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MIXED AND NONCONFORMING FINITE ELEMENT METHODS
IMPLEMENTATION, POSTPROCESSING
AND ERROR ESTIMATES (%)

by D. N. ArNoLD (}) and F. Brezz1 (%)

Communicated by E MAGENES

Abstract — We discuss a techmque of implementing certamn mixed finite elements based on the
use of Lagrange multipliers to impose interelement continuity The matrices arising from this imple-
mentation are posttive definite Considering some well-known mixed methods, namely the Raviart-
Thomas methods for second order ellptic problems and the Hellan-Herrmann-Johnson method for
biharmonic problems, we show that the computed Lagrange multipliers may be exploited in a simple
prostprocess to produce better approximation of the original variables We further establish an equi-
valence between the mixed methods and certain modified verswns of well-known nonconforming
methods, notably the Morley method in the case of the biharmonuc problem. T he equivalence 1s exploited
to provide error estimates for both the mixed and nonconforming methods

Résume — Nous étudions ici une technique d’implémentation de certamns éléments finis mixtes
bases sur l'utilisation des multiplicateurs de Lagrange utilisés powr tmposer la continuite d la traversée
des éléments Les matrices qui apparaissent sont definies positives Considérant quelques méthodes
d’éléments finis mixtes bien connues telles que les méthodes de Raviart-Thomas pour des problémes
elliptiques du second ordre et la méthode de Hellan-Herrmann-Johnson pour les problémes biharmo-
niques, nous voyons que les multiplicateurs de Lagrange calcules peuvent étre exploites dans un
post-traitement simple pour produre une meilleure approximation des variables origimales Nous
etablissons en outre une équivalence entre les methodes mixtes et certaines versions modifiées de
méthodes non conformes bien connues, en particulier la méthode de Morley pour le probleme bihar-
monique Cette equivalence est exploitee pour obtenir des estimations d’erreur pour les méthodes
muxtes et non conformes a la fois

0. INTRODUCTION

The discretization of linear elliptic boundary value problems by mixed
finite element methods typically leads to linear systems of the form

AG+Bu:fla}

Bro— 1 (0.0)
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8 D N ARNOLD, F BREZZI

In order to fix 1deas we shall think of 6 and « as approximations to the stress
field and displacement field respectively in a problem of linear elasticity. The
choice of a numerical method to solve the system (0 0) 1s restricted by the
fact that 1t 1s generally indefinite. However for many of the most widely used
mixed methods this drawback 1s frequently circumvented by an implementa-
tional technique which leads to a positive definite system [8]. The techmique
apples, essentially, whenever the finite elements approximating the stress
field are subject to continuity constraints only at points interior to the inter-
element boundaries, but not at element vertices. Then one may eliminate the
continuity constraints from the finite element space and enforce the required
continuity instead through Lagrange multiphers defined on the interelement
boundaries. Denoting by A the multiphers, which enter the discrete system
as additional unknowns. the resulting system has the form

AG + Bu + Ch =f, .
B'5 = {,, o1
C's =0

The third equation 1 (0.1) imposes the tequired continuity on the stress
field, and — if the space of multipliers 1s chosen appropriately — then G,
although a prior1 sought 1in a space of fimte elements without interelement
continuty constraints, will belong to the ongmal finite element space for o,
and consequently ¢ and o will comcide. Moreover the displacement field u
defined by (0.1) comncides with u defined by (0 0).

The advantage of the system (0.1) 1s that the matrix corresponding to the
operator A 1s block-diagonal, with each block corresponding to the stress
unknowns 1n a single element. Hence A may be mverted easily and inexpen-
sively at the element level, leading to the expression

G =AY, — Bu — C\) 0.2)

for the approximate stress field in terms of the other unknowns Substituting
(0.2) nto the second and third equations of (0 1) yields the linear system

B

‘2'!

B 0.3
c1 0.3)

:m, Ik/

+ B!
+CT

;);I :'k/
| )

:I

which 15 symmetric positive definite. One may thus solve this system and
then recover the stress field from (0.2) by a simple element-by-element post-
process.
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MIXED AND NONCONFORMING FINITE ELEMENT METHODS 9

This technique may be (and sometimes is) regarded as a purely implemen-
tational trick, i.e, as a computationally convenient way to determine the
solution of the original system (0.0). Still, one computes in this way, in addi-
tion to ¢ and u, also the Lagrange multiplier field, A, which frequently admits
a physical interpretation such as a displacement and is often so used [8].
The mathematical convergence theory for mixed methods, however, generally
considers only the approximation of the original fields, neglecting the further
information offered by the multipliers.

In this paper we consider two typical examples of mixed methods, the
method of Raviart and Thomas {16] for membrane (and other second order
elliptic) problems, and the Hellan-Hermann-Johnson method [9], {10}, [12],
for plate bending (and other fourth order elliptic) problems. The technique
described above applies to both methods and in each case we show that the
multipliers so obtained can be used in the reconstruction of an approximate
displacement field which is asymptotically more accurate than the approxi-
mation furnished by the original field u. Our analysis further reveals that
each of these mixed methods 1s equivalent (in the sense of leading to the same
approximate solution) to a certain nonconforming displacement method,
which in each case is an apparently slight modification of a well-known
method. (Specifically we establish an equivalence between the Raviart-Thomas
method and a modified $#*-nonconforming method, and between the Hellan-
Hermann-Johnson method and a modification of the Morley method {13],
[14], [15].)

