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Abstract 
Background/Aims: Mitoxantrone, a cytotoxic drug used for the treatment of malignancy and 
multiple sclerosis, is at least in part effective by triggering apoptosis. Similar to apoptosis 
of nucleated cells, erythrocytes may enter eryptosis, a type of suicidal cell death. Hallmarks 
of eryptosis are cell shrinkage and cell membrane scrambling with phosphatidylserine 
translocation to the erythrocyte surface. Signalling involved in eryptosis include Ca2+-entry, 
ceramide formation and oxidative stress. Methods: Cell volume was estimated from forward 
scatter, phosphatidylserine-exposure from annexin V binding, formation of reactive oxidant 
species (ROS) from 2′,7′-dichlorodihydrofluorescein-diacetate fluorescence, and ceramide 
abundance from binding of fluorescent antibodies in flow cytometry. Results: A 48 hours 
exposure to mitoxantrone was followed by significant decrease of forward scatter (≥ 5 µg/ml 
mitoxantrone) and increase of annexin-V-binding (≥ 10 µg/ml mitoxantrone), effects paralleled 
by significant increases of ROS formation (25 µg/ml mitoxantrone) and ceramide abundance 
(25 µg/ml mitoxantrone). The effect of mitoxantrone was not significantly modified by nominal 
absence of extracellular Ca2+ but significantly blunted by the antioxidant N-acetylcysteine (1 
mM). Conclusions: Mitoxantrone triggers cell membrane scrambling, an effect not requiring 
entry of extracellular Ca2+ but at least partially due to formation of ROS and ceramide. 

Introduction

Mitoxantrone, a synthetic antineoplastic cytotoxic drug [1], is used for the treatment 
of both, aggressive multiple sclerosis [1, 2] and malignancy [3-10]. The antineoplastic effects result from triggering of tumor cell apoptosis [11-17], the efficacy of mitoxantrone in 
multiple sclerosis has been attributed to apoptosis of lymphocytes and dendritic cells [18]. 
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Furthermore, mitoxantrone may induce cell senescence [19]. Side effects of mitoxantrone 
include leukemia [20], cardiotoxicity [21], anemia [21] and thrombosis [22-27].

In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal 
erythrocyte death. Hallmarks of eryptosis are cell shrinkage and cell membrane scrambling 
with phosphatidylserine exposure to the erythrocyte surface [28]. Triggers of eryptosis 
include entry of Ca2+ with subsequent increase of cytosolic Ca2+ concentration ([Ca2+]

i
) [29], 

oxidative stress [28], ceramide formation [28], caspase activation [30-34], knockout of AMP 
activated kinase AMPK [35], or of cGMP-dependent protein kinase [36], inhibition of p21 
activated kinase [37] or sorafenib [38] and sunitinib [39] sensitive kinases and/or activation 
of casein kinase 1α [40, 41], Janus-activated kinase JAK3 [42], protein kinase C [43] or p38 
kinase [44].

The present study tested, whether mitoxantrone stimulates eryptosis, and explored the 
impact of putative underlying mechanisms, such as Ca2+ entry, oxidative stress, p38 kinase 
and ceramide formation.

Materials and Methods 

Erythrocytes, solutions and chemicals

Fresh Lithium-Heparin-anticoagulated blood samples were kindly provided by the blood bank of 

the University of Tübingen. The study is approved by the Ethics Committee of the University of Tübingen 

(184/2003V). The blood was centrifuged at 120 rcf for 20 minutes at 23oC and the platelets and leukocytes-

containing supernatant was disposed. Erythrocytes were washed in Ringer solution containing (in mM) 125 

NaCl, 5 KCl, 1 MgSO
4
, 32 N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES), 5 glucose, 1 CaCl

2
; pH 

7.4. For the experiments, erythrocytes were incubated in vitro at a hematocrit of 0.4% at 37°C for 48 hours. 

Where indicated, erythrocytes were exposed to mitoxantrone (Sigma-Aldrich, Hamburg, Germany) at the 

indicated concentrations. In Ca2+-free Ringer solution, 1 mM CaCl
2
 was substituted by 1 mM glycol-bis(2-

aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA). Where indicated, the antioxidant N-acetylcysteine (1 mM) 

or the p38 kinase blocker SB 203580 (2 µM) was added. 

