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Mixed 3-Sasakian structures and curvature

by Angelo V. Caldarella and Anna Maria Pastore (Bari)

Abstract. We deal with two classes of mixed metric 3-structures, namely the mixed
3-Sasakian structures and the mixed metric 3-contact structures. First, we study some
properties of the curvature of mixed 3-Sasakian structures. Then we prove the identity
between the class of mixed 3-Sasakian structures and the class of mixed metric 3-contact
structures.

1. Introduction. The geometry of 3-Sasakian manifolds has been a
well-known topic, since their introduction, independently, by Udrişte [22]
and Kuo [19]. It was studied, in a first stage, by Ishihara, Kashiwada, Kon-
ishi, Kuo, Tachibana, Tanno, Yu and other geometers of the Japanese school,
and then from different viewpoints by Boyer, Galicki and Mann; in partic-
ular, we mention the remarkable survey [4], to which we refer the reader
for more details about such structures, as well as for historical remarks. On
the other hand, studies of analogous odd-dimensional geometries related to
the algebra of paraquaternionic numbers have begun very recently (see, for
example, [1], [2], [8], [11] and [12]).

In analogy with an early result of Kashiwada [15] for Sasakian 3-struc-
tures, a first result we shall present in this paper is for manifolds endowed
with mixed 3-Sasakian structures, which are also considered in [8], where
they are called split three Sasakian structures. We give a direct proof that
they are Einstein, which is analogous to the well-known fact that a para-
quaternionic Kähler manifold is Einstein (cf. [10]). To this end, we shall
need some formulas for the curvature tensor of a manifold with parasasa-
kian structure and of a manifold with indefinite Sasakian structure. Some
results recently proved in [23] will also be recovered.

The second result is concerned with the identity between the class of
mixed metric 3-contact structures and the class of mixed 3-Sasakian struc-
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tures (see Kashiwada [17] for the case of 3-contact metric manifolds). It is
based on an extension of Kashiwada’s generalization of a lemma of Hitchin
(cf. [16]) to the almost hyper parahermitian case.

The content of the paper is now briefly described.
In Section 2 we give some fundamental definitions and facts about para-

contact metric structures (cf. [9], [23]), which together with the notion of
indefinite almost contact metric structure ([5]) are at the root of the no-
tion of mixed metric 3-structure. We also recall a few definitions concerning
almost hyper parahermitian structures. In Section 3, after introducing the
notion of [r]-Sasakian structure, r = ±1, to mean an indefinite Sasakian
structure for r = +1, and a parasasakian structure for r = −1, we consider
some preliminary issues, needed to state, in Section 4, the result concerning
the mixed 3-Sasakian manifolds. Finally, Section 5 is devoted to proving that
a mixed metric 3-contact structure is in fact a mixed 3-Sasakian structure.

All manifolds and tensor fields are assumed to be smooth.

2. Preliminaries. We recall a few definitions about paracomplex and
hyper paracomplex structures. For more details we refer the reader to [7]
and [13].

Definition 2.1. An almost product structure on a manifold M is a
(1, 1)-type tensor field F 6= ±I satisfying F 2 = I; the pair (M,F ) is then
said to be an almost product manifold.

On an almost product manifold (M,F ) we have TM = T+M ⊕ T−M ,
where T+M and T−M are the eigensubbundles associated to the eigenval-
ues +1 and −1 of F . (M,F ) is called an almost paracomplex manifold if
rank(T+M) = rank(T−M). Finally, an almost product (resp. almost para-
complex) manifold (M,F ) is called a product (resp. paracomplex) manifold
if NF = 0, NF being the Nijenhuis tensor field of the structure F . Any
(almost) paracomplex manifold has even dimension.

An (almost) paracomplex manifold (M,F ) is called (almost) paraher-
mitian if there exists a metric tensor g compatible with F , i.e. such that
g(FX, Y ) + g(X,FY ) = 0 for any X,Y ∈ Γ (TM). Such a metric is neces-
sarily semi-Riemannian, with neutral signature.

Definition 2.2. An almost hyper parahermitian structure on a manifold
M is a triple (J1, J2, J3) of (1, 1)-type tensor fields, together with a semi-
Riemannian metric g satisfying:

(i) (Ja)2 = −τaI for any a ∈ {1, 2, 3},
(ii) JaJb = τcJc = −JbJa for any cyclic permutation (a, b, c) of (1, 2, 3),

(iii) g(JaX,Y )+g(X, JaY ) = 0 for any a ∈ {1, 2, 3} and X,Y ∈ Γ (TM),
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where τ1 = −1, τ2 = −1 and τ3 = +1. Then (M,J1, J2, J3, g) will be said to
be an almost hyper parahermitian manifold.

Such a manifold has dimension divisible by four and the metric has
neutral signature. An almost hyper parahermitian structure on a manifold
M will be called hyper parahermitian if for any a ∈ {1, 2, 3}, the Nijenhuis
tensor field Na vanishes, that is, each structure Ja is integrable. Then M will
be called a hyper parahermitian manifold. An almost hyper parahermitian
manifold is hyper parahermitian if and only if at least two of the Nijenhuis
tensor fields vanish (cf. [13]).

Definition 2.3. Let M be a manifold. An almost paracontact structure
on M is a triple (ϕ, ξ, η), where ϕ ∈ T1

1(M), ξ ∈ Γ (TM) and η ∈
∧1(M),

satisfying ϕ2 = I − η ⊗ ξ and η(ξ) = 1. Then M is said to be an almost
paracontact manifold, denoted by (M,ϕ, ξ, η). An almost paracontact struc-
ture (ϕ, ξ, η) will be called normal if Nϕ = 2dη⊗ ξ, Nϕ being the Nijenhuis
tensor field of ϕ.

Almost paracontact structures were originally introduced by I. Satō in
[20] and [21], where he also studied the properties of manifolds endowed
with such structures and with a Riemannian metric satisfying suitable com-
patibility conditions. Moreover, one may find similar definitions in [14] and
[23], where the further condition that the restriction ϕ|Im(ϕ) is an almost
paracomplex structure on the distribution Im(ϕ) is required. The notion of
normality for an almost paracontact structure is defined, as in the classical
almost contact case (cf. [3]), through the integrability of the almost prod-
uct structure F canonically induced on the manifold M × R, defined by
F
(
X, f d

dt

)
:=
(
ϕX + fξ, η(X) d

dt

)
(cf. [14], [23]).