As we show by example, this dual mode of regarding the methods (either
as mixed or nonconforming displacement) is useful for deriving error esti-
mates as well as for implementating the methods. However it raises the ques-
tion of whether the modifications which render a displacement method equi-
valent to a corresponding mixed method actually improve the method in
some sense. We cannot answer this question simply by comparing the asymp-
totic rates of convergence (which are generally not affected by the modifica-
tion), although in one case we do show superior robustness of the modified
method with respect to the regularity of the data. A general answer must
await further analysis or numerical experimentation.

1. ERROR ESTIMATES FOR THE LAGRANGE MULTIPLIER

A. The Raviart-Thomas elements

Let us recall the main features of the Raviart-Thomas method [16]. Let
Q denote a bounded domain in R?, which, for the sake of simplicity, we sup-

vol. 19, n° 1, 1985



10 D. N. ARNOLD, F. BREZZI

pose to be a polygon. Let f be a given function in L?(Q) and ¢ a sufficiently

smooth two by two matrix-valued function on Q. We assume that there exists
o > 0 such that

Zaij(gc)t';iéj;alléliz VxeQ VéeRz. (1.0)

Consider the boundary value problem :

find u € H'(Q) such that
—div(ggradu) =f in Q, (1.1

u:f) on 0Q.

It is well known that problem (1.1) has a unique solution. In the following
we implicitly assume that u(x) has, at each step, the regularity required by
the context. The exact requirements are easily obtained from inspection of
the arguments. Note that if Q is convex and f € H*(Q) for some s > 0, then
u € H"(Q) for some number r > 2 which depends on s and Q. In order to
state a mixed formulation of (1.1) we define the space

H(div; Q) = {1]1 e (L2Q)? dive L¥Q)] (1.2)

with the usual graph norm

2
T heive = Z It e + 11diVT [ g, (1.3)
and set
c=—ggradue H(div; Q). 1.4

A mixed formulation of (1.1) is then

find (o, u) € H(div; Q) x L*(Q) such that

l

J vdivodx = J Sodx VYve L*(Q),
Q Q

[ Y

g.zd)g—f udivtidx =0 Vie H(div;Q),
Q (1.5)

where ¢ == g~ ! is the compliance tensor. Problem (1.5) is obviously equi-

C:
valent to (1.1) and (1.4).

M? AN Modélisation mathématique et Analyse numérique
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MIXED AND NONCONFORMING FINITE ELEMENT METHODS 11

We now introduce the Raviart-Thomas discretization of (1.5). We shall
use the notations

B“(S) := Polynomials of degree < k on S, (1.6)
PES) == BXS) x PXS), (1.7)
RINS) == { [ () = p() + xq(x), p e B“S). g e BS)}, (1.8)

for any integer £ =2 0 and any domain S = R", n > 1. We consider now a
regular sequence of decompositions { T, }, of Q into triangles (see [5]) and
define

RT* (X)) = {1]1€(L*@) 1| e RINT) VTeg,}, (1.9)
M*E) = {v]|veLXQ), vl e BXT) VTeI,}, (1.10)

RTYZI,) = {t|1€ RT* [(Z,), the nommal component of T is
continuous across the interelement boundaries }

= RT* (T,) ~ H(div; Q). (1.11)

For k afixed nonnegative integer, the kth order Raviart-Thomas mixed method
now reads as follows :

find (o,,w,)eRT§I,) x M* (T,) such that

J €Oy,.T dx — J u,dividx =0  VieRT§(t,), 1.12)
o o

J vdivghdgzj Svdx Yoe M* (T,).
Q Q

The following results are known ([16], [7], [6]).

THEOREM 1.1 : For any k = O, problem (1.12) has a unique solution. Moreover
there exists Y > 0, independent of h, such that

e —ullo <YIAF 1 G lksss (1.13)
- < ylhF+? ., 1.14

o —ullo < vl |k+2||u”r1 }rzmax(k+2,3), (1.14)
I Pyu—wyllo <ylhl*ful,, (1.15)

where we denote by | h | the maximum diameter of the triangles of X, and by
P, the orthogonal projection of L* onto M* |(Z,).

Note that the linear system associated with (1.12) has the structure (0.0).
We now introduce Lagrange multipliers on the interelement boundaries and

vol. 19, n® 1, 1985



12 D. N. ARNOLD, F. BREZZI

so obtain a system with the structure (0.1). To this end we require some
further notation. Let €, denote the set of edges of triangles in X, and set

Cl={ecC lecaQ}, € =¢E\E. (1.16)

For T € I,, e €, denote by /4, and /, their respective diameters. Let ny
denote the exterior unit normal to T and n, one of the unit vectors normal
to e. The space of multipliers we shall use is the space M* | (€) of all func-
tions on U €, which restrict to polynomial functions of degree at most £ on
each e e @) and vanish on U €. Now if 1€ RINT) then 1.n, € P*(e) for
each edge e of T. The following lemma is an immediate consequence.

LemMma 1.2 @ If te RT (), then 1€ RT{(T,) iff

5 j tappde =0 VpeM*, (€). (1.17)
Teln a1

Now consider the extended problem,

find (G, u,, ) € RT* () x M* (T,) x MX (€°) such that

@ J ¢G).1dx — Z{J u,, div T dx
o T T
- J Ay Tongp de} =0 VieRT: (T,
o (1.18)
(i) Zj vdivg, dx = J fvdx Yve M* (T,).
T Jr Q

(i) ZJ UG.npde =0 VpeM* (€).
T Jer
The proof of the following lemma is immediate.

