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MIXED AND NONCONFORMING FINITE ELEMENT METHODS :
IMPLEMENTATION, POSTPROCESSING

AND ERROR ESTIMATES (*)

by D. N. ARNOLD (*) and F. BREZZI (2)

Communicated by E MAGENES

Abstract — We discuss a technique of implementing certain mixed f mite éléments based on the
use of Lagrange multipliers to impose interelement continuity The matrices ansingfrom this imple-
mentation are positive deflmte Constdenng some well-known mixed methods, namely the Raviart-
Thomas methodsfor second order elhptic problems and the Hellan-Herrmann-Johnson methodfor
biharmonic problems, we show that the computed Lagrange multipliers may be exploited in a simple
pröstprocess to produce better approximation of the original variables Wefurther establish an équi-
valence between the mixed methods and certain modified versions of well-known nonconforming
methods, notably the Morleymethod in the case of the biharmonic problem. The équivalence is exploited
to provide error estimâtes for both the mixed and nonconforming methods

Resumé —- NOMS étudions ici une technique d'implémentation de certains éléments f mis mixtes
bases sur l'utilisation des multiplicateurs de Lagrange utilisés pour imposer la continuité à la traversée
des éléments Les matrices qui apparaissent sont définies positives Considérant quelques méthodes
d'éléments finis mixtes bien connues telles que les méthodes de Raviart-Thomas pour des problèmes
elliptiques du second ordre et la méthode de Hellan-Herrmann-Johnson pour les problèmes biharmo-
niques, nous voyons que les multiplicateurs de Lagrange calcules peuvent être exploites dans un
post-traitement simple pour produire une meilleure approximation des variables originales Nous
établissons en outre une équivalence entre les methodes mixtes et certaines versions modifiées de
méthodes non conformes bien connues, en particulier la méthode de Morley pour le problème bihar-
monique Cette équivalence est exploitée pour obtenir des estimations à"*erreur pour les méthodes
mixtes et non conformes a la fois

0. INTRODUCTION

The discretization of hnear elhptic boundary value problems by mixed
finite element methods typically leads to linear Systems of the form

(0.0)
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8 D N ARNOLD, F BREZZI

In order to fix ideas we shall thmk of a and u as approximations to the stress
field and displacement field respectively in a problem of hnear elasticity. The
choice of a numencal method to solve the System (0 0) is restncted by the
fact that ît is generally mdefinite. However for many of the most widely used
mixed methods this drawback is frequently circumvented by an împlementa-
tional technique which leads to a positive definite system [8]. The technique
apphes, essentially, whenever the fmite éléments approximating the stress
field are subject to contmuity constramts only at points interior to the inter-
element boundaries, but not at element vertices. Then one may eliminate the
contmuity constramts from the fmite element space and enforce the required
contmuity instead through Lagrange multipliers defined on the interelement
boundaries. Denoting by X the multipliers, which enter the discrete system
as additional unknowns. the resultmg system has the form

À5 + Bü + CX = / , ,
B1 Ö = j 2 , \ (0 1)
C1 â = 0

The third équation in (0.1) imposes the iequired contmuity on the stress
field, and -— if the space of multipliers is chosen appropnately — then â,
although a priori sought in a space of fïnite éléments without interelement
contmuity constraints, will belong to the original fïnite element space for a,
and consequently â and a nill coïncide. Moreover the displacement field ü
defined by (0.1) coïncides with u defmed by (0 0).

The advantage of the System (0.1) is that the matrix correspondmg to the
operator Â is block-diagonal, with each block correspondmg to the stress
unknowns in a single element. Hence Â may be mverted easüy and inexpen-
sively at the element level, leadmg to the expression

â - À'x(j\ ~ BH - CX) (0.2)

for the approximate stress field in terms of the other unknowns Substitutmg
(0.2) mto the second and third équations of (0 1) yields the lmear system

1 A - X B Ü + C T A ~ 1 C X = CT A - l j j ( ' )

which is symmetrie positive definite. One may thus solve this system and
then recover the stress field from (0.2) by a simple element-by-element post-
process.

M2 AN Modélisation mathématique et Analyse numérique
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MIXED AND NONCONFORMING FINITE ELEMENT METHODS 9

This technique may be (and sometimes is) regarded as a purely implemen-
tational trick, i.e., as a computationally convenient way to détermine the
solution of the original system (0.0). Still, one computes in this way, in addi-
tion to a and w, also the Lagrange multiplier field, X, which frequently admits
a physical interprétation such as a displacement and is often so used [8].
The mathematical convergence theory for mixed methods, however, generally
considers only the approximation of the original fïelds, neglecting the further
information offered by the multipliers.

In this paper we consider two typical examples of mixed methods, the
method of Raviart and Thomas [16] for membrane (and other second order
elliptic) problems, and the Hellan-Hermann-Johnson method [9], [10], [12],
for plate bending (and other fourth order elliptic) problems. The technique
described above applies to both methods and in each case we show that the
multipliers so obtained can be used in the reconstruction of an approximate
displacement field which is asymptotically more accurate than the approxi-
mation furnished by the original field w. Our analysis further reveals that
each of these mixed methods is equivalent (in the sense of leading to the same
approximate solution) to a certain nonconforming displacement method,
which in each case is an apparently slight modification of a well-known
method. (Specifically we establish an équivalence between the Raviart-Thomas
method and a modified ^-nonconforming method, and between the Hellan-
Hermann-Johnson method and a modification of the Morley method [13],
[14], [15].)