Other properties of almost paracontact manifolds (M,ϕ, ξ, η), which are
immediate consequences of the above definition, are ϕ(ξ) = 0, η ◦ ϕ = 0,
ker(ϕ) = Span(ξ), ker(η) = Im(ϕ) and TM = Im(ϕ)⊕ Span(ξ).

Endowing an almost paracontact manifold with a metric tensor field
and considering a suitable compatibility condition, we obtain the notion of
almost paracontact metric manifold.

Definition 2.4 ([23]). Let (M,ϕ, ξ, η) be an almost paracontact mani-
fold and g a metric tensor field on M , that is, a symmetric, nondegenerate
(0, 2)-type tensor field on M . Then g is said to be compatible with the struc-
ture (ϕ, ξ, η) if

g(ϕX,ϕY ) = −g(X,Y ) + εη(X)η(Y )

for any X,Y ∈ Γ (TM), with ε = ±1 according as ξ is spacelike or timelike.
Then (ϕ, ξ, η, g) is said to be an almost paracontact metric structure. We
shall call the structure positive or negative according as ε = +1 or ε = −1.
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Then (M,ϕ, ξ, η, g) will be called an almost paracontact metric manifold.
Such a structure (ϕ, ξ, η, g) will be called normal if Nϕ = 2dη ⊗ ξ.

In [9], the author refers to the same kind of structure called almost
paracontact hyperbolic metric structure.

As a consequence of the above definition, for an almost paracontact met-
ric manifold (M,ϕ, ξ, η, g), the pair (F, g), where F := ϕ|Im(ϕ), is an almost
parahermitian structure on the distribution Im(ϕ). Hence rank(Im(ϕ)) =
2m and dim(M) = 2m + 1. Furthermore, the signature of g on Im(ϕ) is
(m,m), where we put first the minus signs, and the signature of g on TM
is (m,m+ 1) or (m+ 1,m) according as ξ is spacelike (the structure is posi-
tive) or timelike (the structure is negative). It follows that g is a Lorentzian
metric only if m = 1 and dim(M) = 3.

We know that TM is the orthogonal direct sum of Im(ϕ) and Span(ξ),
and finally that η(X) = εg(X, ξ) and g(ϕX, Y ) + g(X,ϕY ) = 0 for any
X,Y ∈ Γ (TM).

Particular classes of almost paracontact metric structures are defined as
follows.

Definition 2.5 ([9], [23]). Let (M,ϕ, ξ, η, g) be an almost paracontact
metric manifold. Then it is said to be a

(i) paracontact metric manifold if dη = Φ;
(ii) parasasakian manifold if dη = Φ and the structure is normal;

(iii) para-K-contact manifold if dη = Φ and ξ is a Killing vector field,

where Φ(X,Y ) := g(X,ϕY ) is the fundamental 2-form associated with the
almost paracontact metric structure.

Furthermore, we recall the following result.

Proposition 2.6. Let (M,ϕ, ξ, η, g) be an almost paracontact metric
manifold. Then it is a parasasakian manifold if and only if

(∇Xϕ)(Y ) = −g(X,Y )ξ + εη(Y )X

for any X,Y ∈ Γ (TM), where ε = g(ξ, ξ) = ±1.

We assume the following definition of mixed (metric) 3-structure, which
is introduced in [11] and [12], although in a different form.

Definition 2.7. Let M be a manifold. A mixed 3-structure on M is a
triple of structures (ϕa, ξa, η

a), a ∈ {1, 2, 3}, which are almost paracontact
structures for a = 1, 2 and an almost contact structure for a = 3, satisfying

ϕaϕb − τaηb ⊗ ξa = τcϕc = −ϕbϕa + τbη
a ⊗ ξb,(1)

ηa ◦ ϕb = τcη
c = −ηb ◦ ϕa,(2)

ϕa(ξb) = τbξc, ϕb(ξa) = −τaξc,(3)
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for any cyclic permutation (a, b, c) of (1, 2, 3), with τ1 = τ2 = −1 = −τ3.
A mixed metric 3-structure on M is a triple of structures (ϕa, ξa, η

a, g),
a ∈ {1, 2, 3}, which are almost paracontact metric structures for a = 1, 2,
and an almost contact metric structure for a = 3, satisfying (1)–(3).

From now on, a mixed 3-structure and a mixed metric 3-structure on a
manifold M will be denoted simply by (ϕa, ξa, η

a) and (ϕa, ξa, η
a, g), with

the condition a ∈ {1, 2, 3} understood.

Remark 2.8. Equivalently, a mixed metric 3-structure on a manifold M
is given by a mixed 3-structure (ϕa, ξa, η

a), together with a metric tensor g
satisfying the following compatibility condition:

(4) g(ϕaX,ϕaY ) = τa(g(X,Y )− εaηa(X)ηa(Y ))

for any a ∈ {1, 2, 3}, and any X,Y ∈ Γ (TM), where εa = g(ξa, ξa) = ±1.

Remark 2.9. We point out that the above definition of mixed 3-struc-
ture, without the metric compatibility, is equivalent to the definition given
in [11], and very recently in [12], providing that one substitutes the structu-
res (ϕ1, ξ1, η

1), (ϕ2, ξ2, η
2) and (ϕ3, ξ3, η

3) of [11] and [12] with (ϕ3, ξ3, η
3),

(ϕ1, ξ1, η
1) and (ϕ2, ξ2, η

2), respectively, and then the vector fields ξ1 and ξ2
with their negatives.

We remark that the conditions (1)–(4) are compatible. We first observe
that from (3), one has ηa(ξc) = 0 whenever a 6= c, and by the definition of
almost (para)contact metric structures, one gets

(5) ηa(ξc) = δa
c

for any a, c ∈ {1, 2, 3}. Moreover, since each structure (ϕa, ξa, η
a, g) is almost

(para)contact metric, one has

(6) ηa(X) = εag(X, ξa)

for any X ∈ Γ (TM), and any a ∈ {1, 2, 3}. From (3) one has ϕ2(ξ3) = ξ1 =
ϕ3(ξ2), and using (4) and (5) we find, on one hand,

g(ξ1, ξ1) = g(ϕ2(ξ3), ϕ2(ξ3)) = −g(ξ3, ξ3),

and on the other hand,

g(ξ1, ξ1) = g(ϕ3(ξ2), ϕ3(ξ2)) = g(ξ2, ξ2).