LemMA 1.3 : Problem (1.18) has a unique solution (o, u,, A,). Moreover
G, = G, and u, = u,, where (o, u,) 1s the umque solution of (1.12).

This allows us to identify (G, #,) and drop the upper bars in (1.18). Note
that the equation G, = g, is an identity among vector-valued functions.
Clearly the corresponding coefficient arrays on the computer will not be
equal to each other (they have different dimensions !). Note also that problem
(1.18) has the form (0.1) and that. if a basis for RT* |(T,) is assembled from
bases for the RIX(T) in the obvious way, the compliance matrix A corres-

M? AN Modélisation mathématique et Analyse numérique
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MIXED AND NONCONFORMING FINITE ELEMENT METHODS 13

ponding to | ¢g,.1 dx is block diagonal as required. It is also easily proved

in the present case that the final matrix corresponding to the form (0.3) is
positive definite.

Our aim is now to derive error bounds for A, — u, which is defined on
U ;. The use of A, to approximate u within an element will be discussed
in the next section (in the case of k even). Defining the norms on M* (€

I “’h ‘é‘h = Z(IEO “ uh “(Z),e 3 (1 . 19)
| My |2—1,2.h = Z(go he ” MUy ”(2),43 3 (1 20)

we now compare A, with IT, u, defined to be the orthogonal projection of
u|ygonto M* (€) in the norm (1.19).

THEOREM 1.4 : There exist constants v,, v, independent of u and h such that,
for every T € I, and every edge e of T,
[ — Mulo, <V (F% 110 — Gullor + A2 I Pyu — uy lo.r),  (1.21)

and

Ay = I w0 < Y2l 2| o~ o, o + I Phu — u, ”0,(2)- (1.22)
Proof : Clearly (1.22) is an immediate consequence of (1.21). In order to

prove (1.21) let us consider T € T, and ¢ = 87T. It is proved in {16] that there

exists a unique T € RI*(T) such that

n,=x,—Ilu on e,

.np =0 on 0T \e, (1.23)

TLPHT) in L¥T).

1Al 1A

Then a simple scaling argument shows that
he 1T + 1T llor S vhr? I A — Myullo, (1.24)

We may now choose 1 in (1.181) such that
1=1 inT, 1=0 in Q\T, (1.25)

which gives, using (1.23),

J co,-Tdx — J u, divTdx + j Ao, — IIuyde = 0. (1.26)
T T

e

vol. 19, n° 1, 1985



14 D. N. ARNOLD, F. BREZZI
On the other hand from (1.4) we have
¢g = — gradu, (1.27)

so that Green’s formula implies

)

Subtracting (1.28) from (1.26) and using the fact that divTe B*(T) we
have

e

c.Tdx — J udivTdx + J uhy — Myu)de =0. (1.28)
-

e

I — I ully, = J (A, — Wy (X, — I, u) de

= — J g(g,, — 0)-Tdx + j (u, — Pyuydivtdx. (1.29)
T T

Finally (1.29) and (1.24) give (1.21).

CoOROLLARY 1.5 : We have
[ — w0 <y TAF 2 Jull,, r=maxk +23), {1.30)
with v independent of u and h.

The proof is immediate from (1.13), (1.15), and (1.22).

Remark : The norm (1.20) may be interpreted as an L?(Q2) norm of a sui-
table extension of u, to the whole Q. In this sense, the estimate (1.30) may
not seem better than (1.15) itself. However, this is not the case. Consider for
instance the simplest case k£ = 0 : the estimate (1.15) gives superconvergence
of 0(4?) at the center of gravity of each element (but nothing better), but (1.30)
implies, as we shall see later on, that the 8, nonconforming extension of A,
has a distance 0(42) from u in L%(). This kind of argument will be developed
in detail in the next section.

B. The Hellan-Herrmann-Johnson element.

We consider, for the sake of simplicity, a very special model problem.
However it is quite easy to check that all the results hold unchanged, for ins-
tance, for a general plate bending problem with constant (or piecewise cons-

M? AN Modélisation mathématique et Analyse numérique
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MIXED AND NONCONFORMING FINITE ELEMENT METHODS 15

tant) coefficients. Minor changes allow the treatment of the case with variable
coefficients. Our model problem will be the following :

find \y € H*(Q) such that

2 - ..
AN =finQ, (1.31)
oy
V= o 0 on 0Q,
which we may write in variational form as
find ¥ € HE(Q) such that
(1.32)

JQZ\IHQZMx:JﬁpdaC Yo e HF(Q),
Q e Q

where D? ¢ = (8°¢/0x, 0x;); is the tensor of second partials and the colon
denotes the scalar product of tensors. We shall analyze here the lowest order
case of the family of H-H-J elements. For more information see [9], [10}, [12],
{41, [7], [2]. We maintain the assumptions and notations of the last section
concerning the domain € and the triangulations { ¥, },. The mixed discre-
tization is based on a factorization of (1.31) into the equations

s =D2y, (1.33)
oy _ 1.34
%éxiéxj*f’ (1.34)

and seeks to approximate ¢ and { simultaneously. To define the finite element
space we define first

9 ={tlt,=1, and 1;e M2 () for i,j=1,2} (1.35)
and set
M (1) =1n,.n, on e ecC,. (1.36)

Now we can define the finite element spaces of Hellan-Herrmann-Johnson
method as

993, = {:re 92,3 | M,(1) is continuous at the
interelement boundaries | | (1.37)

.