As we show by example, this dual mode of regarding the methods (either
as mixed or nonconforming displacement) is useful for deriving error esti-
mâtes as well as for implementating the methods. However it raises the ques-
tion of whether the modifications which render a displacement method equi-
valent to a corresponding mixed method actually improve the method in
some sense. We cannot answer this question simply by comparing the asymp-
totic rates of convergence (which are generally not affected by the modifica-
tion), although in one case we do show superior robustness of the modified
method with respect to the regularity of the data. A gênerai answer must
await further analysis or numerical expérimentation.

1. ERROR ESTIMATES FOR THE LAGRANGE MULTIPLIER

A. The Raviart-Thomas éléments

Let us recall the main features of the Raviart-Thomas method [16]. Let
Q dénote a bounded domain in M2, which, for the sake of simplicity, we sup-

vol 19, n° 1, 1985



10 D. N. ARNOLD, F. BREZZI

pose to be a polygon. Let / be a given function in L2(Q) and a a sufficiently

smooth two by two matrix-valued function on Q. We assume that there exists
a > 0 such that

(1.0)

Consider the boundary value problem :

jïnd ue H^Q) such that

— div (a grad u) = f in

u = 0 on dQ .

(1.1)

It is well known that problem (1.1) has a unique solution. In the foliowing
we implicitly assume that u(x) has, at each step, the regularity required by
the context. The exact requirements are easily obtained from inspection of
the arguments. Note that if Q is convex and f e HS(Q) for some s > 0, then
u G Hr(Q) for some number /• > 2 which dépends on s and Q. In order to
state a mixed formulation of (1.1) we defïne the space

if (div ; Q) = { x | T e (L2(Q))2, div x e L2(Q) )

with the usual graph norm

i l llfl<div;Q) - L If Xi llL2(n) + II d l V Î

and set

g = — a grad w G H(div ; Q)

(1.2)

(1.3)

(1.4)

A mixed formulation of (1.1) is then

find (CT, U) e H (div ; Q) x L2(Q) such that \

£V-Idx-\ udivxdx = 0 VxGH(div;Q)s

Ja " Ja
f f

i? div a dx = fv dx VÜ G L2(Q),
Jn Jn

(1.5)

where c •= a 1 is the compliance tensor. Problem (1.5) is obviously equi-
valent to (1.1) and (1.4).

M2 AN Modélisation mathématique et Analyse numérique
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MIXED AND NONCONFORMING FINÏTE ELEMENT METHODS 11

We now introducé the Raviart-Thomas discretization of (1.5). We shall
use the notations

S$k(S) := Polynomials ofdegree ^ k on S, (1.6)

W ) := «P*(S) x W), (1.7)

KXk(S) -'={f\f(x)=p(x) + xq(x\ p e W l q e <$k(S) }, (1.8)

for any integer k ^ 0 and any domain S ç R", o 1. We consider now a
regular séquence of décompositions { %h }h of Q into triangles (see [5]) and
define

= { T | x e (L2(O))\ x |T G 9ÎO:fc(T0 VT e ï h } , (1.9)

= {v\veL2(Q\v\Te^(T) VTeï,}, (1.10)

= {x |xel ïT 'L 1 (3: h ) , t/ze nowiû/ component of x /s
continuons across the interelement boundaries }

; f i ) . (1.11)

For A: a fixed nonnegative integer, the kth order Raviart-Thomas mixed method
now reads as follows :

find (<jh,uh)eRTk(Xh) x M^^X,) such that

I cqh.x dx-\ uh div x dx - 0 Vx G RTk(xh) , (1.12)

va f tdx= f fvdx
Jnft f Vv G

n J
The following results are known ([16], [7], [6]).

THEOREM 1 . 1 : For anyk > O.problem (1.12) has a unique solution. Moreover
there exists y > 0, independent of h, such that

\\°-vh\\o<y\h\k+x \\q\\k+l9 (1-13)

r = max (k + 2, 3) ,

where we dénote by \h\ the maximum diameter of the triangles of %h and by
Ph the orthogonal projection of L2 onto M* 1(Ï / I).

Note that the linear system associated with (1.12) has the structure (0.0).
We now introducé Lagrange multipliers on the interelement boundaries and

vol. 19, n° 1, 1985



12 D. N. ARNOLD, F. BREZZI

so obtain a System with the structure (0.1). To this end we require some
further notation. Let dèh dénote the set of edges of triangles in Üh and set

For T eXh, e e <£A, dénote by hT and he their respective diameters. Let nT

dénote the exterior unit normal to T and ne one of the unit vectors normal
to e. The space of multipliers we shall use is the space Mk_ j((E£) of all func-
tions on u <Eh which restrict to polynomial functions of degree at most k on
each e e (E£ and vanish on u (Eg. Now if x e ^^(T) then x.ne e tyk{e) for
each edge e of T. The following lemma is an immédiate conséquence.

(1.17)

that

LEMMA 1.2 : ƒƒ x e RTk_ x(Zh), fAen i e

= 0 Vjxe A f i ^
ö7

Now consider the extended problem,

i a ^ ) x MtxÇth) x Mi ,((£?)

r —
(0 £?fc-ïd?-Z

ôT

T.nT de j = 0 Vx e RTk_x(%) ,
J (1.18)

r r
(ii) X üdivahdx= /üdx VveMk_x(Zh).

T Jr Ja
(üi) E f MÇ. 5 7 . de = 0 Vji e M i , ((E,°).