Thus, ε1 = ε2 = −ε3. Analogously, starting from ϕ1(ξ2) = −ξ3 = −ϕ2(ξ1)
and from ϕ3(ξ1) = −ξ2 = ϕ1(ξ3), we obtain the same restrictions on the
values of ε1, ε2 and ε3. Let us now verify that (4) makes sense for arbitrary
choices of ξ1, ξ2 and ξ3. Fixing a mixed metric 3-structure (ϕa, ξa, η

a, g) with
(ε1, ε2, ε3) = (+1,+1,−1), for a = 1 the condition (4) becomes

g(ϕ1X,ϕ1Y ) = −g(X,Y ) + η1(X)η1(Y ),
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and using (3), (5) and (6), putting (X,Y ) = (ξ1, ξ1), we have 0 = −g(ξ1, ξ1)+
η1(ξ1)η1(ξ1) = −ε1 + 1 = 0. If the mixed metric 3-structure is such that
(ε1, ε2, ε3) = (−1,−1,+1), it is easy to check that we get the same identity.
Analogously, one verifies the consistency for the other choices of (ξb, ξc),
choosing a = 2 and a = 3 in (4).

Let us check that (1) and (4) are compatible for any X,Y ∈ Γ (TM). If
we fix (a, b, c) = (1, 2, 3), then (1) becomes

(7) ϕ1ϕ2 + η2 ⊗ ξ1 = ϕ3 = −ϕ2ϕ1 − η1 ⊗ ξ2.
From (4), on one hand we have

(8) g(ϕ3X,ϕ3Y ) = g(X,Y )− ε3η3(X)η3(Y ),

and on the other hand, by (2), (4) and (7),

g(ϕ3X,ϕ3Y ) = g(ϕ1ϕ2X + η2(X)ξ1, ϕ1ϕ2Y + η2(Y )ξ1)
= g(ϕ1ϕ2X,ϕ1ϕ2Y ) + ε1η

2(X)η2(Y )
= −g(ϕ2X,ϕ2Y ) + ε1η

1(ϕ2X)η1(ϕ2Y ) + ε1η
2(X)η2(Y )

= g(X,Y )− ε2η2(X)η2(Y )
+ ε1η

1(ϕ2X)η1(ϕ2Y ) + ε1η
2(X)η2(Y ),

from which, using ε1 = ε2 = −ε3, (8) follows. Again, by (2), (4) and (7), we
have

g(ϕ3X,ϕ3Y ) = g(ϕ2ϕ1X + η1(X)ξ2, ϕ2ϕ1Y + η1(Y )ξ2)
= g(ϕ2ϕ1X,ϕ2ϕ1Y ) + ε2η

1(X)η1(Y )
= −g(ϕ1X,ϕ1Y ) + ε2η

2(ϕ1X)η2(ϕ1Y ) + ε2η
1(X)η1(Y )

= g(X,Y )− ε1η1(X)η1(Y )
+ ε2η

2(ϕ1X)η2(ϕ1Y ) + ε2η
1(X)η1(Y ),

from which, using ε1 = ε2 = −ε3, (8) follows again. Analogously, one verifies
that the consistency also holds starting from the other two cyclic permuta-
tions of (a, b, c).

Let M be a manifold endowed with a mixed 3-structure (ϕa, ξa, η
a). Con-

sidering the two distributions H :=
⋂3

a=1 ker(ηa) and V := Span(ξ1, ξ2, ξ3),
one has the decomposition TM = H⊕ V. It follows that (ϕ1|H, ϕ2|H, ϕ3|H)
is an almost hyper paracomplex structure on the distribution H. Hence
rank(H) = 2n and dim(M) = 2n + 3. Furthermore, if we have a mixed
metric 3-structure (ϕa, ξa, η

a, g) on M , then (ϕa|H, g), a ∈ {1, 2, 3}, be-
comes an almost hyper parahermitian structure on the distributionH. Hence
rank(H) = 4m and dim(M) = 4m+ 3. As an obvious consequence we have
the following result.

Proposition 2.10. Let M be a manifold with dim(M) = 2n+3, endowed
with a mixed 3-structure (ϕa, ξa, η

a). If n 6= 2m, then there is no metric
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tensor field g on M compatible with the mixed 3-structure, and M cannot
have any mixed metric 3-structure.

The compatibility condition (4) between a metric tensor g and a mixed
3-structure (ϕa, ξa, η

a) on a (4m + 3)-dimensional manifold M , together
with (3), has some consequences on the signature of the metric g too. Since
g(ξ1, ξ1) = g(ξ2, ξ2) = −g(ξ3, ξ3), the vector fields ξ1 and ξ2 related to the
almost paracontact metric structures are either both spacelike or both time-
like. We may therefore distinguish between positive and negative mixed met-
ric 3-structures according as ξ1 and ξ2 are both spacelike (ε1 = ε2 = +1) or
both timelike (ε1 = ε2 = −1). This forces the causal character of the third
vector field ξ3. Since the signature of g on H is necessarily neutral (2m, 2m),
we have only the following two possibilities:

(i) the signature of g on TM is (2m + 1, 2m + 2) if the mixed metric
3-structure is positive (ε1, ε2, ε3) = (+1,+1,−1);

(ii) the signature of g on TM is (2m + 2, 2m + 1) if the mixed metric
3-structure is negative (ε1, ε2, ε3) = (−1,−1,+1).

We point out that any metric g which is compatible with a mixed 3-structure,
in the sense of (4), can never be Lorentzian and that the definition of mixed
metric 3-structure given in [12] is equivalent to that of a negative mixed
metric 3-structure.

Example 2.11 ([6]). Let M4m+3 be any orientable nondegenerate hy-
persurface of an almost hyper parahermitian manifold (M̄4m+4, Ja, G)a=1,2,3.
If N ∈ Γ (TM⊥) is a unit normal vector field such that G(N,N) = s = ±1,
put ξa := −τaJaN for any a ∈ {1, 2, 3}, and define three (1, 1)-type tensor
fields ϕa and three 1-forms ηa on M such that JaX = ϕaX + ηa(X)N , for
any X ∈ Γ (TM) and any a ∈ {1, 2, 3}. Then, denoting by g the metric in-
duced on M from G, it is easy to check that (ϕa, ξa, η

a, g) is a mixed metric
3-structure on M with sign σ = −s.