FACS analysis of annexin-V-binding and forward scatter 

After incubation under the respective experimental condition, 50 µl cell suspension was washed in 

Ringer solution containing 5 mM CaCl
2
 to provide Ca2+ for Ca2+-dependent Annexin-V-FITC-binding. Cells were then stained with Annexin-V- fluorescein isothiocyanate (FITC) (1:200 dilution; ImmunoTools, 

Friesoythe, Germany) in this solution at 37°C for 20 min under protection from light. In the following, the forward scatter (FSC) of the cells was determined, and annexin-V-FITC fluorescence intensity was measured 
with an excitation wavelength of 488 nm and an emission wavelength of 530 nm on a FACS-calibur from 

Becton Dickinson (Heidelberg, Germany).

Measurement of intracellular Ca2+

After incubation, erythrocytes were washed in Ringer solution and then loaded with Fluo-3/AM 

(Biotium, Hayward, USA) in Ringer solution containing 5 mM CaCl
2
 and 5 µM Fluo-3/AM. The cells were 

incubated at 37°C for 30 min and washed twice in Ringer solution containing 5 mM CaCl
2
. The Fluo-3/

AM-loaded erythrocytes were resuspended in 200 µl Ringer. Then, Ca2+-dependent fluorescence intensity 
was measured with an excitation wavelength of 488 nm and an emission wavelength of 530 nm on a FACS 

Calibur.

Determination of oxidative stressReactive oxygen species (ROS) production was determined utilizing 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) [45]. Briefly, the cells were suspended in Ringer solution and the fluorescence was analysed with flow cytometry (FACS-calibur). DCFDA fluorescence intensity was measured with an 
excitation wavelength of 488 nm and an emission wavelength of 530 nm.
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Determination of ceramide formation

For the determination of ceramide, a monoclonal antibody-based assay was used. After incubation, cells 

were stained for 1 hour at 37°C with 0.1 µg/ml anti ceramide antibody (clone MID 15B4, Alexis, Grünberg, 

Germany) diluted in PBS containing 0.1% bovine serum albumin (BSA). The samples were washed twice 

with PBS-BSA. Subsequently, the cells were stained for 30 minutes with polyclonal FITC-conjugated goat anti-mouse IgG and IgM specific antibody (Pharmingen, Hamburg, Germany) diluted 1:50 in PBS-BSA. 
Unbound secondary antibody was removed by repeated washing with PBS-BSA. The samples were then analyzed by flow cytometric analysis with an excitation wavelength of 488 nm and an emission wavelength 
of 530 nm. 

Measurement of hemolysis

For the determination of hemolysis, the samples were centrifuged (3 min at 1600 rpm, room 

temperature) after incubation under the above mentioned experimental condition, the supernatants 

were harvested. As a measure of hemolysis, the hemoglobin (Hb) concentration of the supernatant was 

determined photometrically at 405 nm. The absorption of the supernatant of erythrocytes lysed in distilled water was defined as 100% hemolysis.
StatisticsData are expressed as arithmetic means ± SEM. As indicated in the figure legends, statistical analysis was 

made using one-way ANOVA with Tukey’s test as post-test and two-tailed t-test as appropriate. The number of 

different erythrocyte specimens studied is given as n. Since different erythrocyte specimens used in distinct 

experiments are differently susceptible to triggers of eryptosis, the same erythrocyte specimens have been 

used for control and experimental conditions.

Results

The present study explored, whether mitoxantrone triggers eryptosis, the suicidal 
erythrocyte death. The hallmarks of eryptosis include cell membrane scrambling with phosphatidylserine translocation to the cell surface. Annexin-V-binding was quantified by flow cytometry in order to identify phosphatidylserine exposing erythrocytes. As illustrated 
in Fig. 1, a 48 hours treatment with mitoxantrone was followed by an increase of the percentage annexin-V-binding erythrocytes, an effect reaching statistical significance at 10 
µg/ml mitoxantrone concentration. 

