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Abstract. LetM be a compact oriented irreducible 3–manifold which is neither a graph
manifold nor a hyperbolic manifold. We prove that π1M is virtually special.

1. Introduction

A compact connected oriented irreducible 3–manifold with arbitrary, possibly empty
boundary is mixed if it is not hyperbolic and not a graph manifold. A group is special if
it is a subgroup of a right-angled Artin group. Our main result is the following.

Theorem 1.1. Let M be a mixed 3–manifold. Then π1M is virtually special.

Corollary 1.2. The fundamental group of a mixed 3–manifold is linear over Z.

As explained below, Theorem 1.1 has the following consequence.

Corollary 1.3. A mixed 3–manifold with possibly empty toroidal boundary virtually fibers.

An alternative definition of a special group is the following. A nonpositively curved cube
complexX is special if its immersed hyperplanes do not self-intersect, are two-sided, do not
directly self-osculate or interosculate (see Definition 6.1). A group G is (compact) special if
it is the fundamental group of a (compact) special cube complex X. Then G is a subgroup
of a possibly infinitely generated right-angled Artin group [HW08, Thm 4.2]. Conversely,
a subgroup G of a right-angled Artin group is the fundamental group of the corresponding
cover X of the Salvetti complex, which is special. Note that if the fundamental group G of
a special cube complex X is finitely generated, then a minimal locally convex subcomplex
X ′ ⊂ X containing a π1–surjective finite graph in X

1 has finitely many hyperplanes and
is special, so that G embeds in a finitely generated right-angled Artin group.
Special groups are residually finite. Moreover, assuming that X has finitely many

hyperplanes, the stabilizer inG of any hyperplane in the universal cover X̃ ofX is separable
(see Corollary 6.8). For 3–manifold groups, separability of a subgroup corresponding to
an immersed incompressible surface implies that in some finite cover of the manifold
the surface lifts to an embedding. There are immersed incompressible surfaces in graph
manifolds that do not lift to embeddings in a finite cover [RW98].
There are a variety of groups with the property that every finitely generated subgroup
is separable — for instance, this was shown for free groups by M. Hall and for surface
groups by Scott. A compact 3–manifold is hyperbolic if its interior is homeomorphic to a
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quotient of H3 (equivalently to the quotient of the interior of the convex hull of the limit
set) by a geometrically finite Kleinian group. It was recently proved that hyperbolic 3–
manifolds with an embedded geometrically finite incompressible surface have fundamental
groups that are virtually compact special [Wis11, Thm 14.29]. This implies separability
for all geometrically finite subgroups [Wis11, Thm 16.23]. By Tameness [Ago04, CG06]
and Covering [Thu80,Can96] Theorems all other finitely generated subgroups correspond
to virtual fibers and hence they are separable as well. Very recently, Agol, Groves and
Manning [Ago12, Thm 1.1] building on [Wis11] proved that the fundamental group of
every closed hyperbolic 3–manifold is virtually compact special and hence all its finitely
generated subgroups are separable. For more details, see the survey article [AFW12].
Another striking consequence of virtual specialness is virtual fibering. Since special
groups are subgroups of right-angled Artin groups, they are subgroups of right-angled
Coxeter groups as well [HW99,DJ00]. Agol proved that such groups are virtually resid-
ually finite rationally solvable (RFRS) [Ago08, Thm 2.2]. Then he proved that if the
fundamental group of a compact connected oriented irreducible 3–manifold with toroidal
boundary is RFRS, then it virtually fibers [Ago08, Thm 5.1]. In view of these results, every
hyperbolic manifold with toroidal boundary virtually fibers [Ago12, Thm 9.2]. Similarly,
our Theorem 1.1 yields Corollary 1.3.
Liu proved that an aspherical graph manifold has virtually special fundamental group
if and only if it admits a nonpositively curved Riemannian metric [Liu11, Thm 1.1].
Independently, and with an eye towards the results presented here, we proved virtual
specialness for graph manifolds with nonempty boundary [PW11, Cor 1.3]. Note that
graph manifolds with nonempty boundary carry a nonpositively curved metric by [Lee95,
Thm 3.2]. Our Theorem 1.1 thus resolves the question of virtual specialness for arbitrary
compact 3–manifold groups.

Corollary 1.4. A compact aspherical 3–manifold has virtually special fundamental group
if and only if it admits a Riemannian metric of nonpositive curvature.

Corollary 1.4 was conjectured by Liu [Liu11, Conj 1.3]. As discussed above, he proved
the conjecture for graph manifolds while for hyperbolic manifolds this follows from [Wis11]
and [Ago12]. All mixed manifolds admit a metric of nonpositive curvature, essentially
due to [Lee95, Thm 3.3], as showed in [Bri01, Thm 4.3]. Hence Theorem 1.1 resolves
Liu’s conjecture in the remaining mixed case. However, the equivalence in Corollary 1.4
appears to be more circumstantial than a consequence of an intrinsic relationship between
nonpositive curvature and virtual specialness: all manifolds in question except for certain
particular closed graph manifolds have both of these features.
As a consequence of virtual specialness of mixed manifolds (Theorem 1.1), hyper-
bolic manifolds with nonempty boundary [Wis11, Thm 14.29], and graph manifolds with
nonempty boundary [PW11, Cor 1.3] we have the following.

Corollary 1.5. The fundamental group of any knot complement in S3 has a faithful
representation in SL(n,Z) for some n.

Note that existence of a non-abelian representation of any nontrivial knot complement
group into SU(2) is a well-known result of Kronheimer–Mrowka [KM04].
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Organization. As explained in Section 2, the proof of Theorem 1.1 is divided into two
steps. The first step is Theorem 2.1 (Cubulation), which roughly states that in any mixed
manifold there is a collection of surfaces sufficient for cubulation. In Section 3 we review
the construction of surfaces in graph manifolds with boundary. We discuss surfaces in
hyperbolic manifolds with boundary in Section 4. We prove Theorem 2.1 in Section 5 by
combining the surfaces from graph manifold blocks and hyperbolic blocks.
The second step is Theorem 2.4 (Specialization), which provides the virtual specialness
of the nonpositively curved cube complex produced in the first step. In Section 6 we extend
some separability results for special cube complexes to non-compact setting. We apply
them in Section 7 to obtain cubical small cancellation results for non-compact special cube
complexes. This allows us to prove Theorem 2.4 in Section 8.

Ingredients in the proof of Theorem 1.1:

• Canonical completion and retraction (Theorem 6.3) for special cube complexes [HW10].
• Criterion 2.3 for virtual specialness [HW10].
• Gitik–Minasyan double quasiconvex coset separability [Min06].
• Criterion for relative quasiconvexity [BW12].
• Combination Theorem 4.8 for relatively quasiconvex groups [MP09].
• Relative cocompactness of cubulations of relatively hyperbolic groups [HW13].
• Criterion 4.3 for WallNbd-WallNbd Separation [HW13].
• Proposition 3.1 which constructs virtually embedded surfaces in graph manifolds
with boundary [PW11].

• Separability and double separability of embedded surfaces in graph manifolds [PW11].
• Special Quotient Theorem 4.7 for groups hyperbolic relative to free-abelian sub-
groups [Wis11].

• Theorem 2.6 on virtual specialness of hyperbolic manifolds with nonempty bound-
ary [Wis11].

• Main Theorem 7.1 of cubical small cancellation [Wis11].

Acknowledgement. We thank Stefan Friedl for his remarks and corrections. We also
thank the referee for detailed comments that helped us clarify the proof.

2. Technical reduction to two steps

LetM be a compact connected oriented irreducible 3–manifold. By passing to a double
cover, we can also assume that M has no π1–injective Klein bottles. Moreover, assume
thatM is not a Sol or Nil manifold. Up to isotopy,M then has a unique minimal collection
of incompressible tori not parallel to ∂M , called JSJ tori, such that the complementary
components called blocks are either algebraically atoroidal or else Seifert fibered [Bon02,
Thm 3.4]. We say that M is mixed if it has at least one JSJ torus and one atoroidal
block. (Equivalently, by Perelman’s geometrization, M is not hyperbolic and not a graph
manifold.) By Thurston’s hyperbolization all atoroidal blocks are hyperbolic and we will
denote them byMhk . The JSJ tori adjacent to at least one hyperbolic block are transitional.
The complementary components of the union of the hyperbolic blocks are graph manifolds
with boundary and will be called graph manifold blocks and denoted by Mgi . Up to
a diffeomorphism isotopic to the identity, each of their Seifert fibered blocks admits a
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unique Seifert fibration that we fix. If a transitional torus is adjacent on both of its sides
to hyperbolic blocks, we replace it by two parallel tori (also called JSJ, and transitional)
and add the product region T × I bounded by them as a graph manifold block to the
family {Mgi }. Similarly, for a boundary torus of M adjacent to a hyperbolic block, we
introduce its parallel copy in M (called JSJ, and transitional) and add the product region
to {Mgi }. These M

g
i = T × I will be called thin. We will later fix one of many Seifert

fibrations on thin Mgi .
Unless stated otherwise all surfaces are embedded or immersed properly. Let S → M

be an immersed surface in a 3–manifold. Let M̂ → M be a covering map. A map Ŝ → M̂
that covers S → M and does not factor through another such map is its elevation (it is a

lift when Ŝ = S). A connected oriented surface S → M that is not a sphere is immersed

incompressible if it is π1–injective and its elevation to the universal cover M̃ of M is an

embedding. The surface S is virtually embedded if there is a finite cover M̂ of M with an
embedded elevation of S. Given a block B and an immersed surface φ : S → M , a piece
of S in B is the restriction of φ to a component of S ∩ φ−1(B).
The elevations of JSJ tori, boundary tori, and transitional tori of M to the universal

cover M̃ are called JSJ planes, boundary planes, and transitional planes, and we keep the
name blocks (hyperbolic, graph manifold, or Seifert fibered) for the elevations of blocks of

M . We warn that this terminology refers to “graph manifold blocks” in M̃ even though

they are not compact. Having specified a block M̃o of M̃ and a surface S̃o ⊂ M̃o we denote

by T(S̃o) the set of JSJ and boundary planes in ∂M̃o intersecting S̃o.

An axis for an element g ∈ π1M acting on M̃ is a copy of R in M̃ on which g acts by
nontrivial translation. A cut-surface for g ∈ π1M is an immersed incompressible surface

S → M covered by S̃ ⊂ M̃ such that there is an axis R for g satisfying S̃∩R = {0}, where
the intersection is transverse.

Theorem 2.1 (Cubulation). Let M be a mixed 3–manifold. There is a finite family of
immersed incompressible surfaces S in M , in general position, and such that:

(1) For each element of π1M there is a cut-surface in S.
(2) All JSJ tori belong to S.
(3) Each piece of S in Mgi is virtually embedded in Mgi for each S ∈ S.

(4) Each piece of S in Mhk is geometrically finite for each S ∈ S.
(5) The family S satisfies the following Strong Separation property.

To make sense of sufficiently far below we fix a Riemannian metric on M and lift it to

the universal cover M̃ . Note, however, that satisfying Strong Separation does not depend
on the choice of this metric.

Definition 2.2. A family S of surfaces in M satisfies the Strong Separation property if

for the family S̃ of elevations to M̃ of the surfaces in S the following hold.