M3T,) = M',(3) N HIQ). (1.38)

vol. 19, n° 1, 1985



16 D. N. ARNOLD, F. BREZZI

The discretized problem may be written as follows :

find (1 W) € HYT,) x MY, such that

@ J g T dx +Z.J M,
Q T Jor

de =0 Vie 9T,
(1.39)

(ii) zj M,(g) 5 "‘P de = — j fo dx Vo e MAT,).
. Q

The following results are known (see [12], [4], [7], [2]).

THEOREM 1.6 : Problem (1.39) has a unigue solution. Moreover if the solu-
tion  of (1.31) belongs to H>(Q) we have

o —Oulio + W =W lly SylAI IV, (1.40)

with vy independent of v and h.

Problem (1.39) has again the structure (0.0) and hence we may again
introduce Lagrange multipliers A at the interelement boundaries in order to
eliminate the condition of continuity of M (o). The proof of the following
lemma is immediate. b

Lemma 1.7 : If te 92 (T,), then 1€ H0(3,) iff

> ( M, (D unp.n,de =0 VYpeM? (€). (1.41)
TeIn jo1 -

Hence we may consider the extended problem,

Jind ( le \ljln M) e 92,(F,) x M 0 (T) x MO (&) such that
(l) J cSh I )S =+ Z { M"(I) (’j;h de - J jwn(z) }"h ET'E(’ de } =
” T Uldar b or ¥

Ve $% (T,

(ii)zf M,G) 52 de = - fﬁp dx VoeMy(T,),
.| M

Gii) ¥ J MG pnpn de =0 Vpe M2,(&)).
T Jar -
(1.42)
It is easy to prove the following lemma.

M? AN Modélisation mathématique et Analyse numérique
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MIXED AND NONCONFORMING FINITE ELEMENT METHODS 17

LemMmA 1.8 : Problem (1.42) has a unique solution (G, W,,, Ay). Moreover
G, = o, and v, = s, where (G V) is the unique solution of (1.39).

This allows us to identify G, with g, and y, with \s, and drop the bars
in (1.42). Following the pattern of part A of this section, we could now prove
the convergence of A, (to d\/0n,, in this case) and give a priori error bounds.
We shall do this, but with a different technique. More precisely we shall intro-
duce a nonconforming displacement method (a slight modification of the
well-known Morley [13], [14], [15] method) and show that it is equivalent to
(1.42). To this end we define

MXZT,) = {0e M2 (T,)| 9 is continuous at the vertices and vanishes
at the vertices of 0Q), 6@/0n is continuous at the midpoint of
each edge and vanishes at the midpoints of the edges in 0Q } . (1.43)

For a given ¢ € HZ(Q) v M 2(T,) we let ¢ be the interpolant of ¢ in M J(T,),
that is, ¢/ is piecewise linear and continuous and coincides with ¢ at the
vertices. We can now define our nonconforming displacement method as
follows :

find " e M 2(,) such that
(1.44)
ZJ 132\13“ :D?odx = J fo' dx YoeMI(T,).
T Q

T

Note that this method differs from the usual Morley method only by the
presence of the interpolation operator in the right hand side. We shall now
prove that the modified Morley method is actually equivalent with the method
(1.42) (which in turn is equivalent with the original H-H-J method (1.39)).
For this we need the following simple consequence of Green’s formula :

if 1,€PUT), 1,, =1, and ¢ € H*(T) then

s

where M, (1) is defined in (1.36) and M, (1) = NI, with ¢, = (— n2, n})
denoting the unit vector tangent to e. We deduce as a consequence of (1.45)
that

(1.45)

]

_ do f3f0)

2 —_ e

¢ dx j M,,(Q n de + j M,,,(g) a de
oT oT

fre
Z,( :D? ¢ x—z M(t)q)de

or

€9y and 9 e MAZ,) + HZ(Q) then
(1.46)
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18 D. N. ARNOLD, F. BREZZI
Finally we also note that
if t,€ PUT) and @ € HA(T) with ¢ = O at the corners then,
1.47
M,,,('c) Pde=0. ( )
- ot

Let now \T/" be the solution of (1.44). We associate with it the functions

Se$°,(T,) definedby & = D" inecach T, (1.48)
1eMAE,) defined by x = (J"Y, (1.49)

h
% e M° (6°) defined by i=a——-one Yee G, (1.50)

k on

where, for ¢ e M2(Z,), we have set

—_i = the value of o9 at the midpoint of G 1.51
o, n pointof e, ee ;. (1.51)

(4

THEOREM 1.9 : The triple (&, %, i) defined in (1.43)-(1.50) is the solution
of (1.42). -

Proof : Using (1.46) and (1.45) we have

Jé E‘bf: {J M(’t) ‘Tlhde+J M,,,(r) pr de} (1.52)
Q 81

From (1.50) we get
NN ]
j M"(E)%;[’—de=J M, (t) Anp.n, de, (1.53)
o1 = on T -

and from (1.49), (1.47), and (1.49),
" ¢ (’}; .
L M) G de = f M,,(¥) S de = — L M) 5Ede. (1.59)

or

A%

From (1 52)~(1.54) we see that (1.421i) is satisfied with (— Tps \1/,,, A, replaced
by (é %, %). Next, for each p e M?,(€°) we define ¢ = (p(p) e M2(€,) by

%" —u Vee®® (see (1.51), (1.55)
¢ =0. (1.56)

M? AN Modélisation mathématique et Analyse numérique
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MIXED AND NONCONFORMING FINITE ELEMENT METHODS 19

Hence we have for all pe M2 (€)) that

Z j Mn(%) Higp.n, de = Z J M( )a(‘D de . (157)
T Jor - T Jar
Now note that (1.45), (1.56), and (1.47) give
j%:Dz(pdx=Zj M(E“;)‘Pz. (1.58)
= F TT Jor = on

From (1.57), (1.58), (1.44), and (1.56) we have now, for all pe M2 ,(ED),
that

=07

j Mn(%) wir.n, de =0 ’ (1 . 59)
ar -

which is (1.42iii); hence & € H(T,). It remains to prove (1.42 ii) with ch
replaced by & S.