T JdT

The proof of the following lemma is immédiate.

LEMMA 1.3 : Problem (1.18) has a unique solution (öh3 uh9 kh). Moreover
afc = oh and Tih — utr wiwre (o,p uh) is the unique solution oj (L 12).

This allows us to identify {5h, üh) and drop the upper bars in (1.18). Note
that the équation <jh = uh is an identity among vector-valued functions.
Clearly the corresponding coefficient arrays on the computer will not be
equal to each other (they have different dimensions !). Note also that problem
(1.18) has the form (0.1) and that, if a basis for RT'L x(Xh) is assembled from
bases for the 9î!Xk(T) in the obvious way, the compliance matrix A corres-

M2 AN Modélisation mathématique et Analyse numérique
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MIXED AND NONCONFORMING FINITE ELEMENT METHODS 13

ponding to \ cah.xdx is block diagonal as required. It is also easily proved

in the present case that the final matrix corresponding to the form (0.3) is
positive defmite.

Our aim is now to dérive error bounds for Xh — u, which is defined on
u (£°. The use of Xh to approximate u within an element will be discussed
in the next section (in the case of k even). Defming the norms on Ml^G^)

we now compare Xh with Hh u, defined to be the orthogonal projection of
u lue^onto Mk_x{&h) in the norm (1.19).

THEOREM 1 . 4 : There exist constants yu y2 independent ofu and h such that,

for every T e %h and every edge e of T,

1 \ - nhu\\0,e ^ lMi2 \\q-?H llo.r + hrm \\ Ph « " *H Ho/r), 0 - 2 1 )

and

- nh u q-qh ||Oin + || Ph u - uh | | 0 , n) . (1.22)

Proqf : Clearly (1.22) is an immédiate conséquence of (1.21). In order to
prove (1.21) let us consider T e Xh and e a 8T. It is proved in [16] that there
exists a unique Je 9H*(T) such that

ï.n r - 0 on dT\e9 l (1.23)
f l ^ - ^ T ) in L2(T).

Then a simple scaling argument shows that

h T II ï IIUT + li ï IIO.T < JUT12 II h - n h u \\0>e. (1.24)

We may now choose x in (1.18i) such that

T = x in T , T = 0 in fl\T, (1.25)

which gives, using (1.23),

r _ ç _ r
£Çh-l d* ~ «h d i v l dx. +

JT^ JT Je

- nhu)de = Q . (1.26)
JT Je

vol. 19, n° L, 1985



14 D. N. ARNOLD, F. BREZZI

On the other hand from (1.4) we have

ca = - grad w, (1.27)

so that Green's formula implies

ca.xdx- udivxdx + \ u(kh - Uh u) de = 0 . (1.
J r~ JT Je

28)

Subtracting (1.28) from (1.26) and using the fact that div T e tyk{T) we
have

ii K - nfc u \\le = f (xh - u) (kh - nh u) de
Je

c(oh - o).xdx + (uh - Phu) div xdx . (1.29)
J T ~ JT

Finally (1.29) and (1.24) give (1.21).

COROLLARY 1.5 : We have

I K - n „ u |_ 1/2tfc ^ 7 | h r 2 || u \\r9 r = max (k + 2, 3) , (1.30)

with y independent of u and h.

The proof is immédiate from (1.13), (1.15), and (1.22).

Remark : The norm (1.20) may be interpreted as an L2(Q) norm of a sui-
table extension of p.h to the whole Q. In this sense, the estimate (1.30) may
not seem better than (1.15) itself. However, this is not the case. Consider for
instance the simplest case k = 0 : the estimate (1.15) gives superconvergence
of 0(A2) at the center of gravity of each element (but nothing better), but (1.30)
implies, as we shall see later on, that the S^1 nonconforming extension of Xh

has a distance 0(/?2) from u in L2(Q). This kind of argument will be developed
in detail in the next section.

B. The Hellan-Herrmann-Johnson element.

We consider, for the sake of simplicity, a very special model problem.
However it is quite easy to check that all the results hold unchanged, for ins-
tance, for a gênerai plate bending problem with constant (or piecewise cons-

M2 AN Modélisation mathématique et Analyse numérique
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MIXED AND NONCONFORMING FINITE ELEMENT METHODS 15

tant) coefficients. Minor changes allow the treatment of the case with variable
coefficients. Our model problem will be the following :

find \ | / G H 2 ( Q ) such that

A2v|/ = ƒ in Q,

v|/ = U = 0 on dQ ,

which we may write in variational form as

find \|/ e tfo
2(Q) such that

(1-31)

D2 \|f : D2 cp dx = l /cp dx V<p e H Q ( Q )

where D2 cp = (d2<p/dxi dXj)u is the tensor of second partials and the colon
dénotes the scalar product of tensors. We shall analyze here the lowest order
case of the family of H-H-J éléments. For more information see [9], [10], [12],
[4], [7], [2], We maintain the assumptions and notations of the last section
concerning the domain Q and the triangulations { %h } h . The mixed discre-
tization is based on a factorization of (1.31) into the équations

a = D2v|/, (1.33)

and seeks to approximate a and \|/ simultaneously. To define the finite element
space we define first

S - i - h | T 1 2 = x21 and Ti3eM°^{Z})for ij = 1,2} (1.35)

and set

Mn(x) = ine.ne on e, e e &h. (1.36)

Now we can define the finite element spaces of Hellan-Herrmann-Johnson
method as

§g(Ïfc) = { x e ö ° ! (%h) | M„(x) is continuons at the
mterelement boundanes } , (1.37)

M(J(ïh) = M l j ï J n ^ l Q ) . (1.38)

vol. 19, n° 1, 1985



16 D. N. ARNOLD, F. BREZZI

The discretized problem may be written as follows :

find (gfc, \k) e ôo(ï») x MQ1 (2„) such that

(O

(ü)

q„ : x dx M„(x) ÏÏ£ de = 0 Vx eon
dT

Af „(gfc) 2 ^ = - /cp dx Vcp e Af <| ( 2 „ ) .

