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Abstract

We describe MITRE’s submission to the

SemEval-2016 Task 6, Detecting Stance in

Tweets. This effort achieved the top score in

Task A on supervised stance detection, pro-

ducing an average F1 score of 67.8 when as-

sessing whether a tweet author was in favor or

against a topic. We employed a recurrent neu-

ral network initialized with features learned

via distant supervision on two large unlabeled

datasets. We trained embeddings of words and

phrases with the word2vec skip-gram method,

then used those features to learn sentence rep-

resentations via a hashtag prediction auxiliary

task. These sentence vectors were then fine-

tuned for stance detection on several hundred

labeled examples. The result was a high per-

forming system that used transfer learning to

maximize the value of the available training

data.

1 Introduction

This paper describes a system for performing au-

tomatic stance detection in social media messages.

Our approach employs a recurrent neural network

which was initialized from pre-trained features

learned in successive attempts to encode world

knowledge via weak external supervision.

Stance detection is the task of determining

whether the author of a text is in favor or against

a given topic, while rejecting texts in which neither

inference is likely. This task is distinct from senti-

ment analysis in that an in favor or against stance

can be measured independently of an author’s emo-

tional state. In stance detection we attempt to mea-

sure how an author’s opinion is expressed in sponta-

neous, unstructured messages rather than the explicit

prompts of formal opinion polls.

Declarations of stance are often couched in fig-

urative language that can be difficult for machines

to unravel. Consider the texts We don’t inherit the

earth from our parents we borrow it from our chil-

dren and Last time I checked, Al Gore is a politi-

cian, not a scientist. To the human observer mes-

sages like these contain an interpretable stance rel-

evant to the topic of climate change. But to under-

stand rhetorical devices like sarcasm, irony, analogy,

and metaphor, a reader often uses personal experi-

ence to infer broader context. For machines, matters

are additionally complicated by use of informal vo-

cabulary, grammar, and spelling. Furthermore, train-

ing data is often expensive or difficult to collect in

bulk. These challenges motivated our efforts to seek

transfer learning of broad world knowledge through

feature pre-training using large unlabeled datasets.

2 Related Work

It is common for machine learning approaches to be-

gin learning of any new task from scratch, for exam-

ple by randomly initializing the parameters of a neu-

ral network. This disregards any knowledge gained

by similar algorithms when solving previous tasks.

Transfer learning approaches, on the other hand,

store the knowledge gained in one context and ap-

ply it to different, related problems. This type of ap-

proach is particularly appealing when one lacks suf-

ficient quantity of in-domain labeled training data,

such as when there are only a few hundred known

examples of a target.
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One strategy for performing transfer learning is to

train the parameters of a neural network on multiple

tasks: first on an auxiliary task with plentiful data

that allows the network to identify meaningful fea-

tures present in the corpus, then a second time using

actual task data to tune and exploit those features

learned in the first pass.

Deep neural networks trained for image classifi-

cation can be improved when initialized with fea-

tures learned from distant tasks, for example Yosin-

ski et al. (2014). In natural language processing

domains, sentence representations learned on unla-

beled data have been shown to be useful across a va-

riety of classification and semantic similarity tasks

(Kiros et al., 2015; Dai and Le, 2015; Hill et al.,

2016). Weston et al. (2014) used a hashtag predic-

tion task to learn sentence representations that im-

prove a downstream content-based recommendation

system.

Previous work in stance detection is significant

(Mohammad, 2016), often with a focus on analysis

of congressional debates or online forums (Thomas

et al., 2006; Somasundaran and Wiebe, 2009; Mu-

rakami and Raymond, 2010; Walker et al., 2012)

in which discourse and dialogue features offer clues

for identifying oppositional speakers. Rajadesingan

and Liu (2014) study stance detection in Twitter con-

versations and use a retweet-based label propagation

approach. This objective of this work differs in that

we attempt to detect an author’s stance purely from

analysis of the text of a single message.

3 Task and Evaluation

Detecting Stance in Tweets, Subtask A: Supervised

Frameworks (Mohammad et al., 2016) was a shared

task organized within SemEval-2016.