Associate, to each Qe 1\31 SX), & = L(9) e MA(T,) such that

=0, (1.60)
;;’ =0 oneach ee@. (1.61)

The using (1.45), (1.60), (1.47), and then again (1.45), we get foreach T € I,
that

F3l0) Jp a¢
M, (&) —de = — J M, (&) - de = — J M, (&) 2 de =
LT =" On a1 =’ Ot o1 =’ Ot

=J M(é‘s)az;de— j §:D*Cdx. (1.62)
aT T

Summing (1.62) over T, using the fact that & € $3(Z,) and applying (1 .61),
and finally using (1.48), (1.44), and (1.60), we obtain (1.42 ii). This completes
the proof of theorem 1.9.

Note that the equivalence proved in the theorem can be used in both direc-
tions : from the solution ¢ of (1.44) one can deduce the solution of (1.42)
through (1.48)-(1.50), and, on the other hand, knowing the solution (Sns

V., A,) of (1.42) one can reconstruct (Lh, the solution of (1.44), by

:[1' =\, at the vertices,

6\T;" (1.63)
el A, at the midpoints .

¢
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20 D. N. ARNOLD, F. BREZZI

As a matter of fact {1.63) shows that such a reconstruction is much easier
if {1.39) 1s solved in the equivalent form (1.42). The equivalence proved in
theorem 1.9 can be a useful tool at the implementation level : according to
the circumstances any of the formulations (1.39), (1.42), or {1.44) might be
easiest to implement, although in our opinion (1.44) will usually be superior.
We want to show now that the equivalence is indeed a very useful tool also
in the asymptotic error analysis. First, we have as an immediate consequence
of theorem 1.6, lemma 1.8, and theorem 1.9 the following error estimate
for the modified Morley method.

THEOREM 1.10 If v, the solution of (1.31), is in H3(Q) and if @" is the
solution of the modified Morley method (1.44), then

_ 172
Iy = = (; | D2w ~ ¥ "(2),T> <ylhlIWls (1.64)

with v independent of v and h.
Note that if Q is convex then (1.64) may be replaced by
P = Wl <IN (1.65)

As a consequence of theorem 1.10 we may deduce in a new way the known
error estimate for the wswa/ Morley method :

Jind w, € M 2(X,) such that

5 ngwhzgwdzﬁmd{ Vo e MI(T,).
T

T

(1.66)

COROLLARY 1.11 : If fe L*(Q) and if the solution i of (1.31) belongs to
H3(Q), then

Bwy = Wllop < vIATU S + 1AL S 1) (1.67)
with vy independent of & and h.
Proof : Subtracting (1.44) from (1.66) with ¢ = - w, we have

PO — w12, = J ST = w — @ = w)] dx. (1.68)
Q

Since for all ¢ € M2(T,) we have by scaling that
o —olo<yiAP ol (1.69)
we easily obtain (1.67) from (1.64), (1.68).(1.69). and the triangle inequality.
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For the original proof of (1.67) see [14]. For more information on the
usual Morley method see [11], [S, p. 374], [15]. A comparison between (1.65)
and (1.67) shows that the modified Morley method is superior to the usual
one, at least with respect to the required regularity on f. We explicitly point
out that a result of the form (1.64) or (1.65) cannot be true for the usual
Morley method. This is obvious for (1.65), since M2(I,) ¢ H{(Q) so that
the method (1.66) cannot be applied for a general /'€ H ™ '(Q). Assume now
that, for a fixed 4, fis defined as a bounded linear functional on Hg(Q)+ M 2(T,)
and set

Y= sup {fio)/ol,, (1.70)
Qe M2(Tn)
where
loiip="> lgrado |- (1.71)
T P

From (1.68) we may easily deduce as in corollary 1.11 that

Py = wy o <Y IRTM s + v, (£ 1) (1.72)

However this is not of the form (1.64) unless we allow v, in (1.64), to depend
on f. More precisely, assume that we had

by = willo < vIATEY S (1.73)

with vy independent of /2 and (hencE independent of f) for all /" defined on
H}(Q) + MA(X,). For fixed h take f e H ™ '(Q) such that

sup J Jedx/l @l = + o (1.74)
eeMAIN Ja
and take now a sequence /™ e L(Q) such that /™ — f in H ™ (Q). Assuming
that Q is convex, the corresponding solutions, Y™ of (1.31) are uniformly
bounded in H?3(Q). However (1.74) implies that || wi” || - co0 as n — o©
and hence (1.73) must be false. Note that this example does not contradict
(1.72) since v, (f,, 1) will also tend to infinity with .

Our next goal is to use the equivalence of (1.42) and (1.44) to prove a new
duality estimate.