(1.39)

/
The following results are known (see [12], [4], [7], [2]).

THEOREM 1.6: Problem (1.39) lias a unique solution. Moreover if the solu-
tion \\i oj (1.31) belongs to H3(Q) we have

(1.40)

with y independent oj v|/ and h.

Problem (1.39) has again the structure (0.0) and hence we may again
introducé Lagrange multipliers X at the interelement boundaries in order to
eliminate the condition of continuity of Mn(a). The proof of the following
lemma is immédiate.

LEMMA 1.7 : /ƒ x e <r>° , (2,,), then x e §g (2 h ) (ff

Mn{x)WiT.nede = 0 Vji

Hence we may consider the extended problem,

find ( ö . i y e ö 0 - , ^ , ) x M>(Zh) x MÎ

(1.41)

such that

(i)

(ii)

öh : x dx M„(x) ̂ d e - ( M„(x) Xfc n r.n, = 0

Af„(gfc) | £ <fe = - U
dT J

= 0

ï Vcp e Af J (2„ ) ,

dT

(1.42)

It is easy to prove the following lemma.

M2 AN Modélisation mathématique et Analyse numérique
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MIXED AND NONCONFORMING FINITE ELEMENT METHODS 17

LEMMA 1.8 : Problem (1.42) has a unique solution Çôh, \|/h, Xh). Moreover
qh = qh and v|/h = y\?h where {qh, v|/h) is the unique solution of (1.39).

This allows us to identify qh with qh and \|//t with \|/ft and drop the bars
in ( 1 .42). Following the pattern of part A of this section, we could now prove
the convergence of Xh (to d\\j/dnc, in this case) and give a priori error bounds.
We shall do this, but with a different technique. More precisely we shall intro-
ducé a nonconforming displacement method (a slight modification of the
well-known Morley [13], [14], [15] method) and show that it is equivalent to
(1.42). To this end we defme

M*(ï/i) = {(pe M2
1 (Xh) | cp is continuons at the vertices and vanishes

at the vertices ofdQ, Scp/ôn is continuons at the midpoint of
each edge and vanishes at the midpoints ofthe edges in 3Q ] . (1.43)

o

For a given (p e HQ{Q) U M2(Xh) we let q/ be the interpolant ofq> in MQ(XH),

that is, q/ is piecewise linear and continuous and coïncides with q> at the
vertices. We can now define our nonconforming displacement method as
follows :

find $h G M*(Xh) such that

y f D 2 f i ) 2 à - f ( ^ à V e M 2 ï ^ (1*44)
T
 JT " Jn

Note that this method differs from the usual Morley method only by the
présence of the interpolation operator in the right hand side. We shall now
prove that the modified Morley method is actually equivalent with the method
(1.42) (which in turn is equivalent with the original H-H-J method (1.39)).
For this we need the following simple conséquence of Green's formula :

Ti2 = T2i and tytH2{T) then

JdT JdT

where Mn(x) is defined in (1.36) and Mnt(x) = vne.te with te = (— n2,nl)

denoting the unit vector tangent to e. We deduce as a conséquence of (1.45)
that

if T e §0 and <P e M ^ Î J + HQ(Q) then 1

n^(p [ (1.46)
JdT "** Ôt )

vol. 19, n« 1, 1985
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18 D. N. ARNOLD, F. BREZZI

Finally we also note that

if xtJ e y$°{T) and <p G H2{T) with <p = 0 at the corners then,

Idl

Let now yh be the solution of (1.44). We associate with it the functions

ge§°_,(Zh) defined by g = D2 $h in each T , (1.48)

X e Ml {Zh) defined by % = {§hY, (1.49)

l e M ? , ( 6 u ° ) defined by A = •—- on e VeGCê?, (1.50)
dne

where, for cp G M2Çth\ we have set

^ := the value of ^- at the midpoint of e , e e Œ j . (1.51)
OH 3«

THEOREM 1.9 : T/;e tn>/^ (&, | , 1) defïned in (1.48)-(1.50) is the solution
qf(lA2).

Proof : Using (1.46) and (1.45) we have

From (1.50) we get

f M „ii) ^-de=[ M„(t) UT.n„ de, (1.53)
JÖT ~ m JôT

and from (1.49), (1.47), and (1.45),

[ Mm(T)^de= [ M,„(T)|U=- [ M,(i)|&. (1.54)
Jdl JdT JÔT

From (1.52)-(l. 54) we see that (1.42i) is satisfied with (&}v \|/h, À.J replaced

by (ê , 1 1 ) . Next, for each ^ e M ? ^Cj) we defme q> = <p(n) e M^((Efc) by

f^ = M Veee , 0 (see (1.51)), (1.55)

q/ = 0. (1.56)

M2 AN Modélisation mathématique et Analyse numérique
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Hence we have for all u e M ^ Œ ? ) that

£ f Mn(è) vnT.ne de = Z [ Mn(è) ̂ -de. (1.57)
T JôT r JdT - on

Now note that (1.45), (1.56), and (1.47) give

[è:D2q>dx=Y [ M„(o)C^de. (1.58)
J * = ~ T )dT * ™

From (1.57), (1.58), (1.44), and (1.56) we have now, for all [ IÊM^(<Ej ) ,
that

[
Ja

ede = Q, (1.59)
ar

which is (1.42 iii) ; hence & eôoC^J- It remains to prove (1.42 ii) with qh

replaced by a.