Finally, we adopt the following definition of mixed 3-Sasakian structure
on a manifold, which is already given in [8], although in a different form and
called split three Sasakian structure.

Definition 2.12. Let M be a manifold with a mixed metric 3-structure
(ϕa, ξa, η

a, g). This structure will be said to be a mixed 3-Sasakian struc-
ture if (ϕ1, ξ1, η

1, g) and (ϕ2, ξ2, η
2, g) are both parasasakian structures, and

(ϕ3, ξ3, η
3, g) is an indefinite Sasakian structure. Then (M,ϕa, ξa, η

a, g) will
be called mixed 3-Sasakian manifold.

Remark 2.13. The previous definition is equivalent to the notion of
split three Sasakian structure given in [8], providing that one replaces the
structures (Φ1, ξ

1), (Φ2, ξ
2) and (Φ3, ξ

3) of [8] with (ϕ3, ξ3, η
3), (ϕ2, ξ2, η

2)
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and (ϕ1, ξ1, η
1), and the vector field ξ3 with its negative, taking the vector

fields ξ1, ξ2 and ξ3 with g(ξ1, ξ1) = g(ξ2, ξ2) = −1 and g(ξ3, ξ3) = 1, that is,
(ε1, ε2, ε3) = (−1,−1,+1).

Remark 2.14. By Proposition 2.6, a mixed metric 3-structure (ϕa, ξa,
ηa, g) on a manifold M is mixed 3-Sasakian if and only if

(9) (∇Xϕa)(Y ) = τa(g(X,Y )ξa − εaηa(Y )X)

for any X,Y ∈ Γ (TM) and any a ∈ {1, 2, 3}, with τ1 = τ2 = −1 = −τ3.

We remark that Definition 2.12 is not equivalent to that given in [12].
More precisely, referring to [12], the condition (∇Xϕ2)(Y ) = g(ϕ2X,ϕ2Y )ξ2
+ η2(Y )(ϕ2)2(X) in Definition 4.3, using the compatibility condition (29)
there, may be rewritten in the form (∇Xϕ2)(Y ) = −g(X,Y )ξ2 + η2(Y )X,
which corresponds to

(10) (∇Xϕ1)(Y ) = g(X,Y )ξ1 + η1(Y )X

in our notation. Since the definition of mixed metric 3-structure given in
[12] is equivalent to that of negative mixed metric 3-structure, writing the
condition (9) for τa = τ1 = −1 and εa = ε1 = −1, we get (∇Xϕ1)(Y ) =
−g(X,Y )ξ1 − η1(Y ), which is clearly the negative of (10). One obtains an
analogous result considering the condition on (∇Xϕ3)(Y ) of [12].

3. On the curvature of [r]-Sasakian structures. In this section,
we prove some useful formulas concerning the curvature of both parasa-
sakian structures and indefinite Sasakian structures. To treat both cases
simultaneously, we introduce the synthetic notation of [r]-Sasakian struc-
ture on a manifold M , considering a system (ϕ, ξ, η, g) where ϕ ∈ T1

1(M),
ξ ∈ Γ (TM), η ∈

∧1(M) and g ∈ T0
2(M) is a metric tensor field, such that

g(ξ, ξ) = ε = ±1, ϕ2 = r(−I + η ⊗ ξ), η(ξ) = 1 and

g(ϕX,ϕY ) = r(g(X,Y )− εη(X)η(Y )),(11)
(∇Xϕ)(Y ) = r(g(X,Y )ξ − εη(Y )X).(12)

Thus, we obtain an indefinite Sasakian structure for r = +1 and a parasa-
sakian structure for r = −1. From (12) it follows that ∇Xξ = −εϕ(X) for
any X ∈ Γ (TM).

Following [18], the curvature tensor field R ∈ T1
3(M) of the Levi-Civita

connection ∇, the Riemannian curvature tensor field R ∈ T0
4(M), and the

Ricci curvature tensor field ρ ∈ T0
2(M) are defined by

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

R(X,Y, Z,W ) := g(R(Z,W )Y,X) = −g(R(X,Y )W,Z),

ρ(X,Y ) := trg{Z 7→ R(Z,X)Y } =
m∑

i=1

εig(R(Ei, X)Y,Ei),
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where (Ei)1≤i≤m is a local orthonormal frame, εi = g(Ei, Ei) and m =
dim(M).

Lemma 3.1. Let M be a manifold endowed with an [r]-Sasakian structure
(ϕ, ξ, η, g). Then, for any X,Y, Z,W ∈ Γ (TM),

(13) g(R(X,Y )Z,ϕW ) + g(R(X,Y )ϕZ,W ) = −rεP (X,Y, Z,W ),

where P ∈ T0
4(M) is the tensor field defined by

P (X,Y, Z,W ) := dη(X,Z)g(Y,W )− dη(X,W )g(Y,Z)
− dη(Y, Z)g(X,W ) + dη(Y,W )g(X,Z).

Proof. Denoting by Φ the fundamental 2-form defined by Φ(X,Y ) :=
g(X,ϕY ), let us consider the derivation RXY of the tensor algebra T(M),
canonically induced from the (1, 1)-tensor field R(X,Y ) := [∇X ,∇Y ] −
∇[X,Y ]. For any X,Y, Z,W ∈ Γ (TM), we have

(RXY Φ)(Z,W ) = RXY (g(Z,ϕW ))− Φ(RXY Z,W )− Φ(Z,RXYW )(14)
= −g(RXY Z,ϕW )− g(RXY ϕZ,W )
= −g(R(X,Y )Z,ϕW )− g(R(X,Y )ϕZ,W )

Let us compute again the term (RXY Φ)(Z,W ), using (12). One has

(∇X∇Y Φ)(Z,W ) = X(∇Y Φ(Z,W ))−∇Y Φ(∇XZ,W )−∇Y Φ(Z,∇XW )
= X(g(Z, (∇Y ϕ)(W )))− g(∇XZ, (∇Y ϕ)(W ))

+ g((∇Y ϕ)(Z),∇XW )
= rε(X(η(Z)g(Y,W ))−X(η(W )g(Z, Y ))
− η(∇XZ)g(Y,W ) + η(W )g(∇XZ, Y )
+ η(∇XW )g(Y,Z)− η(Z)g(Y,∇XW )).

