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MIXED BOUNDARY VALUE PROBLEMS IN MECHANICS
F. Erdogan
Lehigh University, Bethlehem, Pa.

1. INTRODUCTION

In attempting to formulate a given "equilibrium-type" of continuous
system in mechanics one may either use some kind of a variational princi-
ple and reduce the problem to a minimization problem subject to certain
constraints, or, as is more commonly the case, one may directly apply the
equilibrium principles and reduce the problem to a boundary value problem
which consists of a (system of) differential equation(s) subject té cer-—
tain boundary conditions. kEven though in most practical applications the
minimization problem is further reduéed to a boundary value problem, it
may also be solved directly by using aﬁ approximate technique such as the
Ritz's method.' To facilitate the definition of ecertain concepts consider

the following boundary wvalue problem in two dimensions:

Lyn(0) = £(x;,%,) (45 %,)€D . (1.1)
Bi(u) = gi(s) . (i=1,..,m) , sEeS ‘ (1.2)
where LG'is a differential operator of ordexr 2m, X sXy are the spatial

coordinates, D is the domain of definition for the unknown functidn.u, S

is the boundary of D, Bi (i = 1;..,m) is a differential operator (contain-

ing u and its normal derivativeé) of order (at most) 2m-1, f and?g,are

. known- functions, and s is: any convenient coordinate defining the point on

the boundary (say, the arc length). The domain D may contain the point at
infinity and may be multi?lyconnected. Contours fofming the‘boundary are

assumed to conéiét‘of’piécewise smooth arcs. The points on7S at which the

tangént’has a;di$continuous slope will be called the points of geometric

gingularity.
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There is another type of singular point on the boundary which results
from the change in the nature of the homogeneous operators Bi(u) specify-
ing the boundary conditions. Such a point on a smooth boundary either
side of which at least ome of the operators Bi (i=1,..,m has different

behavior is called a point of flux singularity. Note that if the behavior

of an operator Bi changes at a "corner point" of the boundary, this point
is then a point of both a geometric as well as a flux singularity. If
the homogeneous operators Bi remain unchanged on each closed contour (but

not necessarily the same on all contours), then the corresponding problem

is called an ordinary boundary value problem. On the other hand if there
are points of flux singularity on the boundary, the problem is called a

mixed boundary wvalue problem.

In working with mixed boundary value problems it is often advantag-

eous to keep in mind that the physical system haskgenerally two types of

quantities, namely, the potential and the flux type quantities. - In poten-

"~ tial theory the meaning of these concepts is unambigious and clear. - They

are, for example, identified by temperature, velocity potential, electro-

static potential, mass cOncéntration, or displacemént (in anti-plane shear

problems) as the potential type quantities; and heat flux, velocity, elec—k

trostatic charge, mass rate of diffusion, or stress, as the corresponding

flux type quantities. Similarly, in solid mechanics one may classify the

- displacements and the stresses (or the strains) as respéctively the poten-

tial and flux type quantities. The physics of the problem requires that

the "poténtial".be bounded and continuous everywhére in D+S, including

the points of both geometric and flux singularity.

To fix the idea§, cohsider the followingysimple'prObiem in a wedg§—f

shaped domain

Gl et 1o THigdr




v2u(r,0) =0 , O<r<e | 0<6<0_ (1.3)

1
P E0 S E® L fgpui) =@ , 0w (L4)

|-

where the known functions f1 and fz are such that the global equilibrium
is satisfied and O<80521T. The problem is an ordinary boundary value
problem and r= O’is a point of geome’trié singularity. If in the neigh-
borhood of =0 fl and fz are zero, simple application of Mellin trans-
form would indicate that for small wvalues of r the components of the flux

vector are of the following form:

1ou, Kr(ﬁ—eo)/eo sin T2 4 O(I(ZN“GO)/GO) ,
r o 0, ,
du -—Kr(ﬂ"eo)/eo cos 10 + O(r(ZW_eo)/eo) N (1.5)
or SIS
where K is a constant:. Note that at r=0 the flux becomes unbounded for
, m=~6
'IT<90:§21T, the corresponding power of singularity being O>—e—9- >-0.5.
' o
If the boundary conditions (1l.4) are replaced by
- 13 NN | |
u(r,0) =0 , 136 u(r,eo) = f(r) , O<p <% (1.6)

[

it is seen that the problem is a mixed bou’ndary value problem in which
r=0 is a point of both geometric and flux singularity. Hence, in this
problem one would expect a stronger flux singularity than in therprevious
problem. ‘The, asymptotic solution of the problem for small r may again

be expressed as

u(r,8) = Krw/?‘eo in ‘l@'-l— O(rBTr/?_GO) ..
290
}l—%= K zg' r(wzeo)/zeo,cos zﬂfeeo,"” O(r(”"'ze‘o)/zeo}, s

Q




S8 =g (T200)/200 o5y MO (372800 /26,) (1.7)
0 - 0

From (1.7) it is seen that for ﬂ/2560§2ﬂ the corresponding power of the
m~26 )
o
8 >-3/4, which is stronger than that found in
)

flux singularity is 0>

the previous problem for the same angle 90.