(a) For any S̃, S̃′ ∈ S̃ intersecting a block M̃hk covering M
h
k , if S̃

′ ∩ M̃hk and S̃ ∩ M̃hk are

sufficiently far and T(S̃′ ∩ M̃hk ) ∩ T(S̃ ∩ M̃hk ) = ∅, then a surface from S̃ separates S̃′

from S̃.
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(b) For any S̃, S̃′ ∈ S̃ intersecting a block M̃gi covering M
g
i , if S̃

′ ∩ M̃gi and S̃ ∩ M̃gi are

sufficiently far, then a surface from S̃ separates S̃′ from S̃.

We consider the dual CAT(0) cube complex X̃ associated to S by Sageev’s construction.

Each S̃ ∈ S̃ cuts M̃ into two closed halfspaces U, V and the collection of pairs {U, V }

endows M̃ with a Haglund–Paulin wallspace structure (we follow the treatment of these
ideas in [HW13, §2.1] where U ∩ V is allowed to be nonempty). The group G = π1M

acting on M̃ preserves this structure and hence it acts on the associated dual CAT(0)

cube complex X̃. The stabilizer in G of a hyperplane in X̃ coincides with a conjugate of
π1S for an appropriate S ∈ S by general position. Note that if there is a cut-surface S ∈ S

for g ∈ G, then g acts freely on X̃ [Wis12, Lem 7.16].

If a group G acting freely on a CAT(0) cube complex X̃ has a finite index subgroup

G′ such that G′\X̃ is special, then we say that the action of G on X̃ is virtually special.
This coincides with the definition used in [HW10], by the freeness of the action and
[HW10, Thm 3.5 and Rem 3.6]. We prove Theorem 1.1 using the following criterion
for virtual specialness. Disjoint hyperplanes osculate if they have dual edges sharing an
endpoint.

Criterion 2.3. Let G act freely on a CAT(0) cube complex X̃. Suppose that:

(1) there are finitely many G orbits of hyperplanes in X̃,

(2) for each hyperplane Ã ⊂ X̃, there are finitely many Stab(Ã) orbits of hyperplanes

that intersect Ã,

(3) for each hyperplane Ã ⊂ X̃, there are finitely many Stab(Ã) orbits of hyperplanes

that osculate with Ã,

(4) for each hyperplane Ã ⊂ X̃, the subgroup Stab(Ã) ⊂ G is separable, and

(5) for each pair of intersecting hyperplanes Ã, B̃ ⊂ X̃, the double coset Stab(Ã)Stab(B̃) ⊂
G is separable.

Then the action of G on X̃ is virtually special.

Criterion 2.3 follows directly from [HW10, Thm 4.1], since in Conditions (4) and (5)

we require Stab(Ã) and Stab(Ã)Stab(B̃) to be closed in the profinite topology on G,
and not only to have have closures disjoint from certain specified sets as was required in
[HW10, Thm 4.1].

For each Mgi we choose one conjugate Pi of π1M
g
i in G = π1M . Then G is hyperbolic

relative to {Pi} (see e.g. [BW12]) and we can discuss quasiconvexity of its subgroups
relative to {Pi} (see e.g. [BW12, Def 2.1]). For each S ∈ S, Theorem 2.1(4) implies that
π1S is quasiconvex in G relative to {Pi}, by [BW12, Thm 4.16].

Let M̃gi ⊂ M̃ be the elevation of Mgi stabilized by Pi. We describe a convex Pi–

invariant subcomplex Ỹi ⊂ X̃ determined by M̃gi . Let Ui be the family of halfspaces U

in the wallspace M̃ for which there is some R > 0 with diam(U ∩NR(M̃
g
i )) = ∞, where

NR denotes the R–neighborhood. Note that Ui does not depend on the fixed Riemannian

metric on M . Let Ỹi ⊂ X̃ be the subcomplex consisting of cubes spanned by the vertices
whose halfspaces are all in Ui.
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By [HW13, Thm 7.12] the group G acts cocompactly on X̃ relative to {Ỹi} in the

following sense: there exists a compact subcomplex K ⊂ X̃ such that:

• X̃ = GK ∪
⋃

iGỸi,

• gỸi ∩ Ỹj ⊂ GK unless j = i and g ∈ Pi, and

• Pi acts cocompactly on Ỹi ∩GK.

Because G acts freely on X̃, by [HW13, Prop 8.1(1)] each Ỹi is superconvex, in the sense
that there is a uniform bound on the diameter of a rectangle [−d, d] × I isometrically

embedded in X̃ on 1–skeleton with [−d, d]× {0} ⊂ Ỹi and [−d, d]× {1} outside Ỹi.
Observe that G = π1M splits as a graph of groups with transitional tori groups as
edge groups. The group G is hyperbolic relative to the vertex groups Pi = π1M

g
i . We

now explain that to prove Theorem 1.1 it suffices to complement Theorem 2.1 with the
following.

Theorem 2.4 (Specialization). Let G be the fundamental group of a graph of groups with
free-abelian edge groups. Suppose that G is hyperbolic relative to some collection of the

vertex groups {Pi}. Suppose that G acts cocompactly on a CAT(0) cube complex X̃ relative

to superconvex {Ỹi}. Suppose also that:

(i) the action of G on X̃ is free and satisfies finiteness conditions (1)–(3) of Crite-
rion 2.3,

(ii) for any finite index subgroup E◦ of an edge group E ⊂ Pi, there is a finite index
subgroup P ′

i ⊂ Pi with P
′
i ∩ E ⊂ E◦,

(iii) the action of each Pi on Ỹi is virtually special, with finitely many orbits of codim–2–
hyperplanes,

(iv) each non-parabolic vertex group is virtually compact special.

Then the action of G is virtually special.

A codim–2–hyperplane in a CAT(0) cube complex is the intersection of a pair of inter-
secting hyperplanes.

We now derive the hypothesis of Theorem 2.4 from the conclusion of Theorem 2.1.

By Theorem 2.1(1), the action of π1M on X̃ is free. Moreover, since the family S is
finite, Condition (1) of Criterion 2.3 is satisfied, and since S is in general position, we
have Condition (2). We now deduce Condition (3). Disjoint hyperplanes in a CAT(0)
cube complex osculate (i.e. have dual edges sharing an endpoint) if and only if they are
not separated by another hyperplane. (The if part follows from the observation that a
hyperplane dual to an edge of a shortest path between the carriers of disjoint hyperplanes

separates them.) Similarly, we say that two disjoint surfaces S̃, S̃′ ∈ S̃ osculate if there

is no surface in S̃ separating S̃′ from S̃. Hence osculating hyperplanes in X̃ correspond

to osculating S̃, S̃′ ∈ S̃. We need to show that there are finitely many Stab(S̃) orbits of

surfaces in S̃ osculating with S̃. Note that if S̃′ osculates with S̃, then it must intersect one

of the finitely many Stab(S̃) orbits of graph manifold and hyperbolic blocks intersected

by S̃, since otherwise it would be separated from S̃ by a transitional plane T̃ . But T̃ ∈ S̃

by Theorem 2.1(2), so S̃ and S̃′ would not osculate. If both S̃ and S̃′ intersect the same

block M̃gi , then by Strong Separation (b) of Theorem 2.1(5) they are at bounded distance,
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and so there are finitely many Stab(S̃) orbits. If S̃ and S̃′ do not intersect the same

graph manifold block but intersect the same block M̃hk , then by Strong Separation (a) of

Theorem 2.1(5) they are at bounded distance hence there are finitely many Stab(S̃) orbits
as well. This proves Condition (3) of Criterion 2.3. Hence Hypothesis (i) of Theorem 2.4
is satisfied.
Hypothesis (ii) of Theorem 2.4 coincides with [PW11, Cor 4.2] which is a particular
case of [Ham01, Thm 1]. To verify Hypothesis (iii) we need the following.

Lemma 2.5. Let Sh be a finite family of geometrically finite immersed incompressible
surfaces in a compact hyperbolic 3–manifold Mh. There exists R such that if the stabilizer

of an elevation S̃ to M̃h of a surface in Sh intersects a stabilizer of a boundary plane

T̃ ⊂ ∂M̃h along an infinite cyclic group, then N = NR(S̃) ∩ T̃ is nonempty.

Moreover, assume that we have two such elevations S̃, S̃′ of possibly distinct surfaces.

If S̃ ∩ T̃ and S̃′ ∩ T̃ are nonempty and at distance ≥ R in the intrinsic metric on T̃ (resp.

N and N ′ = NR(S̃
′) ∩ T̃ are sufficiently far with respect to some specified r), then S̃ and

S̃′ are disjoint (resp. at distance ≥ r) and T(S̃) ∩ T(S̃′) ⊂ {T̃}.

Note that N ⊂ T̃ is at a finite Hausdorff distance from a line, since the intersection of

the stabilizers of S̃ and T̃ is infinite cyclic.

Proof. We can assume that the Riemannian metric on Mh is hyperbolic and the toroidal
boundary components are horospherical. The first assertion follows from the fact that the
surfaces in Sh have finitely many maximal parabolic subgroups. For the second assertion,

note that all elevations S̃ ⊂ M̃h of surfaces in Sh are relatively quasiconvex. It is well

known (see e.g. [MP09, Prop 3.1]), that each S̃⋆ = S̃∪ (T(S̃)− T̃ ) is relatively quasiconvex
as well. Then (see e.g. [Yan12, Lem 3.11]) there is a constant R such that the nearest

point projection Π onto T̃ maps S̃⋆ into NR(S̃
⋆) ∩ T̃ . Since NR(T̃

′) ∩ T̃ is bounded for

each T̃ ′ ∈ T(S̃)− T̃ , after increasing R we can assume Π(S̃⋆) ⊂ N = NR(S̃) ∩ T̃ . Since Π

is 1–Lipschitz, the distance between S̃ and S̃′ is bounded below by the distance between
N and N ′. This proves the second assertion. �

We now verify Hypothesis (iii), by appealing to Criterion 2.3. The action of Pi on

Ỹi is free. By the choice of Ui in the definition of Ỹi, any hyperplane Ã intersecting Ỹi
corresponds to a surface S̃ ∈ S̃ that for some R > 0 has NR(S̃) ∩ M̃gi of infinite diameter.

Consequently Stab(S̃) nontrivially intersects Pi = Stab(M̃gi ). It suffices then to fix R from
Lemma 2.5.
Condition (1) of Criterion 2.3 is immediate. To prove Conditions (2) and (3), it suffices

to justify the claim that any pair of surfaces S̃, S̃′ ∈ S̃ with N = NR(S̃) ∩ M̃gi , N
′ =

NR(S̃
′) ∩ M̃gi sufficiently far is separated by another surface in S̃. If both S̃, S̃′ intersect

M̃gi , then the claim follows from Strong Separation (b) in Theorem 2.1(5). Otherwise,

if one of S̃, S̃′ is disjoint from M̃gi and they are not separated by a JSJ plane, then

they both intersect a hyperbolic block M̃hk adjacent to M̃gi . By Lemma 2.5, for every

r, if N and N ′ are sufficiently far, then S̃ ∩ M̃hk and S̃′ ∩ M̃hk are at distance ≥ r and
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T(S̃ ∩ M̃hk ) ∩ T(S̃′ ∩ M̃hk ) = ∅. Then the claim follows from Strong Separation (a). As

a consequence of Condition (2) the complex Ỹi has finitely many Pi orbits of codim–2–
hyperplanes.