Switching X and Y , we have

(∇Y∇XΦ)(Z,W ) = rε(Y (η(Z)g(X,W ))− Y (η(W )g(Z,X))
− η(∇Y Z)g(X,W ) + η(W )g(∇Y Z,X)
+ η(∇YW )g(X,Z)− η(Z)g(X,∇YW )).

Finally,

(∇[X,Y ]Φ)(Z,W ) = g(Z, (∇[X,Y ]ϕ)(W ))
= rε(η(Z)g([X,Y ],W )− η(W )g(Z, [X,Y ])).

It follows that

(RXY Φ)(Z,W ) = rε((∇Xη)(Z)g(Y,W )− (∇Xη)(W )g(Z, Y )
− (∇Y η)(Z)g(X,W ) + (∇Y η)(W )g(Z,X)).
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Since ∇Xξ = −εϕ(X) and Φ = dη, (∇Xη)(Y ) = dη(X,Y ), we have

(RXY Φ)(Z,W ) = rε(dη(X,Z)g(Y,W )− dη(X,W )g(Z, Y )(15)
− dη(Y,Z)g(X,W ) + dη(Y,W )g(Z,X))

= rεP (X,Y, Z,W ).

Now, (14) and (15) imply (13).

It is easy to prove the following lemma.

Lemma 3.2. Let M be a manifold endowed with an almost (para)contact
metric structure (ϕ, ξ, η, g). Then, for any X1, X2, X3, X4 ∈ Γ (TM),

(i) P (X1, X2, X3, X4) = −P (X2, X1, X3, X4);
(ii) P (X1, X2, X3, X4) = −P (X1, X2, X4, X3);
(iii) P (X1, X2, X3, X4) = −P (X3, X4, X1, X2);
(iv) P (X1, X2, X3, X4) = P (X4, X3, X2, X1).

Proposition 3.3. Let M2n+1 be a manifold with an [r]-Sasakian struc-
ture (ϕ, ξ, η, g). Then

(16) ρ(X, ξ) = 2nrη(X)

for any X ∈ Γ (TM).

Proof. We choose a local orthonormal frame (Ei)1≤i≤2n+1 on M . Putting
αi := g(Ei, Ei), using (11), (13) and the definition of P , since I = −rϕ2 +
η ⊗ ξ and dη(X,Y ) = Φ(X,Y ) = g(X,ϕY ), one has, for any X ∈ Γ (TM),

ρ(X, ξ) =
2n+1∑
i=1

αiR(X,Ei, ξ, Ei) = −r
2n+1∑
i=1

αiR(X,Ei, ξ, ϕ
2Ei)

= −r
(2n+1∑

i=1

αig(R(X,Ei)ϕ(ξ), ϕEi) + εr

2n+1∑
i=1

αiP (X,Ei, ξ, ϕEi)
)

= −ε
2n+1∑
i=1

αi(g(ϕX,ϕEi)g(ξ, Ei)− g(ϕEi, ϕEi)g(X, ξ))

= −rε
2n+1∑
i=1

αi(g(X,Ei)g(ξ, Ei)− g(Ei, Ei)g(X, ξ))

= −rε
{
g(X, ξ)−

2n+1∑
i=1

α2
i g(X, ξ)

}
= r2nη(X).

4. Mixed 3-Sasakian structures and Ricci curvature. As stated
in [8], a split three Sasakian manifold is Einstein. We give here a direct proof
and examine some consequences.
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Theorem 4.1. Any mixed 3-Sasakian manifold (M4n+3, ϕa, ξa, η
a, g) is

Einstein. More precisely , for any X,Y ∈ Γ (TM), one has

ρ(X,Y ) = −σ(4n+ 2)g(X,Y ),

where σ = ±1, according as the 3-structure is positive or negative.

Proof. Let us put, for any X,Y ∈ Γ (TM),

(17) Q(X,Y ) := ρ(X,ϕ3Y )− ρ(Y, ϕ3X) + 2σ(4n+ 1)g(X,ϕ3Y ).

We are going to prove that

(18) Q(X,Y ) =
4n+3∑
i=1

εig(R(X,Y )ei, ϕ3(ei)),

where (ei)1≤i≤4n+3 is an arbitrary orthonormal local frame on M , and εi :=
g(ei, ei). Since the structure (ϕ3, ξ3, η

3, g) is indefinite Sasakian, from (13),
with r = 1 and ε = g(ξ3, ξ3) = ∓1 = −σ according as the 3-structure is
positive or negative, we have

(19) g(R(X,Y )Z,ϕ3W ) = −g(R(X,Y )ϕ3Z,W ) + σP3(X,Y, Z,W )

for any X,Y, Z,W ∈ Γ (TM).
Using Bianchi’s First Identity, (19) and Lemma 3.2, the right hand side

of (18) becomes

(20)
4n+3∑
i=1

εig(R(X,Y )ei, ϕ3(ei))

= −
4n+3∑
i=1

εi{g(R(Y, ei)X,ϕ3(ei)) + g(R(ei, X)Y, ϕ3(ei))}

=
4n+3∑
i=1

εi{g(R(Y, ei)ϕ3X, ei)− σP3(Y, ei, X, ei)

+ g(R(ei, X)ϕ3Y, ei)− σP3(ei, X, Y, ei)}

= −ρ(Y, ϕ3X) + ρ(X,ϕ3Y )− 2σ
4n+3∑
i=1

εiP3(Y, ei, X, ei).

Computing the last term, by the definition of P3, one has
4n+3∑
i=1

εiP3(Y, ei, X, ei) =
4n+3∑
i=1

εi{dη3(Y,X)g(ei, ei)− dη3(Y, ei)g(ei, X)(21)

− dη3(ei, X)g(Y, ei)− dη3(ei, ei)g(Y,X)}
= (4n+ 3)g(ϕ3X,Y ) + g(X,ϕ3Y )− g(ϕ3X,Y )
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= (4n+ 3)g(ϕ3X,Y )− 2g(ϕ3X,Y )
= −(4n+ 1)g(X,ϕ3Y ).

From (20) and (21), we obtain (17).
Now, let us choose a local orthonormal frame adapted to the 3-structure

(Ei, ϕ1Ei, ϕ2Ei, ϕ3Ei, ξ1, ξ2, ξ3)1≤i≤n.