Let us now consider a special case of this problem in which 0 =7.

Here the boundary is the infinite line; consequently the geometric singu-

larity is removed but r=0 remains to be a point of flux singularity

having a power —1/2. As will be seen 1atér in this article, —;l/2power
singularity is quite typical for the points of flux singularity on a
smooth boundary. It will also be seen that however, somewhat contrary

to the general expectation, this is not always the éase in mixed bbuﬁdary
value problems with boundary conditions containing the potential and the

flux.

Finally, consider the following (mixed) boundary conditions

u(x,0) =0 , ' a<r<bh
13 ’ = 0<r< < <oo :
T 58 u(r,0) = g(x) , r<a -, b<r -
19 o) - w  aw
”I'_"’é? u(r,eo) = f(r) , 0<r . . " o ( . )

where £ éndvg are known functions. It is seen that r=0 is a point of

'geometric Singularity and the points r=a and r=b on the smooth'boundary

(6=0, 0<r<m5 are poinﬁs of‘flux,simgularity. “The ‘problem is d~mixed
boundary value problem. Around the geometric>singu1arity,rsiO the solu—-
tion is expected to behave as in (1.5 and- around the.pointé of‘flux singu-

larity it will have a behavior as in (1.7) with 60=éﬂ and necessary coordi-

RIS




nate transformations. It should again be emphasized that the standard
~-1/2 power of the singularity at r=a>0 will be a function of 60 for
a=0 which, depending on the value of 8,, may be stronger or weaker
than - 1/2. A similar phenomenon will be discussed in connection with

a contact problem in elasticity later in this paper.

2. DEFINITIONS: MULTIPLE SERIES EQUATIONS, MULTIPLE INTEGRAL EQUATIONS
In considering the solution of a given mixed boundary wvalue problem
perhéps the simplest technique is the direct application of the method

of complex potentials provided the problem admits such potentials and

‘the domain and the boundary conditions are suitable for such an applica-

tion. In this .case the problem is reduced to a Riemann-Hilbert problem.
for a (system of) sectionally holomorphic funétion(s) which may be

solved in a straightforward“mannef.' On the other hand if one applied a

- more standard technique such as, the separation of variables, integral

transforms, or the method:of Green‘s function,'the mixed boundary condi-
tions invariably lead to a,formulatiénvinvolving "dual series equations",
"dual integral equations' or”"singular'integralvequations". Again, to

facilitate the basic understanding of these notions; the definitions will

be preceded by the formulation of some simple examples.

2.1 Multiple Series Equations.

As a first example consider the following mixed boundary valie prob—,‘

lem in potential theory for the unit circle:

Vu(e,0) =0, Okl , o 0%e<2m o, (2.1)
2 w0 - g’(ey)’ | 9eL, o ey
u(l,8) = £(®) , o GeL, , 2.3




N
Ll = § L1i , Lli = (r=1; ai<6<bi) s (2.4)

and L2 is the complement of 'L1 on the unit circle. Using the technique
of the separation of variables the solution of (2.1) may be expressed as
®* . n
u(r, ) =A 4+ X r (A cosnB + B_ sinnb) . (2.5)
o} 1 n n
Formally, substituting from (2.5) into the boundary conditions one obtains

the following system of equations to determine the coefficients An and Bn:

iﬁ n(An cos nb + Bn sinnB) = g(0) , 6:-:L1 ,
Ao + ? (An cosne-i-Bn sinnB) = £(0) , 6€L2 . (2.6a,b)

In the case of Dirichlet (Ll = 0) or Neumann (L2 = 0) problems (2.6b) or
(2.6&) give the unknown coefficients directly by expanding £(6) or g(Q)
into Fourier series in (0,2m). However, in the present problem the func-
1 and L2

and hence, (2.6) is at best equivalent to (or can be transformed into)

tions sinn® and cosn® (n=0,1,2,...) are not orthogonal on L

an infinite system of algebraic equations.