THEOREM 1.12 : If Q is convex and f e L*(Q) then
R T Sy ITRPUA s+ 1S 1) (1.75)

with v independent of i and h.
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Proof : Let us set 9 :== § — \Tlh, 9’ := interpolant of 9 in M/ (Z,), and
g=—A¥eH Q).
Consider the auxiliary Dirichlet problem for the biharmonic :

find € HZ(Q) such that

Jlgzﬁrlg"(de=<q,cp> Vo e H2Q) . (1.76)
Q
Clearly we ha’ve
ICls<celglo,<chdi,. (L.77)

On the other hand we have
917 =Cq%>

=[ZJQ2C‘:Q de} [ZJQ '~29d)5—<q,91>J

T Jp ° = T Jp =
=E, — E,. (1.78)

We bound E, and E, separately. Let {, be the usual interpolant of £ in
M2(Z,). We have that

Eo-y | preipiw - - |

T Jr Q

fldx JfC{. dx —
Q

¥

-2 J D¢ — ) :D2"dx. (1.79)
T T ~ ~
However theorem 1.9 together with (1.46) and (1.47) implies that
ZJ D ~¢):D*dx =0, (1.80)
T Jr ° &

so from (1.79) we get

LE;I<yIRPD flolEH,- (1.81)
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Now set T == D?{. We have that

E2=Zj3 Q 9dx —<¢,¥>
T

T
=3 <{ — | divt.grad 8dx + |:M,,(T)§§+M",(T)@j|d€} —{q,9)>
T T T~ T a1 = 9n ¥ 9t
=—ZJdivg.grad9d>~c—<q,9’>+E3, (1.82)
T J1 Y~
where E; is defined as the sum of the integrals over the element boundaries

appearing in this equation.
However, since it is easily seen that

—;Jdivggj@gd>§=<q,9’>, (1.83)
T
(1.82) becomes
2:—;Jdivg.gr’3/d(9—9’)dx+E3, (1.84)
T
and therefore
|E; | < TEs |+ 1 CNs 1Al ESlion- (1.85)

Next, to estimate E, we note that the jumps of gS and %—9 have zero mean

value on each interelement boundary. Setting M := projection of M onto
M2 (€) in the L? norm we have

Es—Zj [(M(r) M) 2+ (M) - m)aaﬂde (1.86)

so that
VEsl<clhl [CHs0 8l (1.87)
Combining (1.78), (1.81), (1.85), (1.87), and (1.77) we get
B <cl S0 (APl fllo+1hITST,,). (1.88)
which implies

FO I < clhPPof oo+ 11 IS .. (1.89)
vol. 19, n° 1, 1985
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Finally we have from the triangle inequality and (1.89) that
FO I a<ES =91, + Y[ <clhl 18], +19],
AP fllo+ RIS i)
(1.90)
Using (1.90) and (1.64) we get (1.75).
Remark : In the proof of theorem 1.12 we see that the term || f || in (1.75)
appears only in the estimate (1.79)-(1.81) of E, through the bound :
J(C—Q’;.)deSYHfHolhlz e, (1.91)
Q

Hence a slight modification of the proof gives for instance
V=Bl s S w1V, 6> 0 (1.92)

when f is the Dirac measure at a vertex of the decomposition.

Remark :Setting 9 == w, — \’f/” (where w, is the solution of (1 . 66)) and repeat-
ing the arguments of theorem 1.12 one sees that nothing changes except for
the estimate of E,. This now reads :

D2 — §) 1 D2, — V") dx

E, =ZJ D*L:D%(w, —$">d>5=zj

T >
S RLE TR
Q
so that

JE <Y AT TGI8 zm + 1 /o lAPTE])- (1.94)

Hence one may show that
o = 0" i < T IRE (W5 + 1S o) (1.95)

which joined to (1.75) gives
Fv = wyll v IR s + 1S o) (1.96)

This is a new error estimate for the usual Morley method.
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2. DISPLACEMENT FORMULATION AND POST-PROCESSING OF THE RAVIART-
THOMAS MIXED METHODS

In the previous section we presented a different implementation technique
for two mixed methods, making use of Lagrangian multipliers A, at the inter-
element boundaries. In theorem 1.4 we gave an estimate for the distance
A, — u on €Y in the case of the Raviart-Thomas methods. Then we shifted
to the Hellan-Herrmann-Johnson methods and proved in theorem 1.9 that
this is equivalent to a slight modification of a classical nonconforming displace-
ment method, the Morley method. The equivalence proved to be very fruitful
not only from the point of view of implementation but also from the point
of view of error analysis : in particular the known error estimate (1.40) for
the mixed allowed the very simple proof of the estimate (1.67) for the Morley
method. On the other hand, using the displacement formulation we proved
the duality estimate (1.75) which one cannot naturally derive from the ori-
ginal mixed formulation (1.39), based as it is on piecewise linear displace-
ments. Of course, a posteriori, this carn be done; we would claim, however,
that such an estimate does not come in mind looking at the formulation (1.39).
In turn (1.75) was employed to prove the duality estimate (1.96) for the usual
Morley method.

Our next goal is to do something in this direction for the Raviart-Thomas
methods of section 1-A. However this time we shall first deduce an error esti-
mate in L*(Q) from the estimate “ on the edges > (1.21); for the sake of sim-
plicity we do this only in the case of k even (which includes the lowest order
case k = 0); the case of odd k& presents more technical difficulties as we dis-
cuss. On the other hand we shall stick to the case of variable coefficients which
complicates the equivalence between the mixed method and a nonconforming
displacement method (as in theorem 1.9 for the H-H-J method). Therefore
we separately remark on the simplest case of k = 0, g constant.