Associa te, to each <p e M o(Üh)s Ç = Ç(q>) e M^(Ih) such that

? = <p, (1.60)

^ • = 0 on each ee(E£. (1.61)

The using (1.45), (1.60), (1.47), and then again (1.45), we get for each T e%h

that

Mm{&)^de = - \

- f Mn(ë)^de- [ ë.D^dx. (1.62)
hr

Summing (1.62) over T, using the fact that & e ôoC^h) a n ^ applying (1.61),
and finally using (1.48), (1.44), and (1.60), we^obtain (1.42 ii). This complètes
the proof of theorem 1.9.

Note that the équivalence proved in the theorem can be used in both direc-
tions : from the solution \j/ft of (1.44) one can deduce the solution of (1.42)
through (1.48)-(l .50), and, on the other hand, knowing the solution {ahJ

\|/h, kh) of (1.42) one can reconstruct $h, the solution of (1.44), by

\j/'] = y\fh at the vertices ,

4» l (1-63)
-~- = Xh at the midpoints .

vol. 19, n« 1, 1985



20 O. N. ARNOLD, F. BREZZI

As a matter of fact (1.63) shows that such a reconstruction is much easier
if (1.39) is solved in the equivalent form (1.42). The équivalence proved in
theorem 1.9 can be a useful tooi at the implementation level : according to
the circumstances any of the formulations (1.39), (1.42), or (1.44) might be
easiest to implement, although in our opinion (1.44) will usually be superior.
We want to show now that the équivalence is indeed a very useful tooi also
in the asymptotic error analysis. First, we have as an immédiate conséquence
of theorem 1.6, lemma 1.8, and theorem 1.9 the following error estimate
for the modified Morley method.

THEOREM 1.10 : If \|/, the solution oj (1.31), is in H3(Q) and if §h is the
solution of the modified Morley method (1,44), then

< 7 I h | || if ||3 (1.64)

with y independent of \|/ and h.

Note that if Q is convex then (1.64) may be replaced by

H - l ' M k / ^ Y l / H II ƒ H-i. (1-65)

As a conséquence of theorem 1.10 we may deduce in a new way the known
error estimate for the usual Morley method :

find wh e M*Çth) such that )
l (1.66)

D2wh:D
2<pdx= ïftpdx j

r

COROLLARY 1.11 : If f 6 L2{Q) and if the solution \|/ of (1.31) belongs to
H3(Q), then

II w f c - x M I 2 t f c ^ Y | A | ( | | \ H I 3 + 1 * 1 1 1 / H o ) ( 1 - 6 7 )

with y independent of '\|/ and h.

Proof : Subtracting (1.44) from (1.66) with <p = \fr — wh we have

I,;, -wj]dx. (1.68)

Since for all 9 e M*{%h) we have by scaling that

II tf - <P Po < Y l * l 2 l l < P l l 2 , * > 0 - 6 9 )

weeasily obtain (1.67) from (1.64), (1.68). (1.69). and the triangle inequality.
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For the original proof of (1.67) see [14]. For more information on the
usual Morley method see [11], [5, p. 374], [15]. A comparison between (1.65)
and (1.67) shows that the modified Morley method is superior to the usual
one, at least with respect to the required regularity on ƒ We explicitly point
out that a resuit of the form (1.64) or (1.65) cannot be true for the usual
Morley method. This is obvious for (1.65), since M^( ïJ <£ HQ(Q) SO that
the method (1.66) cannot be applied for a gênerai f e H ~ *(Q). Assume now
that, for a fixed h, f is defmed as a bounded linear functional on HQ (Q) + M 2 (ïh)
and set

where

Ilcpllï.fc-E
T

From (1.68) we may easily deduce as in corollary 1.11 that

I I * - w j | 2 f f c ^ y | / 2 | ( | | \ | / | l 3 +?*(ƒ, A))- 0.72)

However this is not of the form (1.64) unless we allow y, in (1.64), to depend
on ƒ. More precisely, assume that we had

I I * - w J l 2 . h < Y l * l l l * l 1 3 (1-73)

with y independent of h and \|/ (hence independent of/) for all ƒ defmed on
H £ (Cl) + M^{Xh). Fbr fixed h take ƒ e iî "1 (Q) such that

sup /<pdx/||q>ll - + oo (1.74)

and take now a séquence ƒ(n) e L2(Q) such that f{n) -> ƒ in H ~l(Q). Assuming
that Q is convex, the corresponding solutions, \|/(n) of (1.31) are uniformly
bounded in H3(Q). However (1.74) implies that || nf] \\ -> oo as n -* oo
and hence (1.73) must be false. Note that this example does not contradict
(1.72) since y+(/n, h) will also tend to infinity with n.

Our next goal is to use the équivalence of (1.42) and (1.44) to prove a new
duality estima te.