- The structure of (2.6) is typical of the mixed boundary value prob-

lems defined in a bounded domain a<x<b which may be ekpressed as

A ,kl(n,x) = fl(x) . R *gng s

A k. (n,x) = fé(x) y .#ELZ— D (2.7)

or, more genérally, for J sets of cngficiéﬁts Ajn,_(j:=l,..,J; nﬁ=1,2,..,)'

one obtains




J %
I L ok (n,xA, = fi x) , xeL; (i=1,..,) ,
J=l n:yl J
| T o=y i
" Z— Z— ij(n’x)Ajn = f2 x) ., x€L2 , (i=1,..,J7) , (2.8)
« j=1 n=1
o where again ' , ;ﬁ'
Iy
N 3
Ly = 'f Lie Ly = (b)) Lyj+Ly = (a,b)
<h. < ’
a bk ael o a<al , beb , | (2.9)

and the input functions fr or fi and the kernel functions kr or ki. are
known. The system of equations such as (2.6), (2.7) or (2;8) are defined

as dual series equations.

Going back to the problem for the unit circle (2.1), if one assumes

. that the boundary L= (0,2m) is divided into three parts with the following

ox boundary condltlons(l)
: . ;
-a—'r_ U(l,e) = f]_(e) y eELl s
u(l,8) = f2(6) 3 9€L2 s
L9 - . : -
hlu(l,e) + h2 P u(l,0) = f3(6): s 7 BeL (2.10a e)

" 3 3
where L oy (r=1,2,3) is the union of’nonintersecting arcs L j,f(r=?l,2,3;

J=1,2,.0,5d ) on the unit circle with L1 + L, + L (O 2ﬂ) “h “and

l 27737 1
; h, may be functions of 8. Agaln, formally from.(Z l) ‘and (2.10) it follows
j' ~ that | L 7
! B . - e : ' ) ) S
Coe : ) n(An cos nf + B sin ne) f (9) e GELi p
:\i T ’ 1 : . .
B ;5a <1)T‘n:Ls is a problem, for example, in heat conductlon in which, in addltlon

: to spec1fy1ng the heat flux and temperature on parts of the boundary L. and

Coo 'L,, there is free convection taklng place along" LS where h, is the coelfic~
Lo iént of heat convection, hy is the coefficient of heat con&uctlon, and f3
e ~is related P the envlLonmental temperature u,, through hju, = f3 ‘

7
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A0 + 214 (An cosnf + Bn sinnB) = f2(6) R 6€L2 .

[ee]
hle + hl § (An cos no + Bn sin nb)

+ hy b n(A_ cosnb+ B_ sinnB) = £,(8) , BeL. . (2.1la-c)

1 3
In this problem as seen from (2.10) the boundary conditions are defined in

terms of three distinct operators on three separate parts of the boundary

giving rise to a set of three series equations described by (2.11). Thus,

these equations will be called triple series equations. In general, then
a set of series equations for a system of unknown coefficients Al’ AZ""

of the form

© M
% An ki(n,x) = fi(x) , xELi s § Li =1 '{
(i=1,..,M -, (2.12)

will be called multiple series equations (of multiplicity Mfl).

In the mixed boundary value problems described by (2.6) and (2.11) the
intersections of the boundary segments Lij are points of "flux singularity'.
The discussion given in the previous section for the wedge would indicate
that at léast at some of these points the flux will be ﬁnbounded, at others
the behavior of the solution is not known beforehand. Hence, thektechnique
developed to solve the multiple series equations will not only have to be

sufficiently general to apply to-a great diverSity of problems but will

also have to lend itself to the correct treatment of the singular nature

(l)NOte that this definition is different than that found in current liter-

ature (e.g., [1]) on "dual series' and "dual integral" equations where the = -
multiplicity of the equations is taken to be the number of independent seg-

ments on the boundary rather than the number of independent operators de~
fining the boundary conditions. : : -
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of the solution. Aside from the method of complex potentials whenever
applicable, it appears that the method of singular integral equations

is the only approach which fulfills these requirements. Because of the
singularities, since the infinite series giving the components of the
flux vector will be divergent at certain points on the boundary, it is
clear ﬁhat any direct method reducing the multiple series equ.itions to
an infinite system of algebraic equations in the unknown coefficients

(which has no closed form solution) will not be acceptable.

