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ABSTRACT

The detection of chromosome segregation errors in mitosis is
an important area of biological research. Due to the rarity and
subtle nature of such errors in untreated cell lines, there is a
need for automated, high-throughput systems for quantifying
the rates at which such defects occur.

This paper presents a novel approach to detecting sub-
tle chromosome segregation errors in mitosis in embryonic
stem cells, targeting two cases: misaligned chromosomes in a
metaphase cell, and lagging chromosomes between anaphase
cells.

Our method builds on existing approaches for analysis of
other cell lines (e.g. HeLa) which label mitotic phases through
mitosis and detect substantial deviations from normal mitotic
progression. We apply these to more challenging, denser,
stem cell lines. Leveraging the mitotic phase labelling allows
us to detect smaller, more subtle defects within mitosis. This
results in a very high recall rate, as necessary for detection of
such rare events.

1. INTRODUCTION
When a cell divides, it must segregate all of its chromosomes
equally into two daughter cells. Errors in chromosome seg-
regation can lead to the gain or loss of chromosomes in a
cell, resulting in a state known as aneuploidy. Aneuploidy
can lead to problems in development, and cancer cells fre-
quently display aneuploidy resulting from a high rate of chro-
mosome missegregation, a condition termed chromosomal in-
stability [1].

Compared to many cancer cell lines routinely studied,
such as HeLa (human epithelial adenocarcinoma) cells, em-
bryonic stem cells have relatively low levels of chromosome
instability [2], making them useful for identifying condi-
tions that lead to small but biologically significant increases
in chromosome segregation defects. It is also important to
be able to determine accurately the degree of chromosome
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Fig. 1. Examples of chromosome segregation defects. (a) Track
of cell undergoing mitosis normally. (b) & (c) Tracks of two cells un-
dergoing mitosis, frames with errors are highlighted in red (dashed).
(d) & (e) Enlarged view of frames with defects, indicated with
white arrows. (b) & (d) Misaligned chromosome, fails to align to
metaphase plate during mitosis. (c) & (e) Lagging chromosomes,
not segregated into either daughter cell during mitosis.

segregation errors and aneuploidy in stem cell lines, as they
become candidates for medical treatments.

Due to the rarity of such errors in stem cell lines, large
amounts of data need to be analysed to detect statistically
significant changes in error frequency under different experi-
mental conditions. Additionally, due to the subtlety of the de-
fects, human annotation can be difficult and time-consuming.
There is therefore a need for automated high-throughput



methods for quantifying this data.
There has been substantial recent work on automated im-

age analysis in sequences of mitotic cells, predominantly fo-
cusing on HeLa cells [3, 4, 5, 6]. These approaches either
detect perturbations in mitosis based on durations of mitotic
phases [3, 4], or as morphologies which differ substantially
from those observed in normal mitotic progression [3, 5] e.g.
binuclear or polylobed cells. All prior work uses a common
overall processing pipeline: frames are first segmented into
individual cells using image processing operations such as
adaptive thresholding and watershed algorithms [3, 4, 5], or a
combination of a linear classifier and graph cuts [6], and the
cells are then tracked throughout the sequence. Next, frames
are classified into mitotic phases or a more extensive set of
morphologies, either using a support vector machine followed
by temporal correction [3, 4, 5], or by directly using temporal
models [6].

The novel aspect of this work is that it aims to detect much
more subtle mitotic errors than previous methods, which fo-
cused on detection of substantial variations from normal mi-
toses (i.e. durations or morphologies). Our method leverages
mitotic track phase labelling information to significantly re-
duce the search space for defects to just the phases in which
the desired defects are expected to occur. This approach uses
existing methods to detect and track mitotic cells and label
the mitotic phases over time, though applied to a different
cell type than previous methods – embryonic stem cells rather
than HeLa cells. The detection of errors targets two cases: ei-
ther around a metaphase cell for misaligned chromosomes or
between anaphase cells for lagging chromosomes, as illus-
trated in Figure 1. This ‘phase aware search’ results in re-
liable detections, with a high recall rate, as required for this
application given the rarity of defects.