The nontrivial stabilizers in Pi of hyperplanes in Ỹi correspond to either fundamental
groups of the pieces of S in Mgi , which are virtually embedded in M

g
i by Theorem 2.1(3)

or infinite cyclic subgroups of the fundamental groups of the transitional tori, to which
by [PW11, Cor 4.3] (or [Ham01]) we can also associate virtually embedded ∂–parallel
annuli. All these stabilizers are separable by [PW11, Thm 1.1] and double coset separable
by [PW11, Thm 1.2]. Hence we have Conditions (4) and (5) of Criterion 2.3, and by

Criterion 2.3 the action of Pi on Ỹi is virtually special. This is Hypothesis (iii).
Hypothesis (iv) follows from the following, where we do not assume that ∂M is toroidal.
While this strengthening is not spelled out in [Wis11], the proof goes through without a
change.

Theorem 2.6 ([Wis11, Thm 14.29]). Let M be a compact hyperbolic manifold with
nonempty boundary. Then π1M is virtually compact special.

3. Surfaces in graph manifold blocks

The goal of the next three sections is to prove Theorem 2.1 (Cubulation). We first
review the existence results for surfaces in graph manifolds with boundary. Let Mg be a
graph manifold, i.e. a compact connected oriented irreducible 3–manifold with only Seifert
fibered blocks in its JSJ decomposition. Assume ∂Mg 6= ∅. If Mg is Seifert fibered, then
an immersed incompressible surface S → Mg is horizontal if it is transverse to the fibers
and vertical if it is a union of fibers. An immersed incompressible surface S → Mg that
is not a ∂–parallel annulus is assumed to be homotoped so that its pieces are horizontal
or vertical.

Proposition 3.1 ([PW11, Prop 3.1]). Let Mg be a graph manifold with ∂Mg 6= ∅. There

exists a finite cover M̂g with a finite family Sg of embedded incompressible surfaces that
are not ∂–parallel annuli such that:

• for each block B̂ ⊂ M̂g and each torus T ⊂ ∂B̂, there is a surface S ∈ Sg such

that S ∩ T is nonempty and vertical with respect to B̂,

• for each block B̂ ⊂ M̂g there is a surface S ∈ Sg such that S ∩ B̂ is horizontal.

Every block B̂ ⊂ M̂g is a product of a circle and a surface.

Let F be a family of properly embedded essential arcs and curves in a compact hyper-
bolic surface Σ with geodesic boundary. We say that F strongly fills (resp. fills) Σ if the
complementary components on Σ of the geodesic representatives of the arcs and curves in
F are discs (resp. discs or annuli parallel to the components of ∂Σ). This does not depend
on the choice of the hyperbolic metric on Σ.

Construction 3.2. Let Mg be a non-thin graph manifold with ∂Mg 6= ∅. Consider M̂g

and Sg satisfying Proposition 3.1. Add the following surfaces to Sg:

• all JSJ tori of M̂g,

• vertical tori in each block B̂ ⊂ M̂g, whose base curves fill Σ.
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Then the base arcs and curves of the vertical pieces of Sg in B̂ strongly fill Σ. We retain
the notation Sg for the projection of this extended family to Mg.

Remark 3.3. Let Sg be the family from Construction 3.2. Let B be a block of Mg. For
each g ∈ π1B, some piece of S

g in B is a cut-surface for g.

To prove Strong Separation in Theorem 2.1 (Cubulation) we will need the following
WallNbd-WallNbd Separation property in blocks.

Definition 3.4 ([HW13, §8.3]). Let S be a family of immersed incompressible surfaces in

a compact Riemannian 3–manifold M . Let S̃ be the family of elevations of the surfaces in

S to the universal cover M̃ ofM . The family S hasWallNbd-WallNbd Separation if for any

r there is d = d(r) such that if S̃, S̃′ ∈ S̃ have neighborhoods Nr(S̃), Nr(S̃
′) at distance

≥ d, then Nr(S̃), Nr(S̃
′) are separated by a surface in S̃. This property is independent of

the choice of Riemannian metric, but the value of d might vary. Similarly S has Ball-Ball
Separation if for any r there is d such that each pair of metric r–balls at distance ≥ d is

separated by a surface in S̃.
We analogously define WallNbd-WallNbd Separation and Ball-Ball Separation for a
family of essential arcs and curves in a compact hyperbolic surface.

The following is easy to prove directly, but for uniformity of our arguments, we will
deduce it in Section 4 from Criterion 4.3.

Lemma 3.5. A strongly filling family of arcs and curves in a hyperbolic surface satisfies
WallNbd-WallNbd Separation. Consequently, if their base arcs and curves strongly fill,
then the vertical pieces of Sg in B satisfy WallNbd-WallNbd Separation.

Let Σ be the base orbifold of a non-thin block B ⊂ Mg. The fundamental groups of
the components of ∂Σ intersect trivially. Thus by the compactness of the base arcs of the
annular vertical pieces of Sg in B we have the following analogue of Lemma 2.5.

Remark 3.6. Let Sg be a finite family of immersed incompressible surfaces in a non-thin
graph manifold Mg. There exists R with the following property. Let B ⊂ Mg be a block

with elevation B̃ ⊂ M̃g and let S̃, S̃′ be elevations to M̃g of surfaces in Sg. Suppose that

S̃o = S̃ ∩ B̃ and S̃′
o = S̃′ ∩ B̃ are both vertical, and suppose that there is a plane T̃ ⊂ ∂B̃

intersecting both S̃o and S̃′
o. If the distance between the lines S̃o ∩ T̃ and S̃′

o ∩ T̃ is ≥ R

in the intrinsic metric on T̃ , then S̃o and S̃
′
o are disjoint and T(S̃o) ∩ T(S̃′

o) = {T̃}.

In [PW11] we also established the following.

Corollary 3.7 ([PW11, Cor 3.3]). Let Mg be a graph manifold with ∂Mg 6= ∅. There

exists a finite cover M̂g of Mg such that for each essential circle C in a torus T ⊂ ∂M̂g

there is an incompressible surface SC embedded in M̂
g with SC∩T consisting of a nonempty

set of circles parallel to C.

Finally, the following holds by [RW98, Thm 2.3].

Lemma 3.8. Let S be an incompressible surface embedded in a graph manifold Mg. Let
S′ → S be a finite cover. Then S′ → Mg is virtually embedded.
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4. Surfaces in hyperbolic blocks

We now review the existence results for surfaces in hyperbolic blocks. First we establish
a hyperbolic analogue of Proposition 3.1.

Theorem 4.1 (compare [Wis11, Cor 14.33]). Let Mh be a compact hyperbolic 3–manifold
with nonempty boundary. There is in Mh a finite family Sh of geometrically finite im-
mersed incompressible surfaces containing cut-surfaces for all elements of π1M

h. More-
over, the surfaces have no accidental parabolics, i.e. any parabolic element in π1S with
S ∈ Sh lies in π1C for some component C of ∂S.

Proof. We follow the proof of [Wis11, Lem 14.32]. By Theorem 2.6, without loss of
generality we can assume π1M

h = π1X for a compact special cube complexX. Since π1M
h

acts freely on the universal cover X̃ of X, for every g ∈ π1M
h there is a CAT(0) geodesic

axis R ⊂ X̃. Let B̃ ⊂ X̃ be any hyperplane intersected transversely by γ. The subgroup

Stab(B̃) ⊂ π1M
h is geometrically finite, since otherwise by Tameness [Ago04,CG06] and

Covering [Thu80,Can96] Theorems it would be virtually a fiber subgroup and would not
admit a virtual retraction guaranteed by Theorem 6.3.

Let M̃h ⊂ H3 be the universal cover of Mh. The boundary of the hyperbolic convex

core N of the Stab(B̃) cover of Mh consists of finitely many geometrically finite surfaces.

Suppose first that g is hyperbolic. Since M̃h and X̃ are quasi-isometric, the geodesic axis

R for g in M̃h intersects an elevation Ñ of N . Thus there is an elevation S̃ ⊂ ∂Ñ of
a surface S ⊂ ∂N intersecting R as well. Hence S is a cut-surface for g. If S contains
essential circles Cj not homotopic into ∂S with π1Cj parabolic, then let Aj be annuli
joining Cj to the boundary. Since all Aj lie on the same side of S as N , the circles Cj

are disjoint up to homotopy. Then a boundary surface of the convex core for one of the
components of S −

⋃
j Cj is a cut-surface for g and has no accidental parabolics. In the

case where g is parabolic, it suffices to use an axis R for g on a horosphere. �

4.1. WallNbd-WallNbd Separation. We now describe a tool from [HW13] for verifying
WallNbd-WallNbd Separation in relatively hyperbolic spaces.

Definition 4.2. Let S be a finite family of immersed incompressible surfaces in a compact

Riemannian 3–manifold M . Let S̃ be the family of elevations of the surfaces in S to the

universal cover M̃ of M . Let T ⊂ M be a connected subspace, and let T̃ be its elevation

to M̃ .
We say that S satisfies WallNbd-WallNbd Separation in T if for any r there is d such

that if S̃, S̃′ ∈ S̃ have nonempty N = Nr(S̃) ∩ T̃ , N ′ = Nr(S̃
′) ∩ T̃ at distance ≥ d, then

N and N ′ are separated in T̃ by a restriction to T̃ of a surface in S̃.
We say that S satisfies Ball-WallNbd Separation in T if for any r there is d such that

if S̃ ∈ S̃ has nonempty N = Nr(S̃) ∩ T̃ and m is a point of T̃ with N ′ = Nr(m) ∩ T̃ at

distance ≥ d from N , then N and N ′ are separated in T̃ by a restriction to T̃ of a surface

in S̃.

Criterion 4.3 ([HW13, Cor 8.10]). Let S be a finite family of:
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(a) essential arcs and curves in a compact hyperbolic surface M satisfying Ball-Ball Sep-
aration, or

(b) immersed incompressible surfaces in a compact Riemannian 3–manifold M . Let Ti ⊂
M be connected subspaces. Suppose that π1M is hyperbolic relative to Ei ⊂ π1M that
are the images of π1Ti. Assume that π1S is relatively quasiconvex for each S ∈ S.
Suppose that S satisfies Ball-Ball Separation in M and WallNbd-WallNbd Separation
and Ball-WallNbd Separation in all Ti.

Then S satisfies WallNbd-WallNbd Separation in M .

The hypothesis of Ball-Ball Separation can be verified using the following.

Lemma 4.4 ([HW13, Lem 5.3]). Let S be a finite family of:

(a) essential arcs and curves in a compact hyperbolic surface M , or
(b) immersed incompressible surfaces in a compact Riemannian 3–manifold M .

If the action of π1M on the associated dual CAT(0) cube complex is free, then S satisfies
Ball-Ball Separation.

Consequently, Criterion 4.3(a) and Lemma 4.4(a) yield Lemma 3.5.

Corollary 4.5. Let Sh be a finite family of geometrically finite surfaces in a hyperbolic
3–manifold Mh. Suppose that:

(i) for each g ∈ π1M
h there is a cut-surface for g in Sh, and

(ii) for each parabolic element g ∈ π1S with S ∈ Sh there is a surface S′ ∈ Sh with a
curve C ⊂ ∂S′ such that gn is conjugate to an element of π1C for some n 6= 0.

Then S satisfies WallNbd-WallNbd Separation in Mh.

Let ∂tM
h ⊂ ∂Mh denote the union of toroidal boundary components.