The task organizers provided training data in the

form of 2,814 tweets covering five topics, with

395 to 664 tweets per topic. The organizers used

crowdsourcing to manually annotate these tweets for

stance. Class balance varied between topics, with

some topics showing significant skew (e.g. Cli-

mate Change is a Real Concern with 4% AGAINST

and 54% FAVOR) while others were more balanced

(e.g. Feminist Movement with 49% AGAINST and

32% FAVOR). Approximately 74% of the provided

tweets were judged to be either in favor or against,

Figure 1: A recurrent neural network for stance detection.

while the remainder contained neither inference. An

additional 1249 tweets with held-out labels were

used as evaluation data. Systems were evaluated us-

ing the macro-average of F1-score(FAVOR) and F1-

score(AGAINST) across all topics.

4 System Overview

We now describe an approach to stance detection

that employs a recurrent neural network organized

into four layers of weights (shown in Figure 1). In-

put tokens are encoded in a one-hot fashion, such

that each token is represented by a sparse binary vec-

tor containing a single one-value at the index corre-

sponding to the token’s position in the vocabulary.

A sequence of these inputs are projected through

a 256-dimensional embedding layer, which feeds

into a recurrent layer containing 128 Long Short-

Term Memory (LSTM) units. The terminal output

of this recurrent layer is densely connected to a 128-

dimensional layer of Rectified Linear units trained

with 90% dropout (Srivastava et al., 2014). Finally,

this layer is fully connected to a three dimensional

softmax layer in which each unit represents one of

the output classes: FAVOR, AGAINST, or NONE.

This approach did not incorporate any manually

engineered task-specific features or inputs relevant

to the surface structure of the text. The only inputs

to the network were the sequence of indices rep-

resenting the identity of lowercased tokens (words
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or phrases) in the text. All feature pre-training was

done using weak supervision from larger unlabeled

text datasets, with a goal of automatically learning

useful representations of words and input sequences.

4.1 Pre-Training the Projection Layer

The weights for the projection layer of the network

were initialized from 256-dimensional word em-

beddings learned using the word2vec skip-gram

(Mikolov et al., 2013a) algorithm. We sampled

218,179,858 tweets from Twitters public stream-

ing API during 2015, and used this unlabeled data

as our training corpus. Retweets, duplicates, and

non-English messages were not included in this

sample. Text was lowercased and tokenized to

mimic the style of the task data. We then applied

word2phrase (Mikolov et al., 2013b) twice con-

secutively to identify phrases comprised of up to

four words, for example making a single token of

the phrase global climate change.

We then trained 256-dimensional skip-gram em-

beddings for the 537,366 vocabulary items that ap-

peared at least 100 times in our corpus, with a con-

text window of 10 words and 15 negative samples

per positive example. These hyperparameters were

chosen in advance based on our prior experience in

training embeddings for identifying word analogies

and estimating semantic similarity of sentences. Out

of vocabulary items were represented by the average

of all in-vocabulary vectors.

Note that these projection layer weights were later

tuned by backpropagation during training of the re-

current networks. Thus these initializations served

to provide the RNNs with initial feature represen-

tations intended to capture the nuances of informal

word usage observed in a large sample of text.

4.2 Pre-Training the Recurrent Layer

The second layer of our network was composed

of 128 Long Short-Term Memory (LSTM) units

(Hochreiter and Schmidhuber, 1997). This recur-

rent layer received as input a sequence of up to 30

embeddings, folding each into its hidden state in

turn. It was initialized with weights that were pre-

trained using the distant supervision of a hashtag

prediction auxiliary task. In this manner the network

learned distributed sentence representations from a

dataset containing a broad array of stance declara-

tions, rather than relying exclusively on the 2,814

explicitly labeled in-domain tweets.

We began by automatically identifying 197 hash-

tags with relevance to the topics under consider-

ation, for example #climatechange, #climatescam,

and #gamergate. These hashtags were selected on

the basis of a nearest-neighbor search of the word

embedding space. We queried the vector space using

the embeddings of the topic titles, and selected the

unique hashtags with high (top-50) cosine similarity.

These selections varied greatly in frequency and task

specificity, including a number of tags which were

related to multiple topics and others which appeared

ambiguously related. Half of the 40 most frequent

tags in this list were related to the 2016 United States

presidential elections. The final list of 197 relevant

hashtags was held constant across all experiments.

We extracted 298,973 tweets containing at least

one of these 197 hashtags from the 2015 corpus of

218 million English tweets. Text was lowercased,

tokenized, and phrase chunked according with the

preprocessing choices made during the training of

word embeddings. If a tweet contained more than

one hashtag, the most frequent tag was used as the

prediction target. Tweets were then stripped of all

hashtags, including both the correct hashtag and any

additional hashtags appearing in the tweet.