Fig. 1. Effect of mitoxantrone on phosphatidylserine exposure. A. Original histogram of annexin-V-binding 

of erythrocytes (M1) following exposure for 48 hours to Ringer solution without (grey shadow) and with 

(black line) presence of 25 µg/ml mitoxantrone. B. Arithmetic means ± SEM (n = 8) of annexin-V-binding (i.e. 

phosphatidylserine-positive, PS-(+)) erythrocytes in % following incubation for 48 hours to Ringer solution 

without (1µg/ml DMSO alone, white bar) or with (black bars) presence of mitoxantrone (5-25 µg/ml in 1µg/ml DMSO). *** (p<0.001) indicates significant difference from the absence of mitoxantrone [presence 
of DMSO alone] (ANOVA).

A B

n=8
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Erythrocyte death could involve hemolysis, a cell death distinct from eryptosis. In 
order to determine, whether mitoxantrone triggers hemolysis, the percentage of hemolysed erythrocytes was quantified from hemoglobin concentration in the supernatant. As a result, 
following a 48 hours incubation with 0, 5, 10 and 25 µg/ml mitoxantrone, respectively, the 
hemoglobin concentration in the supernatant approached 1.3 ± 0.6 %, 1.5 ± 0.2 %, 5.9 ± 
2.5 %, and 8.5 ± 0.8 % [**] of hemoglobin concentration following complete hemolysis (n 
= 5). The difference between presence and absence of mitoxantrone reached statistical significance (p<0.01) at 25 µg/ml mitoxantrone concentration (ANOVA). 

Eryptosis is further characterized by cell shrinkage. Accordingly, cell volume was estimated from forward scatter in flow cytometry. As illustrated in Fig. 2, a 48 hours treatment with mitoxantrone decreased forward scatter, an effect reaching statistical significance at 5 
µg/ml mitoxantrone concentration. 

Fig. 2. Effect of mitoxantrone on erythrocyte forward scatter. A. Original histogram of forward scatter of 

erythrocytes following exposure for 48 hours to Ringer solution without (grey shadow) and with (black 

line) presence of 25 µg/ml mitoxantrone. B. Arithmetic means ± SEM (n = 8) of the normalized erythrocyte 

forward scatter (FSC) following incubation for 48 hours to Ringer solution without (1µg/ml DMSO alone, 

white bar) or with (black bars) mitoxantrone (5-25 µg/ml in 1µg/ml DMSO). * (p<0.05), *** (p<0.001) indicate significant differences from the absence of mitoxantrone [presence of DMSO alone] (ANOVA).
Fig. 3. Effect of mitoxantrone in the presence and 

absence of extracellular Ca2+. A,B Arithmetic means ± 

SEM (n = 4-5) of the percentage of annexin-V-binding 

erythrocytes after a 48 hours treatment with Ringer 

solution without (white bars) or with (black bars) 25 

µg/ml mitoxantrone in the presence (left bars, Plus 

Calcium) and absence (right bars, Minus Calcium) 

of calcium without (A) and with (B) EGTA added.  *** (p<0.001) indicates significant difference from 
the respective values in the absence of mitoxantrone 

(ANOVA). 

A B

n=8

A

B

http://dx.doi.org/10.1159%2F000366376


Cell Physiol Biochem 2014;34:1756-1767
DOI: 10.1159/000366376
Published online: November 12, 2014

© 2014 S. Karger AG, Basel
www.karger.com/cpb 1760

Arnold/Bissinger/Lang: Mitoxantrone-Induced Eryptosis

Cellular Physiology 

and Biochemistry

Cellular Physiology 

and Biochemistry

Cell membrane scrambling and cell shrinkage following mitoxantrone treatment could 
have been due to increase of cytosolic Ca2+ activity ([Ca2+]

i
) resulting from entry of extracellular 

Ca2+. Attempts to quantify [Ca2+]
i
 in erythrocytes utilizing Fluo3 fluorescence failed, as the 

cells apparently lost the dye following mitoxantrone treatment (data not shown). Possibly, 
mitoxantrone compromizes cell membrane integrity leading to hemolysis on the one hand 
and loss of Fluo3 on the other. In order to test, whether the effect of mitoxantrone on cell 
membrane scrambling required the entry of extracellular Ca2+, erythrocytes were exposed 
for 48 hours to 25 µg/ml mitoxantrone in the presence or nominal absence of extracellular 
Ca2+. As shown in Fig. 3, the effect of mitoxantrone on annexin-V-binding was not significantly 
different between the nominal absence and the presence of Ca2+. Mitoxantrone significantly 
increased the percentage of annexin-V-binding erythrocytes in both, the absence and 
presence of extracellular Ca2+. This result indicates that the effect of mitoxantrone on cell 
membrane scrambling did not require Ca2+ entry. 