We return now to the notations of section 1-A and to the estimate (1.21),
which we now write as

I — Thiulloe < ¥h7? Il G — Sy lloq + hr "2 i Phu — wy llo7), (2.0)
where

I} == L? projection onto M* (€,), 2.1)

P} := L? projection onto M* ((I,) . (2.2)

We have now two pieces of information at our disposal, A,, which is a poly-
nomial of degree < k on each e € &), and u,, which is a polynomial of degree
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< kineach T € ,. We shall use them in order to construct a new approxima-
tion, #,, which is of degree k + 1 in each T and which converges to u faster
than u,. In order to define #, we need the following lemma.

Lemma 2.1. Let k be a nonnegative even integer and let T € X, be a triangle
with edges e, e,, es. Then for all p,e L*(e) (i = 1, 2, 3) and q € L*(T) there
exists a unique % = x(p, q) € B UT) such that

J X—p)zde=0 VzePe) i=1,273, (2.3)
( X —qzdx =0 VzePHT). 2.4
T
Moreover,
3
% llor < Y(H glor +hi? Y I pi Ho,c,>, 2.5)
i=1

with v depending only on k and on the minimum angle of T.
Proof : Clearly (2.3), (2.4) is a square linear system with
3k + 1) +hktk— D2 =tk + 2)(k+ 3)2

equations and unknowns. Hence for proving existence and uniqueness of
it is enough to consider thecaseq = O,p; = 0{ = 1,2, 3)and show thaty = 0
is the unique solution. Conditions (2.3) with p; = O imply that x |e; is a
multiple of the Legendre polynomial of degree & + 1 on each ¢,. Since & + 1
is odd, this implies that ¢ takes opposite values at the endpoints of each e;
Hence the continuity of 4 on ¢T and the nonvanishing of the Legendre poly-
nomial at the endpoints of the interval imply that ¥ = 0 on é7T, and therefore
that x has the form y = &, &, A; Z where A, (i = 1, 2, 3) are the barycentric
coordinates on T and Ze P* %(T) (for k = 2;for k = 0 the conditionx = 0
on ¢T clearly implies that y = 0in T). Taking z = Zand g = 0in (2.4) yields
% = 0 since A, A, A3 > 0 in the interior of T. This proves the existence and
uniqueness of x € P+ 1(T) satisfying (2.3) and (2.4). The inequality (2.5)
follows by simple scaling arguments.

In light of lemma 2.1 we now use A, and u,, to define our “ better approxi-
mation ”, 4, € M*(3,) by

I @, = A, (2.6)
P 2@, —u,) =0 (for k = 2). 2.7
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Note that by lemma 2.1 #, is uniquely determined and that (2.6) implies
some continuity of i, at the interelement boundaries, together with some
vanishing on Q. More precisely, i, is continuous at the & + 1 Gauss points
of each edge e € € and vanishes at the Gauss points of each e € € {(where

L, = 0). However, in general i, ¢ H*(Q). Hence &, is a nonconforming approxi-
mation of u. We now prove that it indeed approximates u with a higher order
of accuracy than u,.

THEOREM 2.2 : Let u be the solution of (1.1) and (G, u,, A,) the solution of
(1.18) (for k even). Define i, € M*11(Z,) by (2.6), (2.7). Then

hw—dllo <ylAF2(full, + 1 0 lesy) r=max(k +2,3) (2.8)
with v independent of u and h.

Proof : We first define @& e M*%*(Z,), the nonconforming projection of
u, by

Nw — i) = 0, 2.9)
Pi2u—u)=0, (k=2). (2.10)

Lemma 2.1 implies existence and uniqueness of #¥ ; by standard arguments
it is easily proved that

=@ o < VIR fuliss- 2.11)

Note that from (2.6), (2.7) and (2.9), (2.10) we get
M@, — ) = A, — Obu, (2.12)
P 2@, — @) = P¥ *(u, — u) = Pf~*(u, — PFu). (2.13)

Using now lemma 2.1 with g == u, — P, u, p; :== (A, — II} u) |,, we obtain
for each T in I, that

i=1

[, — af lor < v (H u, — P¥ulor + hy? Z I A, — T} u “0.1’,)' (2.14)
Combining (2. 14) with (2. 0) and then using (1.13), (1. 15) we get

Py = o < v TR (Tull, + g liry), r=max(k +2,3), (2.15)

and (2.8) follows from (2.11), (2.15).
The nature of the technical difficulties connected with the case of odd k
should be clear now. What is needed is a nonconforming element which is
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exact up to the degree kK + 1 (i.e., reproduces exactly the polynomials of
degree < k + 1) and uses as degrees of freedom, some or all of the quantities

szde, z e Pre), szdic, ze PYT). (2.16)
e T

For instance for K = 1 we may define i, € M2 ,(Z,) by the orthogonalities
@, — Ay =0, Pl@, —u,) =0, (2.17)

which would give (2.8) with & = 1. For k = 3 the choice
@, — 2,) =0, P2, — u,) =0, (2.18)

works and again gives (2.8). Other ad hoc choices may be made for each
particular odd k. However we didn’t find an elegant general structure. For
this reason the following interpretation of (1.18) as a generalized displacement
method will be carried out in the case of k even.