Proof. We verify the hypotheses of Criterion 4.3(b). Ball-Ball Separation in Mh follows
from Hypothesis (i) and Lemma 4.4(b). We now verify WallNbd-WallNbd Separation and

Ball-WallNbd Separation in a torus Ti, where
⊔

i Ti = ∂tM
h. Consider an elevation T̃

of Ti to the universal cover M̃
h of Mh. For any r there is d such that the intersections

Nr(S̃) ∩ T̃ or Nr(m) ∩ T̃ from the definition of WallNbd-WallNbd Separation and Ball-

WallNbd Separation are either of diameter ≤ d or at Hausdorff distance ≤ d from a line C̃

in T̃ stabilized by g ∈ π1S ∩π1Ti. For S
′ ∈ Sh, the intersections S̃′∩ T̃ are infinite families

of parallel lines. By Hypothesis (ii), their directions include the direction of each C̃ above.
This yields WallNbd-WallNbd Separation and Ball-WallNbd Separation in Ti. �

4.2. Capping off surfaces. We will need one more crucial piece of information concern-
ing the existence of surfaces in hyperbolic blocks with designated boundary circles.

Proposition 4.6. Let Mh be a compact hyperbolic 3–manifold and let C0, . . . , Cn be es-
sential circles in the tori T0⊔· · ·⊔Tn = ∂tM

h. There exists a geometrically finite immersed
incompressible surface S → Mh with S ∩∂tM

h covering C0 and such that all the parabolic
elements of π1S are conjugate to π1Ci.

In the proof we will need the following relative version of the Special Quotient Theorem.
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Theorem 4.7 ([Wis11, Lem 16.13 and Rem 6.14]). Let G be a compact special group that
is hyperbolic relative to free-abelian subgroups {Ei}. Then there are finite index subgroups
E◦

i ⊂ Ei such that for any further subgroups E
c
i ⊂ E◦

i with Ei/E
c
i finite or virtually cyclic,

the quotient G/〈〈{Ec
i }〉〉 is hyperbolic and virtually compact special. Moreover, each Ei/E

c
i

embeds into G/〈〈{Ec
i }〉〉.

We will also use the following combination theorem.

Theorem 4.8 ([MP09, Thm 1.1]). Let S ⊂ Mh be an incompressible geometrically finite
surface in a hyperbolic manifold Mh. Let Cj be components of ∂S contained in boundary

tori Tij ofM
h (some Tij may coincide). Then for almost all cyclic covers T

′
j of Tij to which

Cj lift, the fundamental group π1S
⋆ of the graph of spaces S⋆ obtained by amalgamating S

with T ′
j along Cj embeds in π1M

h and is relatively quasiconvex. Moreover, every parabolic

subgroup of π1S
⋆ is conjugate in π1S

⋆ to a subgroup of π1S or π1T
′
j.

Proof of Proposition 4.6. By Theorem 2.6 without loss of generality we can assume that
G = π1M

h is compact special. By Theorem 4.7, there are gi ∈ π1Ci such that G =
G/〈〈{gi}〉〉 is hyperbolic and virtually compact special. For a subgroup F ⊂ G we denote
by F its image in G. By Theorem 4.7 we obtain additionally that for each E = π1T with
T ⊂ ∂tM

h the quotient E ⊂ G is infinite. We will prove that there is a finite index normal
subgroup G′ ⊂ G satisfying the following.

(i) For each E = π1T the image of E ∩G′ → H1(G′) has rank 1.
(ii) The cover M ′ of Mh corresponding to G′ has

rk H2(M
′)/im

(
H2(∂M

′) → H2(M
′)
)
≥ 2.

Properties (i) and (ii) are preserved when passing to further finite covers, so it suffices
to achieve them separately. To obtain Property (i), let E = π1T . By canonical completion

and retraction (see Theorem 6.3), there is a finite index subgroup G
′
⊂ G that retracts

onto an infinite cyclic subgroup Z ⊂ E ∩ G
′
. Thus Z embeds in H1(G

′
). The preimage

G′ ⊂ G of G
′
⊂ G satisfies Property (i) for the specified E. Property (ii) follows directly

from [CLR97, Cor 1.4].

By Property (i), there is a map f∗ : G
′ → Z factoring through H1(G

′
) and with f∗

nontrivial on each g−1Eg ∩ G′ with g ∈ G. Let f : M ′ → S1 be a map inducing f∗. By
Sard’s theorem, there is a point s ∈ S1 so that S′ = f−1(s) ⊂ M ′ is a properly embedded
surface, possibly disconnected. Then S′∩∂tM

′ is a union of families of identically oriented
circles covering Ci. We compress S

′ to an incompressible surface with the same boundary.
We now claim that in the case where S′ is a fiber, without changing ∂S′ we can change

S′ so that it is geometrically finite. In H2(M
′, ∂M ′;R) we consider the Thurston norm

ball Bx, see [Thu86]. Let L ⊂ H2(M
′, ∂M ′;R) be the subspace of homology classes whose

restriction to H1(∂M
′;R) is proportional to [∂S′]. By Property (ii) the rank of the image

of H2(M
′) in H2(M

′, ∂M ′) is ≥ 2. Hence the dimension of L is ≥ 2. We can take S′

represented by a point on a ray not passing through a maximal face of Bx ∩ L. By
[Thu86, Thm 3], the surface S′ is not a fiber of M ′. By Covering [Thu80] and Tameness
[Bon86], the surface S′ is geometrically finite, proving the claim.
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Let S′
o be a component of S

′ intersecting T0. Note that each parabolic element of π1S
′
o

is conjugate into π1C
′ for some component C ′ ⊂ ∂S′ since S′ intersects all the boundary

tori of M ′. Consequently all parabolic elements of π1S
′
o are conjugate into π1Ci.

Since S′
o is geometrically finite, Theorem 4.8 applies to S

′
o. Let {C

′
j} be the components

of ∂S′
o outside T0, and for each j let Tij denote the torus containing C

′
j . Let S

⋆ be the

graph of spaces obtained by amalgamating S′
o along C

′
j with T

′
j provided by Theorem 4.8.

Then S⋆ → M ′ extends to an immersion N → M ′, where N is the regular neighborhood
of S⋆ in the π1S

⋆ cover of M ′. Let S be the non-toroidal component of ∂N , that is the
component that can be decomposed into two surfaces parallel to S′

o that are combined
along curves parallel to C ′

j . The immersed surface S → M ′ is incompressible, since π1S
embeds in π1S

⋆. Moreover S is not a virtual fiber since π1S
∗ is relatively quasiconvex and

of infinite index in π1M
h. By Theorem 4.8 every parabolic element of π1S is conjugate in

π1S
⋆ to a parabolic element of π1S

′
o or into one of the π1T

′
j . But each parabolic element of

π1S
′
o is conjugate into some π1Ci. Moreover, the intersection of π1S with a π1S

⋆ conjugate
of π1T

′
j lies in a conjugate of π1C

′
j . Thus the immersion S → M ′ → Mh has the desired

property for parabolic elements. �

5. Cubulation

In this section we combine the surfaces described in the graph manifold blocks and
hyperbolic blocks. To prove Theorem 2.1 (Cubulation) we need the following:

Lemma 5.1. Let S be a connected compact surface with χ(S) < 0. There exists K = K(S)
such that for each assignment of a positive integer nC to each boundary circle C ⊂ ∂S,

there is a connected finite cover Ŝ → S whose degree on each component of the preimage
of C equals KnC .

We can allow S to be disconnected. We can also allow annular components, but obvi-
ously require that the integers nC coincide for both boundary circles of such a component.

Proof. Let K = K(S) be the degree of a cover of S with nonzero genus. The lemma
follows from [PW11, Lem 4.7]. �

Proof of Theorem 2.1. The proof has two steps. In the first step we construct a family S
of surfaces satisfying Theorem 2.1(1)–(4). In the second step we prove that S satisfies the
Strong Separation property in Theorem 2.1(5).

Construction. Let Shk be the family of surfaces in Mhk given by Theorem 4.1. Let C
be the family of circles embedded in the transitional tori of M that are covered by the
boundary circles of the surfaces in {Shk} up to homotopy on the tori. Note that every
transitional torus contains circles of C. Let Ci ⊂ C be the circles lying in ∂Mgi .
By Corollary 3.7 each circle C ∈ Ci is covered by a boundary circle of an immersed
incompressible surface SgC → Mgi virtually embedded in Mgi . Let S

g
i be the family of

surfaces in Mgi provided by Construction 3.2 and let S
′g
i = S

g
i ∪ {SgC}C∈Ci

.
Let C′ denote the family of circles embedded in the transitional tori of M covered (up
to homotopy) by the boundary circles of the surfaces in {S′gi }. Let C

′
k ⊂ C′ be the circles

lying in ∂Mhk . By Proposition 4.6, for each circle C
′ ∈ C′

k there is a geometrically finite
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immersed incompressible surface ShC′ → Mhk such that S
h
C′ ∩∂tM

h
k is nonempty and covers

C ′. Moreover, we require that all the parabolic elements of π1S
h
C′ are conjugate to π1C

with C ∈ C′. Let S′hk = Shk ∪ {ShC′}C′∈C′
k
.

We will apply Lemma 5.1 to produce families of surfaces {Ŝ′hk }, {Ŝ
′g
i } covering {S

′h
k }, {S

′g
i }

such that So = {Ŝ′hk }∪{Ŝ′gi } has the following property: There is a uniform d such that for
each circle in C′, each component of its preimage in a surface in So covers it with degree
d. In order to arrange this, for a boundary circle C of a surface in {S′hk } ∪ {S′gi } let dC
denote the degree with which C maps onto a circle in C′. Let nC = 1

dC

∏
C dC . Applying

Lemma 5.1 with this choice of {nC} provides the uniform d = K
∏

C dC . Note that for an
annular surface the degrees dC coincide and hence the numbers nC coincide. We can then
take a cyclic cover.
We will now extend each surface So ∈ So to a surface immersed properly in M by

combining appropriately many copies of other surfaces in So. First assume So ∈ Ŝ
′g
i . Let

C′
o ⊂ C′ denote the set of circles covered by the boundary components of So and let mC′

denote the number of components of So mapping to the circle C
′ ∈ C′

o. Denote by ŜhC′

the surface in So covering ShC′ and by lC′ the number of boundary components of ŜhC′

covering C ′. Let L =
∏

C′∈C′
o
lC′ . Take 2L copies of So and 2mC′

L
lC′
copies of ŜhC′ , for each

C ′, with two opposite orientations. These surfaces combine to form a desired immersed

incompressible surface extending So. Note that for each C ′ ∈ C′ the surface ŜhC′ appears

within such extension of some surface So ∈ Ŝ
′g
i .

Hence it remains to consider the case So ∈ Ŝhk ⊂ Ŝ′hk , where Ŝ
h
k is the family of surfaces

covering the surfaces in Shk. This case is treated similarly to the previous one. Let Co ⊂ C

be the set of circles covered by the boundary components of So. Consider all the surfaces

ŜgC covering S
g
C for C ∈ Co. Let C

′
o ⊂ C′ denote the set of circles covered by the boundary

components of these surfaces ŜgC . Consider all the surfaces Ŝ
h
C′ , where C ′ ∈ C′

o. Gluing

the appropriate number of copies of So, Ŝ
g
C , and Ŝ

h
C′ gives the desired extension.

