponding 
to node and edge parameters. The first type of feature 
function 1f  depends on a single hidden variable value in the 
model, while 2f  can depend on a pair of values.  

The model parameters can be learned from training 
examples by optimizing the objective function [10]: 
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where m  is the total number of training sequences. The first 
term in the objective function is the data log-likelihood. The 
second term is the log of a Gaussian prior with variance 2V . 
A gradient ascent algorithm can be used to search for the 
optimal model parameter * arg max ( )L

T
T T .  

Given an unseen test sequence X , the best corresponding 
label *y  can be computed by 

                  * *arg max ( | , )
y

y p y T X                              (5) 

In both HCRF and CRF models, we can incorporate long 
range dependencies controlled by a window size w. The 
parameter defines the amount of past and future observations 
to be used when predicting the state at time t (w = 0 
indicates only the current observation is used). 
 
3.2. Features for Classification 
We extracted three different kinds of features from each 
frame of a candidate mitosis sequence:  
x Intensity Histogram (IH, 5D), which describes the 

global distribution of pixel intensities; 
x Histogram of Oriented Gradients (HoG, 144D), 

which captures the edge or gradient structure that is 
characteristic of local shapes [11]; and  

x Gist (180D), which represents texture features that 
preserve local structural information [12]. 

 
4. EXPERIMENTAL RESULTS 

 
The proposed method was validated in five challenging 
phase contrast image sequences of C3H10T1/2 mouse 
mesenchymal stem cell populations. The cells were observed 
under a Zeiss Axiovert 135TV inverted microscope, using a 
5X, 0.15 N.A. objective lens with phase contrast optics. 
Images were acquired every 5 minutes for 120 hours using a 

12-bit Qimaging Retiga EXi Fast 1394 CCD camera at 
500ms exposure with a gain of 1.01. Each image consists of 
1392×1040 pixels with a resolution of 19 μm/pixel. The 
relatively low resolution was chosen in order to image a 
large cell population in the limited field of view. 
 
4.1. Performance of HCRF Classification 
 
With preconditioning and volumetric region growing, we 
extracted candidate mitosis sequences in each input 
sequence. This step achieved 100% recall of detection with 
low precision. To improve precision, we used HCRF to 
refine the detection results. To train the HCRF model, we 
manually labeled all mitosis candidates in one sequence. The 
remaining four sequences were used for validation. 

We trained HCRF models with IH, HoG, and Gist 
features and different window sizes. To choose the best 
configuration of features and window size, we plotted the 
ROC curve of each model and compared the area under 
curve (AUC) values. The results showed that the model 
trained with Gist features and w = 2 consistently 
outperformed the others with the best AUC value of 0.92. 
The ROC curves for the model using Gist features and a 
window size of 2 for four test sequences are shown in Fig. 4. 
 

 
Fig. 4. ROC of HCRF with Gist Feature and w = 2 

 
4.2. Comparison to CRF and SVM 
 
To demonstrate the superiority of HCRF for sequence 
classification, we compared its performance to the CRF 
model trained with fully-labeled sequences. Moreover, to 
show the advantage of integrating temporal information, we 
compare its performance to a frame-by-frame classification 
approach using a support vector machine (SVM) classifier. 
 
4.2.1. Conditional Random Field  
To utilize CRF for sequence classification, it is first applied 
to label the full sequence. For training, we divided each 
mitosis sequence into four phases (Fig. 5), and assigned 



 

 

labels 1 to 4 to each frame accordingly. Then, a candidate 
sequence is classified as mitosis if the number of frames 
assigned with labels 2 and 3 is greater than a threshold. 
 

 
Fig. 5. Label for mitosis sequence 

 
By varying the threshold, we obtained the ROC curves for 

CRF models trained with different features and window 
sizes. We found that CRF with Gist features and a window 
size of 2 achieve the best AUC of 0.78.  
 
4.2.2. Support Vector Machine 
The support vector machine (SVM) is a binary classifier that 
constructs a linear decision boundary (hyperplane) to 
optimally separate two classes [13]. We implemented a 
mitotic cell detector using SVM with a radial basis function 
(RBF) kernel. The detector was applied independently to 
each frame of a candidate sequence. 

Corresponding to the training strategy for CRF, we 
labeled the frames that belong to phases 2 and 3 of a mitosis 
sequence as positive samples, and the others frames as 
negative samples. A candidate sequence is classified as 
mitosis if the number of frames assigned to be mitotic 
exceeds a certain threshold. 

With cross-validation, we selected the best parameters for 
the SVM models trained with different features. By 
comparing the ROC curves for the trained models, we found 
that Gist outperformed the other features with the best AUC 
of 0.77, followed by HoG with 0.54, and IH with 0.47.  
 
4.2.3. Overall Comparison 
Finally, to compare the overall classification performances 
of HCRF, CRF and SVM with Gist features, we utilize the 
balanced F score as a complementary metric to AUC. The F 
score is defined as follows: 
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We separately computed the AUC and the best achievable F 
score for each sequence with each classifier. The results 
indicate that the HCRF classifier consistently outperformed 
both CRF and SVM, with a best-case performance of 95% 
precision and 85% recall (F = 0.90). 
 

Table 1. Comparison of HCRF, CRF and SVM with Gist 
Seq. AUC Maximum F Score 

HCRF CRF SVM HCRF CRF SVM 
1 0.92 0.78 0.77 0.90 0.84 0.80 
2 0.93 0.73 0.71 0.87 0.83 0.77 
3 0.91 0.73 0.70 0.86 0.84 0.81 
4 0.86 0.62 0.55 0.87 0.75 0.80 

5. CONCLUSION 
 
We proposed a fully-automated mitosis event detection 
method using hidden conditional random fields for cells 
imaged with phase contrast microscopy. The method 
consists of two stages, mitosis candidate extraction and 
sequence classification, which jointly maximize recall and 
precision. By experimentally comparing HCRF, CRF and 
SVM classifiers using intensity histogram, HoG and Gist 
features, we found that the HCRF model with Gist features 
achieved the best sequence classification performance. The 
method achieved 95% precision and 85% recall in very 
challenging phase contrast microscopy image sequences of 
C3H10T1/2 mesenchymal stem cell populations. 
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