We introduce the spaces

MR, = {ve MM NI | v is continuous at the k + 1 Gauss
points of each e € € and vanishes at the k + 1 Gauss

points of each ee €} . (2.19)
B*3(X,) = {vreM{*>@3,) | v vanishes on each e € €, | . (2.20)
N¥"NT,) = M3, + BFA(E,). (2.21)

Note that B¥*3(T,) consists of bubble functions ; hence the space defined
in (2.21) is a classical nonconforming space augmented with bubbles.

With the same arguments as in lemma 2.1 one easily proves the following
lemma.

LeMMA 2.3 : Let k be an even integer = 0. For any v, e M* (Z,) and any
n, € M* (€D) there exists a unique y € N**1(T,) such that

Pix =, I x = . (2.22)
Let us go back now to problem (1.18). We have the following result.

LeMMA 2.4 : Let (o, u, A,) be the unique solution of (1.18) and let
v, € N**1(Z,) be defined by

P}’; V= u,, Hﬁ Wy =Xy (2.23)
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Then (G, 1) is the unique solution of the following problem :
find (g,, V) € RT* (T,) x N*¥*Y(X,) such that

(i) Jcc,.rdx+ Jr. rad y,dx = 0 Vi1 eRT* (X)),
Q:~l I ; . g/\/‘l’/ X I () 2.24)

(i) ZJ g;-grad x dx = —J (Prf)xdx VyeN*"(T,).
T Jr — o

The proof is immediate by Green’s formula and obvious properties of
projection operators.

Now assume temporarily that the compliance tensor ¢ is of the form
¢;; = c(x) 6;, with ¢(x) constant on each T € . In this case (2.241) clearly
means that ¢g, is the L2-projection of —grad s, onto RT* |(Z,). Denoting by
Pk, this prz)jection operator, we may “write ¢o, = — Pkq(grad V) and,
since c=a !, problem (2.24) is now equivalentwto the following;;oblem :

find s, € N¥"Y(T,) such that

2.25
ZJ aP(grad V,).grad y dx = J (Pif)xdx ¥xeNHZ). 2.2
T Q

T

Let us briefly discuss the structure of (2.25) in the special case k = 0. We
then have N'(T,) = My(T,) + B*Z,). Note now that for v, € M3-(T,)
we have P,?,»(grvad vy) = g/ggfi r,, a piecewise constant. Moreover the gradient
of a bubble function has zero mean value on each T. It follows that the solution

Y, of (2.25) may be determined as z, + {, where {(z,, ;) is the unique solution
to the problem

find (z,, C,) € Mgc(T,) x B*(Z,) such that

() Zj a grad z,.grad v, dx = f (P2 f) vy dx
T

T o)
Vv, € Mi(Z,) (2.26)

(i1) Z J QP:?T(E%}EQ Ch)-g}zi/d @, dx = J (P f) @, dx
T Jr ~ Q
v(ph € B3(Ih) .
We remark that (2.26) is block diagonal, in that (2.26 1) and (2.26 11) may

be solved independently. Moreover (2.26 ii) gives rise to a diagonal matrix
equation, and so {, can be computed independently in each triangle. The
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system (2.26 1) on the other hand coincides with the usual 8! nonconforming
- method, except for the appearance of P f rather than £ in the right hand side.
It appears to us that (2.26) offers the simplest implementation of the lowest
order Raviart-Thomas element in the case of a piecewise constant diagonal
coefficient matrix.

Let us go back now to the case of a general coefficient matrix. It will prove
convenient to introduce the operator P§;, defined as the projection operator
onto RT* , with respect to the scalar product

[o, 1] == J ¢o.Tdx. (2.27)
Q

Then writing in (2.24 1) grad {, = c(a grad \,) we have g, = —Pﬁr,s(q
grad V) and substituting this expression into (2.24 ii) we obtain the problem

ind , € N*"'(I,) such that
h

> J Pgq (a grad ). grad x dx = J (Pif)xdx VyeN*'YI). (2.28)
T Jr =ET - N Q N

This is the displacement version of (1.18) in the case of a general coefficient
matrix (and even k). The usual nonconforming method for this problem, on
the other hand, reads

find \r, € MEEN(T,) such that

_ (2.29)
ZJ Qgr&‘ﬂ/h-gradxdzmjfxd& Ve My (T, -
T Jr~ - o

Let us point out the differences between (2.28) and (2.29).

1) On the right hand side of (2.28) P} f appears in place of f.

2) The space M}:1(T,) of (2.29) is augmented with bubble functions to
obtain N**}(T,) in (2.28).

3) The gradients are projected onto the Raviart-Thomas space RT* (T,)
in (2.28).

Note that the projection referred to in 3) is the orthogonal projection with
respect to the scalar product (2.27).

We believe that this may account for a significant difference in the perfor-
mance of the mixed and standard methods. Through this projection the weight-
ed averages over the elements of ¢, the inverse of the coefficient matrix, enter

the numerical scheme. This is in contrast to the standard method (2.29),
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which sees only weighted local averages of the coefficient matrix g itself

Now m one dimension 1t 158 known that when a rough coefficient 1s to be
replaced locally by a constant, the best value 1s the harmonic average, 1 ¢, the
inverse of the average of the inverse {{1], see also the Iiterature on homoge-
nization referenced mn [3]) In higher dimensions the harmonic average 1s
not the best strategy, but 1s nonetheless often still superior to the ordinary
average This may be one of the main reasons for the good performance of
mixed methods for rough coefficient problems

It would be very nteresting to determine through numerical experiments
the effects of each of the differences 1-3 on the numerical solution
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