We denote the union of both of these families of extended surfaces together with the
family of the JSJ tori by S. So S obviously satisfies Theorem 2.1(2). Observe that Theo-
rem 2.1(1) follows from Theorem 2.1(2) and the existence of cut-surfaces in Theorem 4.1

and Construction 3.2. The surfaces in Ŝ
′g
i are virtually embedded in Mgi by Lemma 3.8,

hence S satisfies Theorem 2.1(3). The surfaces in Ŝ′hk are geometrically finite and thus S
satisfies Theorem 2.1(4).
We also record that by the way we have applied Proposition 4.6 to construct ShC′ , the

pieces of S in every hyperbolic block Mhk satisfy Hypothesis (ii) of Corollary 4.5.

Strong Separation. We now verify Theorem 2.1(5). We adopt the convention that in
thin graph manifold blocks T × I we choose the vertical direction so that all the pieces in
T × I of the surfaces in S are horizontal. Let R be a constant satisfying Lemma 2.5 and
Remark 3.6 in all hyperbolic and non-thin Seifert fibered blocks of M , with respect to the
pieces of S.
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We first prove Strong Separation (b). Suppose that S̃, S̃′ ∈ S̃ intersect a graph manifold

block M̃gi ⊂ M̃ . We need to show that if S̃ ∩ M̃gi and S̃′ ∩ M̃gi are sufficiently far, then

they are separated by another surface in S̃.

First consider the case where S̃′ intersects a JSJ or boundary plane T̃ of M̃gi intersected

by S̃. Since by Theorem 2.1(1) the components of S ∩Mgi are virtually embedded, there

is h ∈ Stab(T̃ ) such that the surfaces S̃ ∩ M̃gi and hS̃ ∩ M̃gi are disjoint. Moreover, by

passing to a power of h we can assume that they are at distance ≥ R. Let M̃hor ⊂ M̃gi
be the maximal graph manifold containing T̃ such that S̃ is horizontal in all the blocks of

M̃hor. In the extreme cases M̃hor can equal M̃
g
i or T̃ . Let Ñ be the union of M̃hor with

the adjacent hyperbolic and Seifert fibered blocks. By Lemma 2.5 and Remark 3.6 the

surfaces S̃ ∩ Ñ and hS̃ ∩ Ñ are disjoint and the boundary lines of S̃ ∩ Ñ and hS̃ ∩ Ñ do

not intersect a common JSJ plane outside M̃hor. Hence the entire S̃ and hS̃ are disjoint.

For each S̃ and T̃ we fix h as above. The surface hS̃∩M̃hor is in a bounded neighborhood

of S̃ ∩ M̃hor. Hence if S̃
′∩ M̃gi is sufficiently far from S̃ ∩ M̃gi , then S̃

′∩ M̃hor is at distance

≥ R from each of h±1S̃ ∩ M̃hor. As before S̃
′ is disjoint from both h±1S̃, and one of h±1S̃

separates S̃′ from S̃, as desired. Since there are finitely many Stab(S̃∩M̃gi ) orbits of JSJ or

boundary planes T̃ of M̃gi intersected by S̃, this argument works for all T̃ simultaneously.
To complete the proof of Strong Separation (b) it remains to consider a second case

where S̃′ intersects a Seifert fibered block M̃o ⊂ M̃gi intersected by S̃, but is disjoint from

the JSJ and boundary planes of M̃gi intersected by S̃. In that case the pieces of S̃ and

S̃′ in M̃o are vertical. Since the proof for Strong Separation (a) is the same, we perform

it simultaneously: in that case M̃o denotes the hyperbolic block M̃
h
k . In both cases if we

denote as usual by T(S̃ ∩ M̃o) the set of JSJ and boundary planes in ∂M̃o intersecting S̃,

then T(S̃ ∩ M̃o) and T(S̃
′ ∩ M̃o) are disjoint.

As before, for any JSJ or boundary plane T̃ ∈ T(S̃ ∩ M̃o) we fix h ∈ Stab(T̃ ) such that

S̃ and hS̃ are disjoint. We do the same with S̃ replaced by S̃′. There is R′ such that for

each T̃ , the translate hS̃ ∩ T̃ is contained in the R′–neighborhood of S̃ ∩ T̃ in the intrinsic

metric on T̃ , and the same property holds with S̃ replaced by S̃′. Let d = d(r) be a
WallNbd-WallNbd Separation constant guaranteed by Lemma 3.5 and Corollary 4.5 for
r = R+R′ in all hyperbolic and non-thin Seifert fibered blocks with respect to the pieces
of S.
If the piece S̃′ ∩ M̃o is at distance ≥ 2r + d from the piece S̃ ∩ M̃o, then by WallNbd-

WallNbd Separation there is a surface S̃∗ ∈ S̃ such that S̃∗ ∩ M̃o separates Nr(S̃
′ ∩ M̃o)

from Nr(S̃ ∩ M̃o) in M̃o. If T(S̃
∗ ∩ M̃o) is disjoint from T(S̃′ ∩ M̃o) ∪ T(S̃ ∩ M̃o), then S̃

∗

is disjoint from S̃′ and S̃ and separates them, as desired.

Otherwise, if T(S̃∗ ∩ M̃o) intersects T(S̃
′ ∩ M̃o) ∪ T(S̃ ∩ M̃o), we can assume without

loss of generality that there is a JSJ or boundary plane T̃ ∈ T(S̃∗ ∩ M̃o)∩ T(S̃′ ∩ M̃o). By

the definition of R′ and r = R + R′, there is a translate hS̃′ disjoint from S̃′ such that

hS̃′ ∩ T̃ separates S̃′ ∩ T̃ from NR(S̃
∗ ∩ T̃ ) in the intrinsic metric on T̃ . Moreover, by

Remark 3.6 or Lemma 2.5 the surface hS̃′ ∩ M̃o is disjoint from S̃∗ ∩ M̃o and T(hS̃
′ ∩ M̃o)
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intersects T(S̃∗ ∩ M̃o) only in T̃ . Hence hS̃
′ and S̃ are disjoint and hS̃′ separates S̃′ from

S̃, as desired. �

6. Separability in special cube complexes

The goal of the next three sections is to prove Theorem 2.4 (Specialization). We begin
with reviewing the definition of a special cube complex.

6.1. Special cube complexes.

Definition 6.1 (compare [HW08, Def 3.2]). Let X be a nonpositively curved cube com-
plex, possibly not compact. A midcube (resp. codim–2–midcube) of an n–cube [0, 1]n = In

is the subspace obtained by restricting exactly one (resp. two) coordinate to 1
2 . Let M

denote the disjoint union of all midcubes (resp. codim–2–midcubes) of X. An immersed
hyperplane (resp. immersed codim–2–hyperplane) of X is a connected component of the
quotient of M by the inclusion maps.
An immersed hyperplane (resp. immersed codim–2–hyperplane) A of X self-intersects
if it contains two different midcubes (resp. codim–2–midcubes) of the same cube of X. If
A does not self-intersect, then it embeds into X, and is called a hyperplane (resp. codim–
2–hyperplane). If the hyperplanes of X do not self-intersect, which happens for example
when X is CAT(0), then codim–2–hyperplanes are components of intersections of pairs of
intersecting hyperplanes. For an immersed hyperplane A, the map A → X is π1–injective
since it is a local isometry. We shall regard π1A as a subgroup of π1X.
An edge e is dual to an immersed hyperplane A if A contains the midcube of e. A
hyperplane A is two-sided if one can orient all of its dual edges so that any two that are
parallel in a square s of X are oriented consistently within s.
If a hyperplane A is two-sided and we orient its dual edges as above, we say that A
directly self-osculates, if it has two dual edges with the same initial vertex or with the same
terminal vertex. If A is two-sided and the initial vertex of one of its dual edges coincides
with the terminal vertex of another or the same dual edge, then A indirectly self-osculates.
Distinct hyperplanes A,B interosculate, if there are dual edges e1, e2 of A and f1, f2 of

B such that e1, f1 lie in a square and e2, f2 share a vertex but do not lie in a square.
A nonpositively curved cube complex is special, if its immersed hyperplanes do not
self-intersect, are two-sided, do not directly self-osculate or inter-osculate.
A group is special if it is the fundamental group of a special cube complex.

Note that we do not require special cube complexes to be compact. However, in this
article we will always assume that they have finitely many hyperplanes.

Theorem 6.2 ([HW08, Thm 4.2]). A special cube complex X with finitely many hyper-
planes admits a local isometry X → R(X) into the Salvetti complex R(X) of a finitely
generated right-angled Artin group.

The generators of the Artin group correspond to the hyperplanes of X. Each edge of X
dual to a hyperplane A ⊂ X is mapped by the local isometry to an edge of R(X) labeled
by the generator corresponding to A. Note that R(X) is compact special.
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Our goal is to revisit and strengthen hyperplane separability and double hyperplane
separability established in [HW08] for compact special cube complexes. The starting
point and the main tool is the following.

Theorem 6.3 ([HW08, Cor 6.7]). Let Y → X be a local isometry from a compact cube

complex Y to a special cube complex X. There is a finite cover X̂ → X, called the

canonical completion of Y → X, to which Y lifts and a canonical retraction map X̂ →
Y ⊂ X̂, restricting to the identity on Y , which is continuous and maps hyperplanes of X̂
intersecting Y into themselves.

If one first subdivides X (or takes an appropriate cover) to eliminate indirect self-
osculations, then the canonical retraction can be made cellular.

All paths that we discuss in X are assumed to be combinatorial. Let ||X|| denote the
minimum of the lengths of essential closed paths in X or ∞ if X is contractible.

Lemma 6.4. Let X be a special cube complex with finitely many hyperplanes. Then for

each d there is a finite cover X̂ of X with ||X̂|| > d.

Note that the above property is preserved when passing to further covers.

Proof. Let X → R = R(X) be the local isometry into the Salvetti complex of the finitely
generated right-angled Artin group F coming from Theorem 6.2. Since R is compact,
there is a finite set F of conjugacy classes of elements of F that can be represented by
closed paths of length ≤ d in R. Since F is residually finite, it has a finite index subgroup

F̂ disjoint from the set of elements whose classes lie in F. Let R̂ → R be the finite cover

corresponding to F̂ ⊂ F . Then ||R̂|| > d. Let X̂ → X be the pullback of R̂ → R. Since

X̂ → R̂ is a local isometry, it is π1–injective and we have ||X̂|| > d as desired. �

6.2. Separability. A subgroup H of a group G is separable if for each g ∈ G−H, there
is a finite index subgroup F of G with g /∈ FH.

Definition 6.5. Let X be a nonpositively curved cube complex and X̃ its universal cover.

Let A be an immersed hyperplane in X with an elevation Ã in X̃. The carrier N(Ã) is

the smallest subcomplex of X̃ containing Ã. It is isomorphic with Ã × I. The carrier

N(A) is the quotient of N(Ã) by Stab(Ã). There is an induced map N(A) → X. If
A does not self-intersect and does not self-osculate (directly or indirectly), then N(A)
embeds in X and we identify it with its image. We similarly define carriers of immersed
codim–2–hyperplanes.
A path α → X starting (resp. ending) at a vertex v of N(A) is a path that starts (resp.
ends) at the image of v in X. The path α is in N(A) if it lifts to a path in N(A). The
path α is path-homotopic into N(A) if it is path-homotopic to a path in N(A).