2. DATA
The data consists of 40 sequences of mouse embryonic stem
cells expressing fluorescent histone-GFP protein to visualize
chromosomes. Images were acquired on a widefield fluores-
cence microscope with a 40× objective. Cells were imaged
every 4 or 5 minutes, and for each time point a z-stack of 5
images at 2.5 micron spacing was acquired. Final image se-
quences were then deconvolved and z-stacks projected. The
resolution is 480 × 480 pixels. Sequences initially contain 19
cells on average, approximately 760 in all sequences, a num-
ber which increases as cells divide or new ones move into
focus, and last for an average duration of 170 frames. In to-
tal, over all frames in all sequences, there are approximately
13 × 104 possible individual cell detections. Sequences con-
tain from 2 up to 41 mitoses. In total, 62% of all cells in the
dataset undergo mitosis, giving 473 mitoses, of which 10 con-
tain a misaligned chromosome error and 10 contain a lagging
chromosome error (slightly over 4% of the 473 mitoses are
defective). Mitoses typically last 10-12 frames, and defects
are visible for at most 3 frames in mitotic tracks i.e. fewer
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Fig. 2. Four typical frames from the data. There is one visible
mitosis in each frame. The challenges of this dataset include densely
clustered cells, overlap of mitotic and interphase cells (e.g. in (b)-
(c)), artifacts from dead cells (e.g. top of (b) and middle of (d)),
and significant variations in interphase cell brightness (e.g. the four
interphase cells on the right of (d)).

than 0.2% of all possible individual cell detections are mitoic
and 0.03% contain chromosome segregation errors.

The data presents a number of challenges, illustrated in
Figure 2, including densely clustered cells, overlap of mitotic
and interphase cells, artifacts from dead cells, and significant
variations in interphase cell brightness. The chromosomes
that must be detected are extremely small: either blobs only
2-3 pixels in diameter, or as slightly elongated, strand-like
objects 4-5 pixels long and 1-2 pixels wide.

3. METHOD
We follow a three stage approach for detecting chromosome
segregation defects: first detecting and tracking mitotic cells,
second labelling the phase of mitosis in every frame of the
tracks, and finally detecting defects in metaphase (misaligned
chromosomes) and anaphase (lagging chromosomes).

3.1. Detection & Tracking

Due to the very high density of cells in the data, resulting in
a large proportion of cells touching or overlapping, detecting
and tracking all cells in a sequence would be an extremely
challenging task; simple foreground segmentation techniques
would not differentiate between cells. Also, it is unneces-
sary to detect and track all cells when the purpose is detect-
ing defects in mitosis. Instead, we detect only mitotic cells
(prometaphase, metaphase, anaphase and telophase) which
can be distinguished from interphase cells as they are typi-
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Fig. 3. Example detection results. Detected extremal region
boundaries overlaid on images. Detection gives good segmentation
boundaries and copes with overlapping or touching cells e.g. in (c)
and (d). View in colour to see overlaid boundaries.
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Fig. 4. Aligned regions of interest for defect detection. (a) Mis-
aligned chromosomes occur along the major axis of metaphase cells.
(b) Lagging chromosomes appear between anaphase cells. Detec-
tions within these regions are encoded in a 3 × 3 bin spatial his-
togram. Segmented cell regions, shown in Figure 3, are excluded
from the region of interest.

cally substantially brighter in appearance. The extremal re-
gion based approach of [7] is used for this purpose. This
method involves first proposing hundreds of candidate ex-
tremal regions, and then selecting the regions of interest us-
ing a classifier together with a non-overlap constraint. It can
robustly detect mitotic cells even when they overlap with in-
terphase cells, as can be seen in Figure 3, and the resulting
regions provide good chromatin segmentations for use in sub-
sequent steps. For brevity, the chromatin segmentations will
be referred to as cells in the remaining sections.

Cells are then associated from frame to frame by a near-
est neighbour approach using a feature consisting of centroid
position and size, and incorporating validation gating in the
form of an association threshold. This approach is sufficient
to cope with the relatively well spaced out detections, both
spatially and temporally.

A post-processing stage is applied to remove false posi-
tive tracks: a linear classifier is used to remove tracks of arti-
facts from cell death, and non-mitotic cells which are bright
enough to be detected. The features used for this consist of
the mean, standard deviation, maximum and minimum values
of cell brightness and size over a track. These features should
vary substantially as a cell undergoes mitosis but remain rea-
sonably constant for artifacts and interphase cells.

3.2. Phase labelling
For phase labelling we adopt the approach of [6]. As the per-
formance of this method improves when a track is sufficiently

long to contain all mitotic phases, the detected mitotic tracks
are continued three frames forward and backwards in time to
obtain some frames with the cells in interphase, allowing for
better normalisation of the features.

3.3. Defect detection
For detection of the defective chromosomes, a two stage ap-
proach is used: first, candidate structures are detected in a
region of interest around the cell, and second detections are
filtered based on a number of intensity and spatial character-
istics. The region of interest is defined where defects are ex-
pected to occur – orthogonal to the major axis of metaphase
cells, or between dividing anaphase cells. Example regions
are illustrated in Figure 4.