For any i ∈ {1, . . . , n}, we put ei := Ei, en+i := ϕ1Ei, e2n+i := ϕ2Ei and
e3n+i := ϕ3Ei, and

αi := g(Ei, Ei) = −g(ϕ1Ei, ϕ1Ei) = −g(ϕ2Ei, ϕ2Ei) = g(ϕ3Ei, ϕ3Ei);

for any a ∈ {1, 2, 3}, we put also e4n+a := ξa, and α4n+a := g(ξa, ξa) = εa.
We get

Q(X,Y ) =
n∑

i=1

αi{g(R(X,Y )Ei, ϕ3Ei)− g(R(X,Y )ϕ1Ei, ϕ3ϕ1Ei)

− g(R(X,Y )ϕ2Ei, ϕ3ϕ2Ei) + g(R(X,Y )ϕ3Ei, ϕ
2
3Ei)}

+ ε1g(R(X,Y )ξ1, ϕ3ξ1) + ε2g(R(X,Y )ξ2, ϕ3ξ2)

=
n∑

i=1

αi{g(R(X,Y )Ei, ϕ3Ei) + g(R(X,Y )ϕ1Ei, ϕ1ϕ3Ei)

+ g(R(X,Y )ϕ2Ei, ϕ2ϕ3Ei) + g(R(X,Y )Ei, ϕ3Ei)}

+ ε1g(R(X,Y )ξ1, ϕ1ξ3) + ε2g(R(X,Y )ξ2, ϕ2ξ3).

Since the structures (ϕ1, ξ1, η
1, g) and (ϕ2, ξ2, η

2, g) are both parasasakian,
using (13) with r = −1, one has

Q(X,Y ) =
n∑

i=1

αi{g(R(X,Y )Ei, ϕ3Ei)− g(R(X,Y )ϕ2
1Ei, ϕ3Ei)

+ ε1P1(X,Y, ϕ1Ei, ϕ3Ei)− g(R(X,Y )ϕ2
2Ei, ϕ3Ei)

+ ε2P2(X,Y, ϕ2Ei, ϕ3Ei) + g(R(X,Y )Ei, ϕ3Ei)}

+P1(X,Y, ξ1, ξ3) + P2(X,Y, ξ2, ξ3)

=
n∑

i=1

αi{ε1P1(X,Y, ϕ1Ei, ϕ3Ei) + ε2P2(X,Y, ϕ2Ei, ϕ3Ei)}

+P1(X,Y, ξ1, ξ3) + P2(X,Y, ξ2, ξ3).

Recalling the definition of the tensor field P , since dη1 = Φ1, dη2 = Φ2,
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ε1 = ε2 = σ = −ε3 and σε1 = σε2 = 1, using (1), (3) and (4), one has

Q(X,Y ) = −2σ
{ n∑

i=1

αi((g(X,Ei)g(ϕ3Y,Ei)−g(X,ϕ2Ei)g(ϕ3Y, ϕ2Ei)(22)

+ g(ϕ3Y, ϕ3Ei)g(X,ϕ3Ei)− g(ϕ3Y, ϕ1Ei)g(X,ϕ1Ei))

+ ε1g(X, ξ1)g(ϕ3Y, ξ1) + ε2g(X, ξ2)g(ϕ3Y, ξ2)
}

= −2σg(X,ϕ3Y ).

From (17) and (22), it follows that

(23) ρ(X,ϕ3Y )− ρ(ϕ3X,Y ) = −2σ(4n+ 2)g(X,ϕ3Y ).

Since the structure (ϕ3, ξ3, η
3, g) is indefinite Sasakian, one has ρ(X,ϕ3Y ) =

−ρ(ϕ3X,Y ) for any X,Y orthogonal to ξ3 (cf. [3] for the Riemannian case).
From (23) it follows that ρ(X,ϕ3Y ) = −σ(4n + 2)g(X,ϕ3Y ) for any X,Y
orthogonal to ξ3. Replacing Y with ϕ3Y , since Y is orthogonal to ξ3, one
has

(24) ρ(X,Y ) = −σ(4n+ 2)g(X,Y ), X, Y ⊥ ξ3.
Using (16), we have

(25) ρ(X, ξ3) = −σ(4n+ 2)g(X, ξ3), X ∈ Γ (TM),

hence, putting X = ξ3,

(26) ρ(ξ3, ξ3) = −σ(4n+ 2)g(ξ3, ξ3).

Finally, if X,Y ∈ Γ (TM), writing X = X0 + λξ3 and Y = Y0 + µξ3
with X0, Y0 orthogonal to ξ3, and λ, µ ∈ F(M), using (24)–(26), one gets
ρ(X,Y ) = −σ(4n + 2)g(X,Y ) for any X,Y ∈ Γ (TM), concluding the
proof.

As an obvious consequence of the above result, we have

Proposition 4.2. Any mixed 3-Sasakian manifold (M4n+3, ϕa, ξa, η
a, g)

has constant scalar curvature

Sc = −σ(4n+ 2)(4n+ 3),

therefore negative or positive according as the 3-structure is positive or neg-
ative.

Proposition 4.3. Let (M4n+3, ϕa, ξa, η
a, g) be a mixed 3-Sasakian man-

ifold. Then M has (pointwise) constant sectional curvature k if and only if
k = ∓1 according as the 3-structure is positive or negative.

Proof. Since the 3-structure (ϕa, ξa, η
a, g) is mixed 3-Sasakian, (13) holds

for any a ∈ {1, 2, 3}. Using the constant σ = ±1 according as the 3-structure
is positive or negative, and recalling that τaεa = −σ, we have, for any
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a ∈ {1, 2, 3} and X,Y, Z,W ∈ Γ (TM),

g(R(X,Y )Z,ϕaW ) + g(R(X,Y )ϕaZ,W ) = σPa(X,Y, Z,W ).

Supposing that M has pointwise constant sectional curvature k ∈ F(M), i.e.
R(X,Y )Z = k{g(Y,Z)X − g(X,Z)Y }, we have

σPa(X,Y, Z,W ) = g(R(X,Y )Z,ϕaW ) + g(R(X,Y )ϕaZ,W )
= k{g(Y,Z)g(X,ϕaW )− g(X,Z)g(Y, ϕaW )

+ g(Y, ϕaZ)g(X,W )− g(X,ϕaZ)g(Y,W )}
= k{dηa(X,W )g(Y, Z)− dηa(Y,W )g(X,Z)

+ dηa(Y,Z)g(X,W )− dηa(X,Z)g(Y,W )}
= − kPa(X,Y, Z,W ),

hence, for any a ∈ {1, 2, 3} and any X,Y, Z,W ∈ Γ (TM), it follows that
(k+σ)Pa(X,Y, Z,W ) = 0, and so k = −σ = ∓1 according as the 3-structure
is positive or negative. Namely, choosing a vector field Y orthogonal to
ξ1, ξ2, ξ3 such that g(Y, Y ) 6= 0, by the definition of Pa given in Lemma 3.1,
we get Pa(ξa, Y, ξa, ϕaY ) = −εag(Y, Y ) 6= 0.