Definition 6.6. An immersed hyperplane A in a cube complex X has injectivity radius
> d if all paths of length ≤ 2d in X starting and ending at N(A) are path-homotopic into
N(A). In particular if d = 0, then A does not self-intersect or self-osculate. Equivalently,

all elevations of N(A) to the universal cover X̃ of X are at distance > 2d.
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Lemma 6.7. Let X be a special cube complex with finitely many hyperplanes. Let A ⊂ X

be a hyperplane. Then for each d there is a finite cover X̂ → X such that any elevation

Â ⊂ X̂ of A has injectivity radius > d.

In the compact case, Lemma 6.7 and the following consequence was proved in [HW08,
Cor 9.7] using Theorem 6.3. Note that the conclusion of Lemma 6.7 is preserved when
passing to further covers.

Corollary 6.8. Let G be the fundamental group of a virtually special cube complex with
finitely many hyperplanes and let H ⊂ G be the fundamental group of an immersed hyper-
plane. Then H is separable in G.

Proof of Lemma 6.7. As before, let X → R = R(X) be the local isometry into the Salvetti
complex of the finitely generated right-angled Artin group F coming from Theorem 6.2.
Let T be the hyperplane in R that is the image of the hyperplane A. Since R is compact,
it admits finitely many paths starting and ending at N(T ) of length ≤ 2d, not path-
homotopic into N(T ). Let F denote the family of conjugacy classes determined by closing
them up by paths in N(T ). Then F is a union of classes determined by finitely many
nontrivial cosets of the form Hg, where H = π1T . Since hyperplane subgroups in F are

separable [HW08, Cor 9.4], there is a finite index subgroup F̂ ⊂ F disjoint from the set of

elements whose classes lie in F. Let R̂ → R be the finite cover corresponding to F̂ ⊂ F .

Then elevations of T to R̂ have injectivity radius > d. Let X̂ → X be the pullback of

R̂ → R.
We verify that X̂ is the desired cover. The universal cover X̃ of X embeds into the

universal cover R̃ of R as a convex subcomplex. Let Ã be an elevation of A to X̃ and let

T̃ be the elevation of T to R̃ containing Ã. The π1X̂ orbit of Ã is contained in the π1R̂

orbit of a T̃ . Since π1R̂ translates of N(T̃ ) in R̃ are at distance > 2d, so are the π1X̂

translates of N(Ã) in X̃. �

6.3. Double coset separability. Let H1, H2 ⊂ G be subgroups of a group G. The
double coset H1H2 is separable, if for each g ∈ G−H1H2 there is a finite index subgroup
F of G with g /∈ FH1H2.

Definition 6.9. Let A be a hyperplane in a nonpositively curved cube complex X. Let

Ã be an elevation of A to the universal cover X̃ of X. Let Ã+d ⊂ X̃ be the combinatorial
ball of radius d around the carrier of Ã. We say that A is d–locally finite, if Ã+d has
finitely many Stab(A) orbits of hyperplanes.

In particular, A is 0–locally finite if there are finitely many Stab(A) orbits of hyper-

planes intersecting Ã. If additionally there are finitely many Stab(A) orbits of hyperplanes

osculating with Ã, then A is 1–locally finite.

Lemma 6.10. Let G be the fundamental group of a special cube complex with finitely many
hyperplanes. Let H1, H2 ⊂ G be conjugates of the fundamental groups of hyperplanes one
of which is d–locally finite for all d. Then the double coset H1H2 is separable in G.

While Lemma 6.10 could be avoided in the proof of Theorem 1.1, we include it to shed
more light on double hyperplane separability.
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Proof of Lemma 6.10. Let X̃ be the universal cover of the special cube complex X with

π1X = G and finitely many hyperplanes. Let Ã, B̃ ⊂ X̃ be the hyperplanes stabilized

by H1, H2. Let A,B ⊂ X be the projections of Ã, B̃. Without loss of generality we may

assume that A is d–locally finite for all d. Let ṽ be a base vertex of N(Ã). Choose a path

ρ̃ → X̃ starting at ṽ and ending with an edge ẽ dual to B̃. Let v, e be the projections of
ṽ, ẽ to N(A), N(B). Then ρ̃ projects to a path ρ that starts at v and ends with e. The
elements of H1H2 are represented by closed paths of the form αρβρ−1, where α, β are
closed paths in N(A), N(B) based at v and the endpoint of ρ. Let γ → X be a closed
path based at v representing an element outside H1H2. We want to find a finite cover

X̂ of X, where the based lifts of γ and each path αρβρ−1 above have distinct endpoints.
Equivalently, we want the based lift of γρ and each lift of ρ starting at the preimage of v
in the based elevation of N(A) to end with edges dual to distinct elevations of B. Here a

based lift or elevation is a lift or elevation where v lifts to a specified basepoint of X̂.
Suppose that ρ and γρ have length ≤ d. By Lemma 6.7 we can assume that A has

injectivity radius > d. Then the quotient A+d = H1\Ã
+d embeds into X. Since A is

d–locally finite, there are finitely many hyperplanes in A+d. Applying Theorem 6.2 to
A+d, let A+d → R(A+d) be the local isometry into the Salvetti complex R(A+d) of the
right-angled Artin group with generators corresponding to hyperplanes in A+d. Apply
Theorem 6.3 to the induced local isometry R(A+d) → R(X). Consider its canonical

completion R̂(X) → R(X) and the retraction R̂(X) → R(A+d). Take the pullback of the

cover R̂(X) → R(X) to X̂ → X. We now verify that X̂ is the required cover.

Let Â ⊂ X̂ be an elevation of A mapping to R(A+d) ⊂ R̂(X). Let B̂, B̂′ ⊂ X̂ be

hyperplanes dual to the last edges ê, ê′ ⊂ Â+d of lifts of ρ, γρ starting at some lifts of

v in N(Â). Since γ represents an element outside H1H2, the hyperplanes in X̃ dual to
the last edges of any lifts of ρ, γρ starting at the H1 orbit of ṽ are distinct. Hence the
hyperplanes in A+d dual to the projections of ê, ê′ are distinct. Hence the projections of

these hyperplanes to R(A+d) are also distinct. The retraction R̂(X) → R(A+d) shows that

hyperplanes T̂B, T̂
′
B ⊂ R̂(X) containing these projections are also distinct. Since B̂, B̂′

map to T̂B, T̂
′
B, they are distinct as well. �

The proof of Lemma 6.10 also gives the following.

Corollary 6.11. Let X be a special cube complex with finitely many codim–2–hyperplanes.
Let A,B ⊂ X be hyperplanes and let Q be a component of A ∩B. There is a finite cover

X̂ → X with the following property. If elevations Â, B̂ ⊂ X̂ of A,B intersect along an

elevation of Q, then Â ∩ B̂ projects entirely to Q.

Proof. Choose a component Q′ of A∩B distinct from Q. Let e, e′ be edges in N(Q), N(Q′)
dual to B. Note that e, e′ are dual to distinct hyperplanes in N(A). Consider closed paths
γ = αβ where α, β are paths in N(A), N(B), and moreover α starts with e and ends with

e′. We need to find a cover X̂ where such paths γ do not lift. In other words, the extremal

edges of any lift of α to X̂ are dual to distinct elevations of B.
Since there are finitely many codim–2–hyperplanes in X, the carrier N(A) has finitely
many hyperplanes. In other words, the hyperplane A is 0–locally finite. We repeat the
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Figure 1. Double injectivity radius > d at Q = {Q,Q′}.

construction from the proof of Lemma 6.10 with d = 0 to obtain the cover X̂. Let Â ⊂ X̂

be an elevation of A mapping to R(N(A)) ⊂ R̂(X). Then any lifts of e, e′ to N(Â) are

dual to distinct hyperplanes in X̂. Replacing X̂ with a further cover that is a regular
cover of X, we obtain the same property for all elevations of A. �

When we have a map N(Q) → N(A), a path in N(A) starting (resp. ending) at a vertex
v of N(Q) is a path that starts (resp. ends) at the image of v in N(A).

Definition 6.12. Let A 6= B be hyperplanes in a cube complex X and let Q be a family
of components of A ∩ B. Hyperplanes A,B have double injectivity radius > d at Q if all
the paths of length ≤ 2d in X starting at N(A) and ending at N(B) have the following
property: They are path-homotopic to a concatenation at a vertex of N(Q) of a pair
of paths in N(A) and N(B). In particular A ∩ B = Q. In other words, if elevations

N(Ã), N(B̃) of N(A), N(B) to the universal cover of X are at distance ≤ 2d, then Ã ∩ B̃
is nonempty and projects to Q. We refer the reader to Figure 1.

Lemma 6.13. Let X be a special cube complex with finitely many codim–2–hyperplanes.
Let A,B ⊂ X be hyperplanes and let Q be a component of A ∩ B. For each d there is a

finite cover X̂ → X with the following property. If elevations Â, B̂ ⊂ X̂ of A,B intersect
along an elevation of Q, then they have double injectivity radius > d at the family of

components of Â ∩ B̂ projecting to Q.

Note that this property is preserved when passing to further covers. In particular, we
can arrange that it holds for all A,B and Q simultaneously.

Proof. By Corollary 6.11 there is a finite cover X̂ of X where the intersection of elevations

Â ∩ B̂ is nonempty and projects to Q. Then passing to a regular cover and quotienting

by the group permuting the components of Â∩ B̂ reduces the situation to the case where
A ∩B is connected, i.e. A ∩B = Q.
Applying Theorem 6.2, let X → R be the local isometry into the Salvetti complex

R = R(X) of a finitely generated right-angled Artin group F . Let TA, TB ⊂ R de-
note the hyperplanes that are the images of A,B and let TQ ⊂ R denote the codim–
2–hyperplane TA ∩ TB. Consider paths γ → R of length ≤ 2d starting at N(TA) and
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ending at N(TB) but with γ not path-homotopic to a concatenation at N(TQ) of a pair
of paths in N(TA), N(TB). Since R is compact, there are finitely many such paths γ. Let
F denote the family of conjugacy classes of elements of F determined by the closed paths
αβγ−1, with α in N(TA) and β in N(TB) concatenated at N(TQ). Then F is a union of
classes determined by finitely many nontrivial double cosets of the form H1H2g, where
H1 = π1TA, H2 = π1TB. Since double cosets of hyperplane subgroups in F are separable
(a case of Lemma 6.10, proved in [HW08, Cor 9.4]), the group F has a finite index sub-

group F̂ disjoint from the set of elements whose classes lie in F. Let R̂ → R be the finite

cover corresponding to F̂ ⊂ F . Any intersecting elevations T̂A, T̂B ⊂ R̂ of TA, TB have

double injectivity radius > d at T̂A ∩ T̂B. Let X̂ → X be the pullback of R̂ → R.

We show that X̂ has the desired property. Let Â, B̂ ⊂ X̂ be intersecting elevations

of A,B. Let Ã, B̃ be their further elevations to the universal cover X̃ of X at distance

≤ 2d. The universal cover X̃ embeds as a convex subcomplex of the universal cover R̃ of

R. The hyperplanes T̃A, T̃B ⊂ R̃ containing Ã, B̃ intersect, since their images T̂A, T̂B ⊂ R̂

have double injectivity radius > d at T̂A ∩ T̂B. By Helly’s theorem [Rol98, Thm 2.2]
the combinatorial convex hull of a pair points in intersecting hyperplanes contains an

intersection point. Hence the hyperplanes Ã and B̃ intersect as well. �

7. Background on cubical small cancellation

In this section we review the main theorem of cubical small cancellation [Wis11]. It will
be used in the proof of Theorem 2.4 (Specialization).