THEOREM 1.12 : Ij Q is convex and f e L2(Q) then

II* - V l l i , * < Y l A | 2 ( H * l l 3 + II f IIo) 0 - 7 5 )

VV/Y/Ï y independent of 'v|/ i/nd /?.
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Proof : Let us set 9 := \|/ - \|/\ S' •.= interpolant of & in Afo(Ifc), and

q = - AO^e H " 1 ^ ) •

Consider the auxiliary Dirichlet problem for the biharmonic :

find Ç e HQ(Q) such that

(1.76)

Clearly we have

On the other hand we have

(1.77)

== £ , - £ 2 . (1.78)

We bound El and £ 2 separately. Let ^h be the usual interpolant of Ç in
have that

£ , =
Jn

(1.79)

However theorem 1.9 together with (1.46) and (1.47) implies that

so from (1.79) we get

ƒ IU

(1.80)

(1.81)
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Now set x := D2 Ç We have that

2=Z f T:D2Sdx-(q,$ >

= l { " f d i v x . ç j d S d x + f [ M „ ( T ) ^ + M B ( ( T ) ^ J & j -<q9&>

= - Z f div ï - ê r a d Ô d? - < q, tf > + £ 3 , (1.82)

where £3 is defined as the sum of the intégrais over the element boundaries
appearing in this équation.

However, since it is easily seen that

— £ div T grad S? dx = < q. $ ) , (1.83)

(1.82)becomes

£2 = - Z d i v ! - ê r a d (9 - # ) <** + £ 3 , (1.84)

and therefore

| £ 2 I ^ | £ 3 I + K I I 3 I M I I » II2,*- C 1 - 8 5 )

Next, to estimate £\ we note that the jumps of -=- and -=- have zero mean6 dn dt
value on each interelement boundary. Setting M := projection of M onto
M°_,(ŒJ) in the L2 norm we have

£ 3 = Z (Mn(l) ~ Â*n) — + (Mm(j) - Mm) -^ de (1.86)
T JôT L J

so that

Combining (1.78), (1.81), (1.85), (1.87), and (1.77) we get

which implies

li S7 tii < c{\h\2 |i / II0 + | A | || 9 | | 2 J . (1.89)
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Finally we have from the triangle inequality and (1.89) that

H s I k * * ; 1 1 9 - ^ 11: , , + u s M i i < c \ h \ il s I L , + i ' s 7 \ \

^ c ( \ l i \ 2 \ \ f \ \ 0 + l i \ \ & \ \ 2 , h ) .

(1.90)

Using (1.90) and (1.64) we get (1.75).

Remark : In the proof of theorem 1.12 we see that the term || ƒ || 0 in (1.75)
appears only in the estimate (1.79)-(1.81) of Ex through the bound :

- < i ) / d x < Y | | ƒ l i o l / i | 2 K l i 2 . U.91)

Hence a slight modification of the proof gives for instance

H-^l'i^^Ye/^^HIU-e (e>0) (1-92)

when ƒ is the Dirac measure at a vertex of the décomposition.

Remark : Setting 0 := wh — yft (wherevv,, is the solution of (1. 66)) and repeat-
ing the arguments of theorem 1.12 one sees that nothing changes except for
the estimate of Ev This now reads :

£. = I f Q2^-D2(wh - hdx = X { D% - U :D2(Wh - fodx

+ \j&-&dx (1.93)

Jn

so that

| £ i l < y ( | A | KII3II»II2 ,* + II ƒ ilol/îl2IKIl2)- (1-94)

Hence one may show that

H w h - $ f c | | 1 , f c < Y | / i | 2 ( H | | 3 + || ƒ ||o) (1-95)

which joined to (1.75) gives

I I * - w j | l i f c ^ y | / ï | 2 ( l l * l l 3 + II ƒ llo). (1-96)

This is a new error estimate for the usual Morley method.
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2. DISPLACEMENT FORMULATION AND POST-PROCESSING OF THE RAVIART-
THOMAS MIXED METHODS

In the previous section we presented a different implementation technique
for two mixed methods, making use of Lagrangian multipliers Xh at the inter-
element boundaries. In theorem 1.4 we gave an estimate for the distance
Xh — u on S£ in the case of the Raviart-Thomas methods, Then we shifted
to the Hellan-Herrmann-Johnson methods and proved in theorem 1.9 that
this is equivalent to a slight modification of a classical nonconforming displace-
ment method, the Morley method. The équivalence proved to be very fruitful
not only from the point of view of implementation but also from the point
of view of error analysis : in particular the known error estimate (1,40) for
the mixed allowed the very simple proof of the estimate (1.67) for the Morley
method. On the other hand, using the displacement formulation we proved
the duality estimate (1.75) which one cannot naturally dérive from the ori-
ginal mixed formulation (1.39), based as it is on piecewise linear displace-
ments. Of course, a posteriori, this can be done ; we would claim, however,
that such an estimate does not come in mind looking at the formulation (1.39).
In turn (1.75) was employed to prove the duality estimate (1.96) for the usual
Morley method.

Our next goal is to do something in this direction for the Raviart-Thomas
methods of section 1 -A. However this time we shall first deduce an error esti-
mate in L2(Q) from the estimate " on the edges " (1.21) ; for the sake of sim-
plicity we do this only in the case of k even (which includes the lowest order
case k = 0) ; the case of odd k présents more technical difficulties as we dis-
cuss. On the other hand we shall stick to the case of variable coefficients which
complicates the équivalence between the mixed method and a nonconforming
displacement method (as in theorem 1.9 for the H-H-J method). Therefore
we separately remark on the simplest case of k = 0, a constant.