5. Mixed metric 3-contact and mixed 3-Sasakian structures. In
this section we shall be concerned with some properties of particular classes
of mixed metric 3-structures, namely the class of mixed metric 3-contact
structures, which reflect analogous properties of classical metric 3-structures
(see [3] for more details).

Definition 5.1. Let M be a manifold with a mixed metric 3-structure
(ϕa, ξa, η

a, g). The structure is said to be a mixed metric 3-contact structure
if dηa = Φa for each a ∈ {1, 2, 3}, where Φa is the fundamental 2-form
defined by Φa(X,Y ) := g(X,ϕaY ). Then (M,ϕa, ξa, η

a, g) will be called
a mixed metric 3-contact manifold.

Our intent here is to prove that any mixed metric 3-contact manifold is
in fact a mixed 3-Sasakian manifold.

Let M be a manifold with a mixed metric 3-structure (ϕa, ξa, η
a, g).

Setting M̃ = M × R, and denoting by t the coordinate on R, define three
(1, 1)-type tensor fields Ja, a = 1, 2, 3, by putting, for any X̃ =

(
X, f d

dt

)
∈

Γ (TM̃), with X ∈ Γ (TM) and f ∈ F(M̃),

Ja(X̃) = Ja

(
X, f

d

dt

)
:=
(
ϕaX − τafξa, ηa(X)

d

dt

)
,

where τ1 = τ2 = −1 = −τ3. Furthermore, define the (0, 2)-type tensor field
G, by putting, for any X̃ =

(
X, f d

dt

)
and Ỹ =

(
Y, h d

dt

)
in Γ (TM̃), with
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X,Y ∈ Γ (TM) and f, h ∈ F(M̃),

G(X̃, Ỹ ) := g(X,Y )− σfh,
where σ = ±1 according as the 3-structure is positive or negative.

Proposition 5.2. (M̃, Ja, G)a=1,2,3 is an almost hyper parahermitian
manifold.

Proof. Let a ∈ {1, 2, 3} and X̃ ∈ Γ (TM̃) with X̃ =
(
X, f d

dt

)
. Since by

definition ϕ2
a = −τa(I − ηa ⊗ ξa), we have

(Ja)2(X̃) =
(

(ϕa)2X − τaηa(X)ξa,−τaf
d

dt

)
= −τaX̃,

hence (Ja)2 = −τaI. Let now (a, b, c) be a cyclic permutation of (1, 2, 3).
Using (1)–(3), one has, for any X̃ ∈ Γ (TM̃) with X̃ =

(
X, f d

dt

)
,

JaJb(X̃) =
(
ϕaϕbX − τbfϕaξb − τaηb(X)ξa, (ηa(ϕbX)− τbfηaξb)

d

dt

)
=
(
τcϕcX − fξc, τcηc(X)

d

dt

)
= τcJc(X̃),

hence JaJb = τcJc. Analogously, JbJa = −τcJc, and this proves that
(Ja)a=1,2,3 is an almost hyper paracomplex structure on M̃ . Let now a ∈
{1, 2, 3}, X̃ =

(
X, f d

dt

)
and Ỹ =

(
Y, h d

dt

)
. Since, by (4), g(ϕaX,Y ) =

−g(X,ϕaY ), using the identity τaεa = −σ, by standard calculations we
have G(X̃, JaỸ ) = −G(Ja(X̃), Ỹ ), and by Definition 2.2 it follows that
(M̃, Ja, G), a ∈ {1, 2, 3}, is an almost hyper parahermitian manifold.

Remark 5.3. It is clear that the tensor fields Ja constructed on M̃ are
almost product structures for a = 1, 2, and an almost complex structure
for a = 3. The three structures (ϕa, ξa, η

a, g) are normal if and only if the
manifold (M̃, Ja, G), a ∈ {1, 2, 3}, is hyper parahermitian.

Thus, we may state:

Proposition 5.4. Let M be a manifold endowed with a mixed 3-struc-
ture (ϕa, ξa, η

a). Then the structures are normal if and only if at least two
of them are normal.

We shall see in a moment that the manifold (M̃, Ja, G), a ∈ {1, 2, 3}, is
indeed hyper parahermitian if the 3-structure is a mixed metric 3-contact
structure. To this end, let us prove the following preliminary results.

Lemma 5.5. Let M be a manifold endowed with a mixed metric 3-contact
structure. Denoting , for any a ∈ {1, 2, 3}, by Ωa the fundamental 2-form
associated with the structure (Ja, G) defined by Ωa(X̃, Ỹ ) := G(X̃, JaỸ ), we
have

dΩa = 2σdt ∧Ωa
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for any a ∈ {1, 2, 3}, where σ = ±1 according as the 3-structure is positive
or negative.

Proof. Fixing a ∈ {1, 2, 3}, let us compute dΩa using the formula

(27) 3dΩa(X̃, Ỹ , Z̃) = S
(X̃,Ỹ ,Z̃)

{X̃(Ωa(Ỹ , Z̃))−Ωa([X̃, Ỹ ], Z̃)},

for any X̃, Ỹ , Z̃ ∈ Γ (TM̃). Putting X̃ =
(
X, f d

dt

)
, Ỹ =

(
Y, h d

dt

)
and Z̃ =(

Z, k d
dt

)
and using τaεa = −σ, we have

(28) Ωa(Ỹ , Z̃) = Φa(Y, Z) + σ(kηa(Y )− hηa(Z)).

Furthermore, [X̃, Ỹ ] =
(
[X,Y ],

(
X(h)− Y (f) + f dh

dt − h
df
dt

)
d
dt

)
and

Ωa([X̃, Ỹ ], Z̃) = Φa([X,Y ], Z)

+σ

{
kηa[X,Y ]−

(
X(h)− Y (f) + f

dh

dt
− h df

dt

)
ηa(Z)

}
.