2.2 Multiple Integral‘Equations
Consider now the equivalent problem in potential theory for the half

plane y>0. The problem is stated as follows:

Vax,y) = 0 (~okg<eo ,  0<y<®) | (2.13)
3 .
5§-u(x,0) = fl(x) s | xEL1 s v (2.14)
u(x,0) = fz(x) . xeL, , : ‘ (2.15)
N | '
Lys= f Lyg » Lgg = (agpbd 0 ag<hi<ag
R N (R (2.16)

where L2 is the complement of L1 on (=w<x<®), f1 and f2 are known functions

2 + y2+m (i.e,, any homogeneous solution behaving

and are such that u*0 as x
differently at infinity has been sepérated). Using Fourier transforms,
the solution of (2.13) may be expressed as

o

wGeyy) = Al@e Yol gy o @an

, ﬁhere A(o) is an unknown function. Substituting from (2.17) into (2;14) -

and (2.1%) formally we find



ox

w .
-/, lajataye™™ aa = £, xeL,

co _,a
[, A(@e T da = £,(x) ,  xeL, . (2.18a,b)

If L1 or L2 is zero, (2.18) may be solved in closed form in terms of inver-—
sion integrals. Integral equations of the form (2.18) or more generally
the pair of integral equations

{ kl(x,a)A(a)da = fl(x) , xe€L,

[ Ty (%, 0)A(0) do,

£,(x) xeL, L, +L,=1 , (2.19)
L

2

in which the kernels k1 and kz are different, are called a set of dual

integral equations for the unknown function A(a). If the problem involves

more than one unknown function, the boundary conditions would lead to a

system of dual integral equations for the unknown functions Aj(a), (i=1,..,J)

of the following form: -

J S
FTK, WA (@de = ErG ,  xeL, , i =1,..,d,
L § 1j | 1 1

J . }
I k%j (x,0)A, (0) dot = f;’(x) ;o oxeL, ,  i=1,..,d,
L1 | ,
L, +L, =L . (2.20)

In this problem too omne may consider the following more general boundary

conditions:

] . ,
*;—;};u(X,O) =£ M, ®€L;

‘ u(x,O)‘= fz(x) s x€L2 ,

‘. —~ 3 B ' i ’ . —;
hlu(x,b) + h, 5 u(x,Q) = fs(x} ke st3”, i BN (2.21a g)

19
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where Ll + L, + L3 = (=c0,), and Li, (i = 1,2,3) consists of nonintersect-

ing line segments Lik (k = 1"*5Ki) on the real line. From (2.17) and

(2.21) it foliows that

00 oty
- L Jola@e™™ da = £,(0) ,  xeL

-

- s ' s
I, ala)e OX 4o = fz(x) . xeL, , !

I (hl—hziaI)A(a)e"i“X do = £,(x) ,  xeL (2.22a-c)

Equations (2.22a-c) form a set of triple integral equations for the unknown

Function A(a). More generally

3
no, _ 0y :
i f kmj(x,&,Aj(a)da fm(x) s xel
M .
Z Lm =1L , n=1,..,J , m=1l,..,M (2.23)
m=1 ‘ ,

is called a system of multiple integral equations (of multiplicity M) for

the unknown functions»Al,..,AJ.
As in multiple series equations, in problems formulated in terms of
multiple integral equations the singular nature.qf the solution is gener-
ally not known ﬁeforehand. Therefore, in. these problems too it is import-
ant that the method of solution developed to solve the 1ntegral equatlons
be not only sufflclently general and effectlve but also glve the correct
behavior of existing 31ngu;ar1t1es,‘ In this respect, particularly in dealing
with somewhat unusual mixed boundary value probléms, the methods of complex
potentials and singular inﬁegral equations appear to be far éuperior tb'
the standard operational.techniques. An extensive treatment of thé opera--
tional techniques for thg.solutioﬁ of dual series and dual integral eqﬁa—‘
tions ﬁay be found in a recent béok.by;Sneddon,[i]. [2-13] are some of

the outstandihg references on ‘the theory and applicationé of the complex .

11



potentials and the singular integral equations. In this article the
primary emphasis will be on the recent developments concerning the
methods of solution of the singular integral equations and particularly
the applications to some mixed boundary value problems with uncommon

singularities.

3. APPLICATION OF COMPLEX POTENTIALS
In this section the direct application of complex potentials will

be described by considering some relatively simple examples.