7.1. Pieces. LetX be a nonpositively curved cube complex. Let {Yi → X} be a collection
of local isometries of nonpositively curved cube complexes. The pair 〈X|{Yi → X}〉, or
briefly 〈X|Yi〉, is a cubical presentation. Its group is π1X/〈〈{π1Yi}〉〉 which equals π1X

∗

where X∗ is obtained from X by attaching cones along the Yi. Let X = 〈〈{π1Yi}〉〉\X̃

denote the cover of X in the universal cover X̃∗ of X∗.
An abstract cone-piece in Yi of Yj is the intersection P = Ỹi ∩ Ỹ ′

j of some elevations

Ỹi, Ỹ
′
j of Yi, Yj to the universal cover X̃ of X. In the case where j = i we require that

the elevations are distinct in the sense that for the projections P → Yi, Yj there is no
automorphism Yi → Yj such that the following diagram commutes:

P → Yi
↓ ւ ↓
Yj → X

Note that an abstract cone-piece in Yi actually lies in Ỹi.

Let Ã be a hyperplane in X̃ disjoint from Ỹi. An abstract wall-piece in Yi is the

intersection Ỹi ∩ N(Ã). An abstract piece is an abstract cone-piece or an abstract wall-
piece.

A path α → Yi is a piece in Yi, if it lifts to Ỹi into an abstract piece in Yi. We then

denote by |α|Yi
the combinatorial distance between the endpoints of a lift of α to Ỹi, i.e.

the length of a geodesic path in Yi path-homotopic to α.
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Figure 2. Two ladders are on the left. On the right are two cornsquares,
a spur, and a shell within a disc diagram.

The cubical presentation 〈X|Yi〉 satisfies the C ′( 1
n
) small cancellation condition, if

|α|Yi
< 1

n
||Yi|| for each piece α in Yi. Recall that ||Yi|| denotes the minimum of the lengths

of essential closed paths in Yi.

7.2. Ladder Theorem. A disc diagram D is a compact contractible 2–complex with a
fixed embedding in R2. Its boundary path ∂pD is the attaching map of the cell at ∞. The
diagram is spurless if D does not have a spur, i.e. a vertex contained in only one edge.
If X is a combinatorial complex, a disc diagram in X is a combinatorial map of a disc
diagram into X.

Let D → X̃∗ be a disc diagram with a boundary path ∂pD → X. Note that the 2–

cells of X̃∗ are squares or triangles, where the latter have exactly one vertex at a cone
point. The triangles in D are grouped together into cone-cells around these cone points.
The complexity of D is the pair of numbers (# cone-cells of D, # squares of D), with
lexicographic order.
In addition to spurs, there are two other types of positive curvature features in ∂pD:
shells and cornsquares. A cone-cell C adjacent to ∂pD is a shell if ∂C ∩ ∂pD (outer path)
is connected and its complement in ∂C (inner path) is a concatenation of ≤ 6 pieces. A
pair of consecutive edges of ∂pD is a cornsquare if the carriers of their dual hyperplanes
intersect at a square and surround a square subdiagram, i.e. a subdiagram all of whose
2–cells are squares. A ladder is a disc diagram that is the concatenation of cone-cells and
rectangles with cone-cells or spurs at extremities, as in Figure 2. A single cone-cell is not
a ladder, while a single edge is a ladder. The following summarizes the main results of
cubical small cancellation theory.

Theorem 7.1 ([Wis11, Thm 3.40]). Assume that 〈X|Yi〉 satisfies the C
′( 1

12) small can-

cellation condition. Let D → X̃∗ be a minimal complexity disc diagram for a closed path
∂pD → X. Then one of the following holds.

(a) D is a single vertex or a single cone-cell.
(b) D is a ladder.
(c) D has at least three spurs and/or shells and/or cornsquares. Moreover, if there is no
shell or spur, then there must be at least four cornsquares.

The following consequence allows us to identify Yi with any of its lifts to X.
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Corollary 7.2. Let 〈X|Yi〉 satisfy the C
′( 1

12) small cancellation condition. Then each Yi
lifts to an embedding in X.

Proof. We argue by contradiction. Let γ → Yi be a path of minimal length that is not a
closed path but projects to a closed path γ → X. Let v be the vertex of γ which is the
projection of the endpoints of γ. Let D → X be a disc diagram with ∂pD = γ of minimal
complexity among all such paths γ. Then the boundary ∂C of any cone-cell C in D is
essential in Yj into which it maps.
If in γ − v there were two consecutive edges forming a cornsquare, we could homotope

D so that there is a square at that exact corner [Wis11, Lem 2.6]. That square would
lift to Yi and we could homotope γ through it to reduce the complexity. The diagram D
has no spur. If there is a shell C in D whose outer path is contained in γ − v, then let
γC = γ ∩ ∂C denote that outer path and suppose that ∂C maps to Yj . If γC is a piece
in Yj of Yi, then this contradicts that ∂C is essential in Yi. Otherwise j = i and there
is an identification Yj → Yi agreeing on γC . We then replace inside γ the outer path γC
by the inner path of C to obtain γ′ → Yi with the same endpoints as γ. The projection
γ′ → X of γ′ bounds the disc diagram D − C of smaller complexity than D, which is a
contradiction. Hence by Theorem 7.1, the diagram D is a single cone-cell C. Since ∂C is
essential, the path γ− v is not a piece, hence again we can identify Yj with Yi along γ− v
and γ. But γ − v is a closed path in Yj , contradiction. �

7.3. Small cancellation quotients. We now prove that in small cancellation quotients
we can separate elements from cosets and double cosets. We also prove a convexity result
for ‘extended carriers’.

Lemma 7.3. Let 〈X|Yi〉 be a cubical presentation with all abstract pieces of uniformly
bounded diameter. Suppose that each Yi is virtually special with finitely many immersed

hyperplanes. Let Ã ⊂ X̃ be a hyperplane and let g ∈ G − H, where G = π1X and

H = Stab(Ã). Then there are finite index subgroups P ′
i ⊂ Pi = π1Yi such that:

(1) Letting X = 〈〈{P ′
i}〉〉\X̃, the immersed hyperplane A in X that is the projection of Ã

has no self-intersections and no self-osculations.
(2) Any two points of N(A) are connected by a geodesic that lies in the union of N(A)

and the translates of Y i = P ′
i\Ỹi in X intersecting A.

(3) g /∈ H in the quotient G = G/〈〈{P ′
i}〉〉.

Proof. Assume that all the abstract pieces have diameter < d. By Lemma 6.4 we can
choose P ′

i so that ||Y i|| ≥ 12d. By Lemma 6.7, we can further choose P ′
i so that all

the hyperplanes of Y i have injectivity radius > 3d. We also require that P ′
i ⊂ Pi are

characteristic, so that 〈X|Y i〉 satisfies the C
′( 1

12) small cancellation condition. Note that
merely requiring that P ′

i is normal in Pi might not suffice, since we need that every

automorphism of Yi respecting the map Yi → X elevates to Y i, thus ensuring that in Ỹi
there do not appear new abstract cone-pieces in Y i of Y i.

We first prove Assertion (2). Let D → X̃∗ be a disc diagram bounded by a geodesic α
in the 1–skeleton of N(A) and a geodesic γ in the 1–skeleton of X. We assume that D
has minimal complexity among all such disc diagrams with prescribed common endpoints
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Figure 3. The shell C is surrounded by a hyperplane and a short inner
path δ. We can thus replace C by a square diagram as on the right.

of α and γ. Then the boundary ∂C of any cone-cell C in D is essential in Y i into which it
maps. Hence |∂C|Y i

≥ ||Y i|| ≥ 12d, where |∂C|Y i
denotes the minimal length of a closed

path in the free homotopy class of ∂C in Y i. Consequently, since the inner path of a shell
C is a concatenation of at most 6 pieces, a geodesic in Y i that is path-homotopic to the
inner path of C is shorter than the outer path of C.
If in ∂pD = αγ there are two consecutive edges forming a cornsquare, they cannot both
lie in α or both lie in γ. Otherwise we could homotope D so that there is a square at
that exact corner [Wis11, Lem 2.6]. Then we could homotope α or γ through that square
to reduce the complexity. The diagram D has no spur except possibly where α and γ
are concatenated. If there is a shell C in D whose outer path is contained in γ, then
replacing the outer path of C by a geodesic that is path-homotopic to the inner path of
C contradicts that γ is a geodesic.
Finally, suppose that the outer path of a shell C is contained in α. Let αC = ∂C ∩ α

denote the outer path of C and let δ denote the inner path of C. Let Ỹi denote the

universal cover of Y i into which ∂C maps. Consider the copy of Ỹi in X̃ that contains a

lift of αC to N(Ã). If Ã is disjoint from Ỹi, then αC is a piece and ∂C is a concatenation

of at most 7 pieces, which contradicts |∂C|Y i
≥ 12d. Otherwise let Ãi = Ã ∩ Ỹi. Hence

αC projects into the quotient N(Ai) of N(Ãi) in Y i. Since the injectivity radius of the

hyperplane Ai in Y i is > 3d, the inner path δ is path-homotopic in Y i to a path α′
C in

N(Ai). If we choose α
′
C to be geodesic, then since it is path-homotopic to the inner path

δ, we have |α′
C | = |δ|Y i

< |αC |. This contradicts that α is a geodesic in N(A).

Thus there can be at most two spurs and/or shells and/or cornsquares in D and these
are located where α and γ are concatenated. By Theorem 7.1, the disc diagram D is a
single cone-cell or ladder. For any of its cone-cells C let αC = α ∩ ∂C, γC = γ ∩ ∂C.
Let λC , δC denote the remaining, possibly trivial, arcs of ∂C. Since λC , δC are pieces, we

have |λC |Y i
< d and |δC |Y i

< d, where ∂C maps to Y i. As before, if Ã is disjoint from Ỹi

containing a lift of αC to N(Ã), then αC is a piece. Since |∂C|Y i
≥ 12d, this contradicts

that γC is a geodesic. Hence Ã intersects Ỹi, which proves Assertion (2).
For Assertion (3), let A be the immersed hyperplane in X that is the projection of

Ã. Let γ → X be a minimal length path starting and ending at N(A) such that a
concatenation of γ with a path in N(A) represents the conjugacy class of g. We increase
d so that d ≥ |γ|, and we then choose P ′

i as before. If g lies in H, then a lift of γ to X
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forms a closed path with a path α in N(A). Let D be a minimal complexity disc diagram
with ∂pD = αγ among all such γ. Then D cannot have spurs by the minimality of |γ|.
As before, there are no consecutive edges forming cornsquares in α or in γ. Since d ≥ |γ|,
there are no shells with outer path in γ.
If there is a shell C with outer path αC = α ∩ ∂C, then as before the inner path δ is

path-homotopic in Y i to a path α
′
C in N(Ai). Then as in Figure 3, we could replace αC

by α′
C and replace C by a square diagram. This contradicts the minimal complexity of D.
By Theorem 7.1, the disc diagram D is a single cone-cell or a ladder and for any of its

cone-cells C the hyperplane Ã intersects Ỹi containing the lift of αC to N(Ã). We have

|λC |Y i
+ |γC | + |δC |Y i

≤ 3d, while the injectivity radius in Y i of the projection of the

hyperplane Ãi = Ã∩ Ỹi is > 3d. Then we can replace αC by α
′
C and replace C by a square

diagram to contradict the minimal complexity of D.
Assertion (1) follows from the same proof as Assertion (3), where we consider all paths

γ of length 0. �

The following clarifies and generalizes [Wis11, Thm 16.23].