Further experiments addressed alternative mechanisms possibly involved in the 
effect of mitoxantrone on eryptosis. The ROS-formation was determined utilizing DCFDA. 
As illustrated in Fig. 4A,B, a 48 hours exposure to 25 µg/ml mitoxantrone markedly and significantly increased the DCFDA fluorescence, a finding pointing to induction of oxidative 
stress. In order to test, whether ROS was required for the full effect of mitoxantrone on cell 
membrane scrambling, erythrocytes were exposed for 48 hours to 25 µg/ml mitoxantrone 
in the absence and presence of the antioxidant N-acetylcysteine (1 mM). As illustrated in Fig. 

Fig. 4. Effect of mitoxantrone on reactive oxygen species. A. Original histogram of DCFDA-fluorescence in 
erythrocytes following exposure for 48 hours to Ringer solution without (grey shadow) and with (black 

line) presence of 25 µg/ml mitoxantrone. B. Arithmetic means ± SEM (n = 4) of erythrocyte DCFDA fluorescence following incubation for 48 hours to Ringer solution without (white bar) or with (black bar) presence of mitoxantrone (25 µg/ml). **** (p<0.0001) indicates significant difference from the absence of 
mitoxantrone (two-tailed t-test). C. Arithmetic means ± SEM (n = 9) of the percentage of annexin-V-binding 

erythrocytes after a 48 hours treatment with Ringer solution without (white bars) or with (black bars) 25 

µg/ml mitoxantrone in the absence (left bars, -NAC) and presence (right bars, +NAC) of the antioxidant N-acetylcysteine (1 mM). *** (p<0.001); indicates significant difference from the respective values in the absence of mitoxantrone (ANOVA), ### (p<0.001) indicates significant difference from the respective 
values in the absence of N-acetylcysteine (ANOVA).
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4C, the effect of mitoxantrone on annexin-V-binding was significantly blunted in the presence 
of N-acetylcysteine. This result indicates that the effect of mitoxantrone on cell membrane 
scrambling was at least partially due to oxidative stress. 

In order to test, whether the effect of mitoxantrone required activation of p38 kinase, 
experiments were performed in the absence and presence of the p38 kinase inhibitor 
SB203580 (2 µM). As a result, a 48 hours exposure to 25 µg/ml mitoxantrone increased the percentage of annexin-V-binding erythrocytes significantly from 1.7 ± 0.3 % to 11.3 ± 0.8 % in the absence of SB203580 and significantly from 1.9 ± 0.4 % to 11.2 ± 0.8 % in the 
presence of SB203580. The increase was similar in the absence and presence of SB203580 
indicating that activation of p38 kinase was not required for the stimulation of eryptosis by 
mitoxantrone.

As cell membrane scrambling could further be triggered by ceramide, additional 
experiments tested, whether mitoxantrone increases the ceramide abundance at the erythrocyte surface. The abundance of ceramide at the erythrocyte surface was quantified 
utilizing anti-ceramide antibodies. As illustrated in Fig. 5, a 48 hours exposure to 25 µg/ml mitoxantrone was followed by a significant increase of ceramide abundance at the 
erythrocyte surface. 

Discussion

The present study discloses a novel effect of mitoxantrone, i.e. stimulation of eryptosis, the 
suicidal erythrocyte death characterized by cell shrinkage and breakdown of phosphatidylserine 
asymmetry of the erythrocyte cell membrane. The mitoxantrone concentrations required for 
the stimulation of eryptosis are within the range of mitoxantrone concentrations required for 
the antineoplastic activity of the substance [46]. At least in theory, the erythrocytes could be 
sensitized to the effect of mitoxantrone by parallel exposure to further eryptosis triggering 
xenobiotics [28, 39, 47-73]. Moreover, the sensitivity to mitoxantrone may be increased in 
patients suffering from disorders with enhanced eryptosis [28], such as diabetes [34, 74, 75], dehydration [76], renal insufficiency [77, 78], hemolytic uremic syndrome [79], sepsis [80], 
malaria [81], sickle cell disease [81], Wilson’s disease [82], iron deficiency [83], malignancy 
[84], phosphate depletion [85], and metabolic syndrome [65]. 