This corpus was divided into a training set and de-

velopment set using a 90/10 split. Each word in the

tweet was converted into a vector using the word em-

beddings. The sequence of vector representations of

the words in the tweet served as the input to a neural

network with a 128-dimensional LSTM layer, fol-

lowed by a dense softmax layer over the 197 possi-

ble candidate hashtags.

We trained the neural network with gradient de-

scent using AdaDelta and categorical cross entropy

minimization. Both the word embeddings and

the recurrent layer were tuned during this process.

Training continued until the accuracy on the devel-

opment set reached its maximum, which took seven

epochs. The final model correctly predicted devel-

opment set hashtags with 42.6% accuracy.

5 Experiments

The system described in section 4 was designed to

detect stances pertaining to a single topic. As such
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Figure 2: F1 scores for each topic and class on both cross-validation and test conditions.

we trained five distinct classifiers, one for each of

the five topics under consideration in the evaluation.

The embedding and recurrent layers of each classi-

fier were initialized with the weights obtained from

the pre-training process described above. The re-

mainder of the weights were randomly initialized

and the network was trained with stochastic gradient

descent using a learning rate of 0.015 and momen-

tum of 0.9. These networks were trained using a cat-

egorical cross-entropy loss function, with costs for

each example weighted according to the prevalence

of the class in the training data. This placed higher

weight on rare classes. The recurrent networks were

implemented using the Keras framework (Chollet,

2015).

The training data for each topic was shuffled and

split into five chunks for cross-validation. The train-

ing process for a single topic’s classifier therefore

resulted in five distinct neural networks, each learn-

ing from 80% of the training data. These training

set sizes ranged from 316 to 532 tweets. Each net-

work was trained for 50 epochs, with early stopping

to select the model with the best validation loss. Pre-

dictions from these five trained networks were used

to select a single class via majority vote at decode

time.

Variants of this approach were considered as well.

One variant used an identical framework with a re-

current layer initialized instead from a RNN trained

on 6.5 million tweets containing the top 10,000 most

frequent hashtags (as opposed to 197 topic-relevant

hashtags). We also omitted the RNN pre-training al-

together and randomly initialized the recurrent layer.

These variants were not found to improve perfor-

mance.

6 Results

Our submission achieved an average F1 score of

67.8 on the FAVOR and AGAINST classes of the held

out test set, which contained tweets from all five top-

ics. This was the top scoring system among the 19

entries submitted to the supervised stance detection

shared task.

This same system had an average F1 of 71.1

in testing of the component systems using cross-

validation on the training set, indicating a small

amount of overfitting. Scores also varied moderately
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across topics and classes (Figure 2).

One consistent observation across all topics was

that the majority class, whether it was FAVOR

or AGAINST, significantly outperformed the corre-

sponding minority class. There was positive corre-

lation (R2 = 0.67) between the F1 score for a given

class and the raw number of training examples rep-

resenting that class.

The weight pre-training and initialization regimes

that we applied improved performance relative to

the tested alternatives. Entirely omitting pre-training

of the recurrent layer (while keeping the projection

layer pre-training) resulted in a drop of average F1

from 71.1 to 70.0 in 5-fold cross-validation. Mean-

while the RNN trained to select from among 10,000

popular hashtags led to an average F1 of 66.0, a rel-

ative reduction of 7.2% compared to the submission

initialized from the RNN trained on 197 highly rel-

evant hashtags.

7 Conclusion

We described a state-of-the-art system for automat-

ically determining the stance of an author based on

the content of a single tweet. This approach was

able to maximize the value of limited training data

by transferring features from other systems trained

on large, unlabeled datasets.

Our results demonstrated that hashtag prediction

and skip-gram tasks can result in pre-trained features

that are useful for stance detection. The selection of

domain-relevant hashtags appears to be a crucial as-

pect of this architecture, as experiments employing a

larger collection of frequent hashtags resulted in sig-

nificantly worse performance on the stance detection

task.

Transfer learning does not completely elimi-

nate the need for labeled in-domain training data.

The most frequent stance classes uniformly outper-

formed the minority classes by all metrics. It is

likely that stances which are rare in this training

set are also proportionally absent from the larger

unlabeled auxiliary hashtag task. Future experi-

ments could investigate other techniques for iden-

tifying relevant hashtags, with a goal of maximizing

the diversity of opinions represented in the auxiliary

datasets.
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