We return now to the notations of section 1-A and to the estimate (1.21),
which we now write as

|| Xh - nh
hu ||Oi€ < y(*}/2 || q - qh ||OiT + Afl^2 || P* u - uh | | 0 / r ) , (2.0)

where

n j := I 2 projection onto Mi , (<£A), (2.1)

Pi := L2 projection onto Mi x (%h). (2.2)

We have now two pièces of information at our disposai, Xh, which is a poly-
nomial of degree ^ k on each e e 6j), and uh, which is a polynomial of degree
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^ k in each T e %h. We shall use them in order to construct a new approxima-
tion, üh, which is of degree k + 1 in each T and which converges to u taster
than t/fc. In order to define iïh we need the following lemma.

LEMMA 2.1. Lef k be a nonnegative even integer and Iet T e %h be a triangle
witli edges eu e2, e3. Thenfor all pt e L2(e-) (i = 1, 2, 3) and q e L2(T) there
exists a unique % = %{p0 q) e S$k + 1(T) such that

(X-Pl)zde = 0 Vze<P*(O i = 1,2,3, (2.3)

(X - q) z dx = 0 Vz e ̂ k~2(T) . (2.4)
JT

Moreover,

li X HOT ^ y(\\ <l HOT + hr2 1 II P.- Ho.„) . (2-5)

H'/t/ï y depending only on k and on the minimum angle of T.

Proof : Clearly (2.3), (2.4) is a square linear system with

3(* + 1) + k(k - l)/2 = (k + 2) (* + 3)/2

équations and unknowns. Hence for proving existence and uniqueness of %
it is enough to consider the case q = 0,pif = 0 (/ = 1,2, 3) and show that % = 0
is the unique solution. Conditions (2.3) with p( = 0 imply that % I ei is a

multiple of the Legendre polynomial of degree k + 1 on each er Since & + 1
is odd5 this implies that % takes opposite values at the endpoints of each ev

Hence the continuity of % on BT and the nonvanishing of the Legendre poly-
nomial at the endpoints of the interval imply that % = 0 on dT, and therefore
that % has the form % = Xl%2X3 z where A.(- (/ = 1, 2, 3) are the barycentric
coordinates on T and ze ^S/£=2(T) (for k ^ 2 ; for k = 0 the condition x = 0
on öT clearly implies that % = 0 in T). Taking z = z and # = 0 in (2.4) yields
X = 0 since X1X2'k3 > 0 in the interior of T. This proves the existence and
uniqueness of %eS$k+l(T) satisfying (2.3) and (2.4), The inequality (2.5)
follows by simple scaling arguments.

In light of lemma 2.1 we now use Xh and uh to define our " better approxi-
mation ", WfceM^V^fc) by

nk
hüh = \ h , (2.6)

Pr2(ûh~uh) = Q (for*>2). (2.7)
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Note that by lemma 2.1 üh is uniquely determined and that (2.6) implies
some continuity of uh at the interelement boundaries, together with some
vanishing on <?Q. More precisely, uh is continuous at the k + 1 Gauss points
of each edge ee&® and vanishes at the Gauss points of each e e (E,f (where

o

Xh = 0). However, in gênerai ùh £ H (Q). Hence üh is a nonconforming approxi-
mation of u. We now prove that it indeed approximates u with a higher order
of accuracy than uh.

THEOREM 2.2 : Let u be the solution of(\ .1) and (o}r uh, Xb) the solution qf
(1.18) (for k even). Defïne üh e M*V(2fc) by (2.6), (2.7). Then

II « - S J I o < Y I * \k + 2 (II « IIr + II ? r * + i ) r = m a x (fe + 2 , 3 ) ( 2 . 8 )

y independent of u and h.

Proof : We first defïne w£ G M ^ 1 ^ ) , the nonconforming projection of
M, by

nJ(M-fiî) = 0, (2.9)

P r 2 ( w - M f ) = 0, (fc>2). (2.10)

Lemma 2.1 implies existence and uniqueness of ü% ; by Standard arguments
it is easily proved that

Note that from (2.6), (2.7) and (2.9), (2.10) we get

n*(« fc- üt) = Xh-n
k
hu9 (2.12)

Pn~2(uh - u*) - Pk
h~

2(uh - u) = P*-2(Mfc - P* M) . (2.13)

Using now lemma 2.1 with q := uh — Pb w, /?, J= ( ^ — n^ w) |tf( we obtain
for each T in ï h that

i: «* - s? llo.r ^ Y (il wfc - Pi « IIO.T + AJ.'2 I li ^ - n u Ho.,,) • (2.14)

C o m b i n i n g (2.14) with (2 .0) a n d then using (1.13) , (1 .15) we get

* + 2 + 2 , 3 ) 9 (2 .15)

and (2.8) follows from (2.11), (2.15).
The nature of the technical difficulties connected with the case of odd k

should be clear now. What is needed is a nonconforming element which is
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exact up to the degree k + 1 (i.e., reproduces exactly the polynomials of
degree ^ k + 1 ) and uses as degrees of freedom, some or all of the quantities

( %zdx9 ze«Pfc(T). (2.16)
Jr

For instance for k = 1 we raay define üh e M^ l ï , , ) by the orthogonalities

nj?(tf„ - >*) - 0 , Pi(uh - uh) = 0, (2.17)

which would give (2.8) with k = 1. For fe = 3 the choice

n2(w„ - ^ ) = o , p?(ah - uh) = o , (2. is)

works and again gives (2.8). Other ad hoc choices may be made for each
particular odd k. However we didn't find an elegant gênerai structure. For
this reason the following interprétation of{\ AS) as a genera/ized displacement
method will be carried out in the case of k even.