The effect of mitoxantrone did not require Ca2+ entry. Whether or not mitoxantrone modifies cytosolic Ca2+ activity ([Ca2+]
i
), cannot be answered with certainty. The exposure to 

Fig. 5. Effect of mitoxantrone on ceramide abundance. A. Original histogram of anti-ceramide FITC fluorescence in erythrocytes after exposure for 48 hours to Ringer solution without (grey shadow) and with 
(black line) presence of 25 µg/ml mitoxantrone. B. Arithmetic means ± SEM (n = 12) of ceramide abundance 

at the erythrocyte surface following incubation for 48 hours to Ringer solution without (white bar) or with (black bar) presence of mitoxantrone (25 µg/ml). ** (p<0.01) indicates significant difference from the 
absence of mitoxantrone (two-tailed t-test)

A B

n=12
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mitoxantrone was followed by a decline of Fluo3 fluorecence, which may result from decrease of 
[Ca2+]

i
 or from loss of dye. Whatever effect mitoxantrone exerts on [Ca2+]

i
, the effect appears not 

to be relevant for the triggering of eryptosis. We thus explored further putative mechanisms. As 
evident from DCFDA fluorescence, mitoxantrone induces oxidative stress, a well known trigger 
of eryptosis [28]. Mitoxantrone has previously been shown to similarly induce oxidative stress 
of nucleated cells [8, 86-88]. On the other hand, mitoxantrone may strengthen the antioxidative 
defence [89, 90]. The latter effect presumably requires expression of the respective proteins, 
an effect not possible in erythrocytes. In erythrocytes oxidative stress activates Ca2+ permeable 
cation channels with subsequent Ca2+ entry [91], an effect apparently not critically important 
for the stimulation of cell membrane scrambling by mitoxantrone. Oxidative stress further 
activates erythrocyte Cl- channels and aspartyl and cysteinyl proteases [91]. Additional 
experimentation will be required to fully elucidate the link between mitoxantrone induced 
oxidative stress and cell membrane scrambling. 

Mitoxantrone further increased the abundance of ceramide, another powerful 
stimulator of eryptosis [28]. Mitoxantrone may stimulate ceramide formation by activation 
of sphingomyelinase in nucleated cells [92]. Mitoxantrone has been shown to stimulate 
phospholipase C with subsequent hydrolysis of phosphatidylcholine [92]. In erythrocytes, 
sphingomyelinase and thus ceramide formation are stimulated by platelet activating factor [93, 
94]. Ceramide has been shown to trigger cell membrane scrambling in part by sensibilisation 
against Ca2+ [93]. The present observations rather suggest Ca2+ independence of mitoxantrone-
induced eryptosis.  

Eryptosis is a physiological mechanism accomplishing removal of defective erythrocytes 
from circulating blood. Phosphatidylserine exposing erythrocytes bind to respective 
receptors of phagocyting cells which engulf and degrade the defective erythrocytes [28]. 
Accordingly, phosphatidylserine exposing erythrocytes are rapidly cleared from circulating 
blood [28]. Stimulation of eryptotic cell shrinkage [29] counteracts erythrocyte swelling, which 
could, at least in theory, result in hemolysis with subsequent rupture of the cell membrane 
and release of cellular hemoglobin. Hemoglobin released from hemolytic erythrocytes may be filtered in renal glomeruli, undergo subsequent precipitation in renal tubules, occlude 
tubular lumina and thus lead to obstructive kidney injury [95].

Excessive eryptosis may be similarly harmful. Removal of phosphatidylserine exposing 
erythrocytes from circulating blood may result in anemia, as soon as the loss of eryptotic 
erythrocytes exceeds the parallel formation of new erythrocytes [28]. Phosphatidylserine 
exposing erythrocytes furher adhere to the vascular wall by binding of erythrocytic 
phosphatidylserine to endothelial CXCL16 [96]. The binding of eryptotic erythrocytes to the 
vascular wall impedes microcirculation [96-101]. Phosphatidylserine exposing erythrocytes 
may further foster blood clotting and thus thrombosis [97, 102, 103]. 

In conclusion, mitoxantrone triggers eryptosis with erythrocyte shrinkage and cell 
membrane scrambling. Cellular mechanisms involved in the pro-eryptotic effect of mitoxantrone 
include oxidative stress and ceramide formation.
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