Within the interest regions, candidate misaligned/lagging
chromosomes are initially detected as blobs as local maxima
of Lapacian of Gaussians filter response. The filtering oper-
ation is carried out at two different scales (σ = 1, 2 pixels)
to account for variation in defect sizes. Note, the chromatin
segmented region determined in Section 3.1 is excluded when
proposing candidates and in other subsequent processing.

The candidates contain a large number of false positives
primarily due to interference from other nearby cells. The
purpose of the second stage is a filter to remove these false
positives.

For the intensity based filtering step, we observe that ac-
tual mitotic defect detections have pixel intensities closer to
the chromatin in the segmented cell than the background por-
tion of the interest region. Therefore, we assume that the
probability of a blob corresponding to a mitotic defect is pro-
portional to the ratio of intensity differences:

p(defect|iblob) ∝ exp

(
−(iblob − icell)

2

2σ2
cell

− −(iblob − ibg)
2

2σ2
bg

)

where iblob is the pixel intensity at the blob detection, icell
and σcell are the mean and standard deviation of chromatin
pixel intensities within the segmented cell, and ibg and σbg

are the mean and standard deviation of pixel intensities in the
interest region background. A threshold, τ , on this measure
removes false positives. The image is then thresholded based
on intensity at each detection, with the resulting segmentation
used to estimate the size of the detected blob. Segmentations
larger than individual chromosomes are discarded.

The remaining detections are then encoded in a 3 × 3
bin spatial histogram. Histogram bin counts are weighted by
the magnitude of detected peaks in the filter response, reduc-
ing the contribution of any remaining peaks caused by image
noise. Entropy is then used as a measure to define defects,
based on the observation that true defects will appear as well
localised detections, and consequently generate histograms
with low entropy.

4. RESULTS
Results are reported in Table 1 for the cell detection and mi-
totic defect detection components of this work. For each of



True Pos. False Pos. False Neg. True Neg. Precision Recall
Mitosis detection (frame) 2853 2658 852 ≈ 13× 104 0.52 0.77
Mitosis detection (track) 409 19 64 ≈ 750 0.96 0.86
Defect detection (frame) 23 80 12 4491 0.22 0.66
Defect detection (track) 18 47 2 364 0.29 0.90

Table 1. Results for the two key stages of the method – mitotic cell detection, and defect detections. The performance of each
stage is assessed on a frame-by-frame basis and on a whole track basis. Mitotic defect detection results are based on detected
mitotic tracks from the previous stage. The true negative values for mitosis detection are estimates, as ground truth data is
unavailable for non-mitotic cells and tracks.
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Fig. 5. ROC curve of defective mitotic track detection. The red
(dashed) curve uses only candidate defects (before filtering) as de-
scribed in the first stage of Section 3.3. The blue curve incorporates
mitotic phase and spatial information filters. The operating point
used for results in Table 1 is indicated with a blue ‘×’.

these, performance values are given for two conditions: in-
dividual frame detections and whole track detections. The
track performance is particularly important since detecting a
defective mitotic track is still useful for analysing large scale
biological data even if one or two frames containing defects
are missed.

For the mitotic cell detection part of this work, the 40 se-
quences in the dataset are divided into two equal partitions of
20 for training and testing. Within the training partition, two-
fold cross-validation is used to set parameters of the detection
system. Training is then carried out on the full 20 sequence
partition and tested on the remaining half of the data. The par-
titions are then switched and the training and testing process is
repeated to obtain mitotic cell detections for all 40 sequences.
This results in very high detection accuracies, with overall
precision and recall values of 0.96 and 0.86 for mitotic track
detection. False positive track detections are mostly caused
by artifacts remaining from cell death and oversegmentations
of correctly detected cells.

The defect detection results are based only on detected
mitotic tracks from the first stage. All of the 20 mitotic tracks
in the dataset containing defects are detected. For the mitotic
defect detection, the threshold, τ , described in Section 3.3 is
varied to produce ROC curves, as shown in Figure 5. This
results in a very high rate of recall, with only two tracks with
defects missed. Precision is lower due to the significant im-

balance in the data. The two false negative tracks which occur
are both lagging chromosomes in anaphase cells. All mis-
aligned chromosomes in metaphase are correctly detected.

5. CONCLUSION
We have presented a novel method for detecting very rare and
subtle mitotic errors in large volumes of microscopy images.
Our method is useful as a filter for further biological analy-
sis, as it reduces the amount of data to be analysed manually
by several orders of magnitude, although further work can
improve the precision. With the availability of more data ad-
ditional types of mitotic errors may be detected, or the two
addressed here may be further sub-categorized. Additionally,
classifiers could be trained to further improve precision.
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