We introducé the spaces

M ^ ^ Ï J = { v e M i y ^ ) | v is continuons at the k + 1 Gauss
points of each e e (£° and vanishes at the k + 1 Gauss
points of each e e <££ ] . (2.19)

Bk + 3(Xh) = [ v e M^3(Zh) | r vanishes on each e G g,, ] . (2.20)

JV*+1(2J - M^Hîfc) + 5fc + 3(Ifc)- (2-21)

Note that Bk+3(cZh) consists of bubble functions; hence the space defined
in (2.21) is a classical nonconforming space augmented with bubbles.

With the same arguments as in lemma 2.1 one easily proves the following
lemma.

LEMMA 2.3 : Let k be an even integer > 0. For any vh e Mt ^ï,,) and any
u„ e M* !((££) there exists a unique % s Nk +1 (2J such that

Let us go back now to problem (1.18). We have the following resuit.

LEMMA 2.4 : Let (a,„ uh, Xh) be the unique solution of (1.18) and let
\\iheNk+1(Zh) be defined by

P^, = uk, n i ^ , = V (2.23)
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Then (qh \|/h) is the unique solution of the following problem :

find (G„ \|/fc) eRTt, (!„) x JV*+ ' (Ifc) swc/z that

cgfc.x dx +

29

gfc.x

(ü) Z [ ?,,

= 0 Vx e .

Xdx V x e i V ^ 1 ^ , ) -

(2.24)

The proof is immédiate by Green's formula and obvious properties of
projection operators.

Now assume temporarily that the compliance tensor c is of the form
Cfj = c(x) 5/; with c(x) constant on each T e *Xh. In this case (2.24 i) clearly
means that cqh is the L2-projection oj -grad v|/h onfo RT^^Çl^. Denoting by
PRT this projection operator, we may write cah = - P^tgrad \|/J and,
since c •= q"\ problem (2.24) is now equivalent to the following problem :

findy\fheNk+1(Zh)suchthat

%dx = \ (PkJ) %dx
(2.25)

Let us briefly discuss the structure of (2.25) in the special case k = 0. We
then have NlÇZh) = M^c(%h) + B 3(^) . Note now that for vh G M^c(%h)
we have P^3-(grad r/f) = grad vh, a piecewise constant. Moreover the gradient
of a bubble function has zero mean value on each T. It follows that the solution
y\fh of (2.25) may be determined as zh + Çh where (zh, Çh) is the unique solution
to the problem

(i)

find (zh9 Q e M*c{Xh) x B3(%h) such that

f^ x = (P°f)vhdx
JQ

ÜA e Af ̂ (2-26)

We remark that (2.26) is block diagonal, in that (2.26 i) and (2.26 ii) may
be solved independently. Moreover (2.26 ii) gives rise to a diagonal matrix
équation, and so C,h can be computed independently in each triangle. The
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System (2.26 i) on the other hand coincides with the usual tyl nonconforming
method, except for the appearance of P°/rather than/in the right hand side.
It appears to us that (2.26) offers the simplest implementation of the lowest
order Raviart-Thomas element in the case of a piecewise constant diagonal
coefficient matrix.

Let us go back now to the case of a gênerai coefficient matrix. It will prove
convenient to introducé the operator PRTO defined as the projection operator
onto RTk_ ! with respect to the scalar product

[g,x] := cq.xdx. (2.27)

Then writing in (2.24 i) grad \|/fc = c(a grad y\fh) we have qh = -PRT£(q
grad y\fh) and substituting this expression into (2.24 ii) we obtain the problem

find y\fh e Nk+1(Xh) such that

I f Pk
R1 Jq gjrad iW,).grad %dx=\ (Pkf) %dx VX e Nk + * (Xh). (2.28)

This is the displacement version of (1.18) in the case of a gênerai coefficient
matrix (and even k). The usual nonconforming method for this problem, on
the other hand, reads

find ij/* e M&1 (%h) such that

(2-29)
Ç a §rad ^ .grad xdx=\f%dx VX e

Let us point out the différences between (2.28) and (2.29).

1) On the right hand side of (2.28) Pk f appears in place of/

2) The space M ^ 1 ^ ) of (2.29) is augmented.with bubble functions to
obtain Nk+l(Xh) in (2.28).

3) The gradients are projected onto the Raviart-Thomas space ^7^(2 , , )
in (2.28).

Note that the projection referred to in 3) is the orthogonal projection with
respect to the scalar product (2.27).

We believe that this may account for a significant différence in the perfor-
mance of the mixed and standard methods. Through this projection the weight-
ed averages over the éléments of c, the inverse of the coefficient matrix, enter
the numerical scheme. This is in contrast to the standard method (2.29),
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which sees only weighted local averages of the coefficient matrix a îtself
Now m one dimension it is known that when a rough coefficient is to be
replaced locally by a constant, the best value is the harmonie average, i e , the
inverse of the average of the inverse ([1], see also the hterature on homoge-
mzation referenced in [3]) In higher dimensions the harmonie average is
not the best strategy, but is nonetheless often still superior to the ordinary
average This may be one of the main reasons for the good performance of
mixed methods for rough coefficient problems

It would be very interesting to détermine through numencal expenments
the effects of each of the différences 1-3 on the numencal solution
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