Lemma 7.4. Let 〈X|Yi〉 be a cubical presentation with all abstract pieces of uniformly
bounded diameter. Suppose that each Yi is virtually special with finitely many immersed
codim–2–hyperplanes. Let H1, H2 ⊂ G = π1X be stabilizers of intersecting hyperplanes

Ã, B̃ ⊂ X̃ and let g ∈ G −H1H2. There are finite index subgroups P
′
i ⊂ Pi = π1Yi such

that g /∈ H1H2 in the quotient G = G/〈〈{P ′
i}〉〉.

Proof. Assume that all the abstract pieces have diameter < d. Let Q̃ = Ã ∩ B̃ and
let A,B,Q be the immersed hyperplanes and codim–2–hyperplane in X that are the

projections of Ã, B̃, Q̃. Let γ → X be a minimal length path starting at N(A) and ending
at N(B) such that its concatenation with a pair of paths in N(A), N(B) concatenated at
N(Q) represents the conjugacy class of g. We increase d so that d ≥ |γ|. Let P sp

i ⊂ Pi be
finite index special subgroups.
By Lemmas 6.4, 6.7, and 6.13 we can choose finite index subgroups P ′

i ⊂ P sp
i that are

characteristic in Pi, and such that Y i = P ′
i\Ỹi satisfy:

• ||Y i|| ≥ 12d,
• all hyperplanes in Y i have injectivity radius > 4d, and
• all pairs Ai, Bi of hyperplanes in Y i intersecting at a codim–2–hyperplane Qi have
double injectivity radius > 3d at the family of components of Ai∩Bi in the P

sp
i /P ′

i

orbit of Qi.

The reason we used the P sp
i /P ′

i orbit instead of the entire Pi/P
′
i orbit is the following.

Since P sp
i is special, an element p ∈ P sp

i /P ′
i cannot map Ai to a distinct hyperplane

intersecting Ai. Hence if p ∈ P sp
i /P ′

i maps a component of Ai ∩ Bi to a component of

Ai ∩Bi, then it cannot interchange Ai and Bi and so it stabilizes Ai and Bi.

Let X = 〈〈{P ′
i}〉〉\X̃. Let A,B,Q be the hyperplanes and codim–2–hyperplane in X

that are the projections of Ã, B̃, Q̃.
We now argue by contradiction to prove the lemma. If g lies in H1H2, then there is

a disc diagram D → X̃∗ bounded by a closed path αγβ−1, where α, β−1 are paths in
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Figure 4. The shell C in the first diagram is surrounded by two hyper-
planes and a short inner path δ as in the second diagram. We can thus
replace C by a square diagram bounded by α′

Cδβ
′−1
C , to obtain a smaller

complexity diagram on the right.

N(A), N(B) concatenated at a vertex v ∈ N(Q), and we lift γ to X. Assume that D has
minimal complexity among all such diagrams and γ. By minimality of |γ| the diagram
D has no spurs except possibly where α and β are concatenated. By replacing v we can
remove such spurs and assume that D is spurless. The diagram D also cannot have two
consecutive edges of α, β or γ forming cornsquares.
An outer path of a shell C cannot be contained entirely in α, β or γ, as in the proof
of Lemma 7.3. We now prove that the outer path of a shell C with ∂C mapping to Y i

cannot be contained in αγ (or γβ−1). Otherwise, recall that |γ| ≤ d and the length of a
geodesic that is path-homotopic to the inner path of C is < 6d, hence if αC = ∂C ∩α is a
piece, then this contradicts |∂C|Y i

≥ 12d. If αC is not a piece, then since the hyperplane

injectivity radius in Y i is > 4d, we could replace αC by α′
C and replace C by a square

diagram, contradicting minimal complexity.
Since 〈X|Y i〉 satisfies the C

′( 1
12) small cancellation condition, by Theorem 7.1 the disc

diagram D is either:

(a) a single cone-cell C, or
(b) a ladder with a shell C containing v, or
(c) a diagram with 2 cornsquares located where γ is concatenated with α and β, and with
a shell C containing v as in Figure 4.

In each case there is a 2-cell C containing v. Let αC and βC denote the subpaths α ∩ ∂C

and β ∩ ∂C. The complement δ in ∂C of β−1
C αC either coincides with γ in Case (a), or

is a piece in Case (b) or is an inner path of a shell, hence a concatenation of at most 6
pieces in Case (c). In each case we have |δ|Y i

< 6d, where ∂C maps to Y i.

Let ṽ ∈ N(Q̃) be a lift of v. Let Ỹi be the elevation of Yi containing ṽ. Let Ãi =

Ã∩Ỹi, B̃i = B̃∩Ỹi. If both Ãi, B̃i are empty, then both αC , βC are pieces which contradicts

|∂C|Y i
> 12d. If exactly one of Ãi, B̃i is empty, say B̃i, then βC is a piece. Since the

injectivity radius of Ãi is > 4d, as before we could replace αC by α
′
C and replace C by a

square diagram, contradicting minimal complexity. Hence both Ãi, B̃i are nonempty and

D shows that they intersect in nonempty Q̃i = Q̃ ∩ Ỹi.

Let Ai, Bi, Qi ⊂ Y i denote the projections of Ãi, B̃i, Q̃i. The double injectivity radius
in Y i is > 3d. Hence δ is homotopic in Y i to a concatenation at pN(Qi) of paths α

′
C , β

′
C in

N(Ai), N(Bi) for some p ∈ P sp
i /P ′

i . Thus there is in Y i a square diagram with boundary
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α′
Cδβ

′−1
C . We replace C by this square diagram, and replace the subpath αC of α by α

′
C

to obtain α′, and similarly we replace the subpath βC of β by β
′
C to obtain β

′. Since p ∈
P sp
i /P ′

i , we have pN(Ai) = N(Ai) and pN(Bi) = N(Bi). Translating the whole diagram
by p−1 yields a disc diagram bounded by p−1(α′)p−1(γ)p−1(β′−1), where p−1(α′), p−1(β′−1)
are paths in N(A), N(B) concatenated at N(Q). This diagram has a smaller number of
cone-cells than D, which contradicts the minimal complexity assumption. See Figure 4.

�

8. Specialization

In this section we prove Theorem 2.4 (Specialization).

Proof of Theorem 2.4. To prove that the action ofG on X̃ is virtually special, we will verify
the conditions of Criterion 2.3. Freeness and finiteness Conditions (1)–(3) of Criterion 2.3
are Hypothesis (i) of Theorem 2.4. We now verify Condition (4). Let H be the stabilizer

of a hyperplane Ã ⊂ X̃. Let g ∈ G−H. We will find finite index subgroups P ′
i ⊂ Pi such

that:

(a) G = G/〈〈{P ′
i}〉〉 is hyperbolic and virtually compact special,

(b) the image H is quasiconvex in G,
(c) g /∈ H.

The result then follows from separability of quasiconvex subgroups in hyperbolic virtually
compact special groups [HW08, Thm 7.3].
By Hypothesis (iv) and Theorem 4.7, there are E◦

n ⊂ En such that P
′
i∩En ⊂ E◦

n implies

that G splits as a graph of hyperbolic virtually compact special groups with finite edge
groups. Then G is hyperbolic virtually compact special and Condition (a) is satisfied. By
Hypothesis (ii), there are indeed finite index subgroups P ′

i ⊂ Pi satisfying P
′
i ∩En ⊂ E◦

n.
To arrange Conditions (b) and (c) we apply cubical small cancelation theory. Consider
the cubical presentation 〈X|Yi〉. By Hypothesis (iii), the complexes Yi are virtually special

and have finitely many immersed codim–2–hyperplanes. Since Ỹi are superconvex, there

is a uniform bound on the diameters of abstract wall-pieces. Let K ⊂ X̃ be the compact
subcomplex from the definition of relative cocompactness. If j 6= i or g′ 6= Pi, then

g′Ỹi ∩ Ỹj ⊂ GK. Since G is relatively hyperbolic, the intersections g′Pig
′−1 ∩ Pj are finite

and hence there is a uniform bound on the diameters of abstract cone-pieces g′Ỹi ∩ Ỹj .
We can thus apply Lemma 7.3 and replace P ′

i by further finite index subgroups satisfying

its conclusion. Condition (c) follows directly from Lemma 7.3(3). Let A be the hyperplane

in X that is the projection of Ã, as in Lemma 7.3(1). The group G acts cocompactly on
Xc = 〈〈{P ′

i}〉〉\GK. We can assume that Xc is connected and contains an edge dual to

A. We will prove that A ∩Xc is quasiconvex in Xc, which means that its stabilizer H is
quasiconvex in G, giving Condition (b). By Lemma 7.3(2), any two points of N(A) ∩Xc

are connected in X by a geodesic γ that lies in the union of N(A) and the translates of Y i

intersecting A. Every component of γ −Xc is contained in some translate of the closure
Zi of Y i −Xc. By the last part of the definition of relative cocompactness in Section 2,

the group Pi acts cocompactly on Ỹi ∩ GK. Thus, since P ′
i is of finite index in Pi, the

intersection Zi ∩Xc is compact. Hence we can form a quasigeodesic γc by replacing in γ
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each component of γ −Xc in a translate g
′Zi by a path of uniformly bounded length in

g′Y i ∩Xc. The quasigeodesic γc is contained in the union of N(A) and the translates of
Y i ∩Xc intersecting A. Since Y i ∩Xc are uniformly bounded, γc is at uniform distance
from A, as desired. This completes the proof of Condition (4) of Criterion 2.3.
To prove Condition (5) we need to replace (c) by

(c′) g /∈ H1H2,

whereH1, H2 are the stabilizers of intersecting hyperplanes Ã1, Ã2 ⊂ X̃ and g ∈ G−H1H2.
It suffices to consider P ′

i provided by Lemma 7.4. Once we have (a), (b) and (c
′) we appeal

to [Min06, Thm 1.1], which says that in hyperbolic groups with separable quasiconvex
subgroups, double cosets of quasiconvex subgroups are separable as well. �

References

[Ago04] Ian Agol, Tameness of hyperbolic 3-manifolds (2004), available at arXix:GT/0405568.
[Ago08] , Criteria for virtual fibering, J. Topol. 1 (2008), no. 2, 269–284.
[Ago12] , The virtual Haken conjecture, with an Appendix by Ian Agol, Daniel Groves, and Jason Manning

(2012), preprint, available at arXiv:1204.2810.
[AFW12] Matthias Aschenbrenner, Stefan Friedl, and Henry Wilton, 3–manifold groups (2012), preprint, available

at arXiv:1205.0202.
[BW12] Hadi Bigdely and Daniel T. Wise, Quasiconvexity and relatively hyperbolic groups that split, Michigan

Math. J. (2012), to appear, available at arXiv:1211.1993.
[Bon86] Francis Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math. (2) 124 (1986), no. 1,

71–158 (French).
[Bon02] , Geometric structures on 3-manifolds, Handbook of geometric topology, North-Holland, Amster-

dam, 2002, pp. 93–164.

[Bri01] Martin R. Bridson, On the subgroups of semihyperbolic groups, Monographie de L’Enseignement
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