Finally, from (28),

X̃(Ωa(Ỹ , Z̃)) = X(Φa(Y,Z) + σ(kηa(Y )− hηa(Z)))

+ f
d

dt
(Φa(Y,Z) + σ(kηa(Y )− hηa(Z)))

= X(Φa(Y,Z)) + σ(X(k)ηa(Y ) + kX(ηa(Y ))

−X(h)ηa(Z)− hX(ηa(Z))) + σ

(
f
dk

dt
ηa(Y )− f dh

dt
ηa(Z)

)
.

From (27), using the above identities and dΦa = 0, one gets

3dΩa(X̃, Ỹ , Z̃) = 2σ(Φa(X,Y )k + Φa(Y,Z)f + Φa(Z,X)h).

Finally, using (28), it follows that

3dΩa(X̃, Ỹ , Z̃) = 2σ
(
fΩa(Ỹ , Z̃)− σ(fkηa(Y )− fhηa(Z))

+hΩa(Z̃, X̃)− σ(hfηa(Z)− hkηa(X))
+ kΩa(X̃, Ỹ )− σ(khηa(X)− kfηa(Y ))

)
= 2σ(fΩa(Ỹ , Z̃) + hΩa(Z̃, X̃) + kΩa(X̃, Ỹ ))
= 6σ(dt ∧Ωa)(X̃, Ỹ , Z̃),

hence dΩa = 2σdt ∧Ωa.

Lemma 5.6. Let (M,Ja, g), a ∈ {1, 2, 3}, be an almost hyper paraher-
mitian manifold such that , denoting by Ωa the fundamental 2-form asso-
ciated with Ja, there exists a 1-form ω satisfying dΩa = kω ∧ Ωa for any
a ∈ {1, 2, 3} with k ∈ F(M). Then each structure Ja is integrable and the
manifold is hyper parahermitian.

Proof. Let us prove that N1 = 0. It is well known that

N1(X,Y ) = (∇J1XJ1)(Y )− (∇J1Y J1)(X)− J1(∇XJ1)(Y ) + J1(∇Y J1)(X),
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hence, using (i) and (ii) of Definition 2.2, we get

J2N1(X,Y ) = −J2(∇J1Y J1)(X)− J3(∇Y J1)(X)(29)
+ J2(∇J1XJ1)(Y ) + J3(∇XJ1)(Y ).

Then, for any Z ∈ Γ (TM), using (iii) of Definition 2.2, by standard calcu-
lations, one has

g(−J2(∇J1Y J1)(X), Z) = −g(J2∇J1Y (J1X), Z)− g(J3∇J1YX,Z)
= −g(X, (∇J1Y J3)(Z))− g(J1X, (∇J1Y J2)(Z))
= (∇J1YΩ3)(Z,X) + (∇J1YΩ2)(Z, J1X).

Switching X and Y one has

g(J2(∇J1XJ1)(Y ), Z) = (∇J1XΩ3)(Y,Z) + (∇J1XΩ2)(J1Y,Z).

Analogously, one obtains

g(−J3(∇Y J1)(X), Z) = (∇YΩ2)(Z,X) + (∇YΩ3)(Z, J1X)

and switching X and Y one gets

g(J3(∇XJ1)(Y ), Z) = (∇XΩ2)(Y,Z) + (∇XΩ3)(J1Y,Z).

Since 3dΩ(X,Y, Z) = S
(X,Y,Z)

(∇XΩ)(Y, Z), from (29) we have

g(J2N1(X,Y ), Z) = 3dΩ2(X,Y, Z) + 3dΩ3(X, J1Y, Z)
+ 3dΩ3(J1X,Y, Z) + 3dΩ2(J1X, J1Y, Z).

As dΩa = kω ∧Ωa, we get

g(J2N1(X,Y ), Z) = k{ω(X)Ω2(Y, Z) + ω(Y )Ω2(Z,X)
+ω(Z)Ω2(X,Y ) + ω(X)Ω3(J1Y,Z)
+ω(J1Y )Ω3(Z,X) + ω(Z)Ω3(X,J1Y )
+ω(J1X)Ω3(Y, Z) + ω(Y )Ω3(Z, J1X)
+ω(Z)Ω3(J1X,Y ) + ω(J1X)Ω2(J1Y,Z)
+ω(J1Y )Ω2(Z, J1X) + ω(Z)Ω2(J1X,J1Y )}.

It is easy to check that Ω3(J1Y, Z) = −Ω2(Y,Z), Ω3(Y, J1Z) = −Ω2(Y,Z),
Ω2(Z, J1X) = −Ω3(Z,X), Ω2(J1Z,X) = −Ω3(Z,X) and Ω2(J1X, J1Y ) =
Ω2(X,Y ). Therefore, g(J2N1(X,Y ), Z) = 0, hence N1 = 0. In an analogous
way, one proves that N2 = 0 and N3 = 0.

As an obvious consequence of Lemmas 5.5 and 5.6, one obtains the fol-
lowing result.

Theorem 5.7. Any mixed metric 3-contact structure on a manifold is
mixed 3-Sasakian.

Thus, Theorems 4.1–4.3 may be formulated for mixed metric 3-contact
manifolds.
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Math. 203, Birkhäuser Boston, Boston, MA, 2002.

[4] C. Boyer and K. Galicki, 3-Sasakian manifolds, in: Surveys in Differential Geometry:
Essays on Einstein Manifolds, VI, Int. Press, Boston, MA, 1999, 123–184.

[5] L. Brunetti, Lightlike hypersurfaces of semi-Riemannian manifolds with remarkable
structures, PhD thesis, Dept. Math., Univ. of Bari, 2007.

[6] A. V. Caldarella, Paraquaternionic structures on smooth manifolds and related
structures, PhD thesis, Dept. of Math., Univ. of Bari, 2007.

[7] V. Cruceanu, P. Fortuny and P. M. Gadea, A survey on paracomplex geometry,
Rocky Mountain J. Math. 26 (1996), 83–115.

[8] A. S. Dancer, H. R. Jorgensen and A. F. Swann, Metric geometries over the split
quaternions, Rend. Sem. Mat. Torino 63 (2005), 119–139.

[9] S. Erdem, On almost (para)contact (hyperbolic) metric manifolds and harmonicity
of (ϕ, ϕ′)-holomorphic maps between them, Houston J. Math. 28 (2002), 21–45.
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