3.1 A Problem in Potential Theory

Consider the mixed boundary value problem in potential theory for
the half plane (-%<x<=, y>0) which is formulated by (2.13)-(2.16) (Figure 1).
Let the harmonic function u(x,y) be the real part of a complex potential
F(z), z = x + iy. TF(z) is holomorphic in the upper half plane st where

the derivatives of u may be expressed as

2R F @ AF@,  -E-T@-FE . (3.1)

Noting that if zeS+ and z>*t + 10 then zeS~ and z+t-i0, taking the boundary

values of (3.1), and using the conditions (2.14) and (2.15) we obtain

[

PR - FU(E) = - 26 (8) ,  tel

P+ TR 260() 'taLz (3.2a,b)

where~(2,15)'is used in differentiated form which means that for single-

valuedness the solution must satisfy the following conditioms:

b ‘ :
fai é%'u(x,O) dx'=/f2(bk) - fz(ak) ‘ | (3.3)

12



where k = 1,...,N if a1>—W, bN<m, and k = 2,..,N-1 if a; = - and bN = o,

Since F'(z) is holomorphic in S+, F'(z) will be holomorphic in S7.
If Ll is finite we define a new sectionally holomorphic functioﬁ §yM

F'(z) , ZES

6(2) =1 %) , zes . ’ (3.4)

From (3.2) and (3.4) it then follows that

1

G+(t) + G (t) = - 2if,(t) teL

1 ?

ctee) - ¢ (p)

. .
Zfz(g) s teL,

From (3.4) and (3.5) it is seen that G(z) is holomorphic everywhere in

the complex plane except on L. and on that part of L, on which fé(t) is

1
not zero. Depending on the behavior of u, G may also have a pole of

finite degree at infinity. TFor example, if there is a uniform "flux" at

infinity given by

ou , ., ou _ , 2,2 : ’

3x+l-§§;-—p1+lp2 s (x"Hy o) o, ; (3.6)
we have

lim  F'(z) = p, - ip, . | N )

|2 |0 A B

Consider now the related homogeneous Riemann-Hilbert problem given by

+ ol = ' —

X () +X () =0 , t;Ll , Ll = E‘le
ot o : ]) -
X (t) -X () =0 ,  teL, (3.8)

where X(z) is the fundamental solution of theroriginalikiemannéHilbert

‘problem (3.5) which is clearly determinate within an arbitrafy'multiplica—.

tive énalytic function. Referring to, for example, [3], the general solu-

tion of (3.8) may be expressed as

13
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X(z) = P(z) f?](z—ak)— %>+ OLk(z--bk)%-+ Bk ' (3.9)
where Oy and Bk(k =1,..,N) are arbitrary integers (positive, megative,
or zero) and P(z) is an arbitrary polynomial. At thie point it should
be strongly emphasized that in (3.9) as well as in the applications of
the function=-theoretic methods to the singular integral equatioﬁs else-
where in this article the arbitrary integers dk’ Bk cannot be determined

from purely mathematical considerations. To do this the physics of the

- problem has to be properly taken into account. In the present problem

the points ay and bk are the type of singular points at which flux vector

~has an integrable singularity. Therefore, o = 0, Bk =-1, (k =1,..,N),

and ignoring the arbitrary polynomial, the fundamental solution of the
problem becomes

. ) B
X(z) = F"](z— @ E’(zebk)"i (3.10)

where for the particular branch considered %iT ,an(z) =
7 | >0

Dividing both sides of (3.5) by X+(t) and using (3.8) we £find

' . + N tel ’
o) —’21f1(t)/x (t) L

+
SO

); G(t).—

- (X(t) )

261 () /X (1), teL, (3.1D)
; ,

Equation (3.11) is now a simple boundarykvalue problem the general solu-

tion of which having'a finite degree at infinity may be written as [3],"

Zifi(t) . ; 26 (£) -( ;
‘ dt + —= ——dt + P (2) (3.12)
2W1 L2 (- z)X*(t) k S

G(z) o 1
X(2) 2 Ly enyxt ()

Where Pk(z} is an arbitrary polynomial of degree ¥. TFrom (3.4) and (3.7)

it 1s seen that G(?) has . a pole of order zero at 1nf1n1ty Thus, from

' (3 10) and (3. 12) it follows that the degree of Pk is N, and (3 12) becomes"

14
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This completes the solution for finite L

fl(t)dt fé(t)dt

+ X2)
Ly (t-—z)X+(t) ™oLy (t—z)X+(t)

X(Z) f

Nox
G(z) = - 4 X(z)gckz . (3.13)

where Cys»»aCy BTE arbitrary constants.. From (3.4), (3.7) and (3.13) it

N

is easily seen that
cy = Py - ipz ; v _ (3.14)

Noting that Ll is finite, the remaining N constants Cyse+sCy1 BTE determined

from the single-valuedness conditions (3.3). From

2 L @40 =TT +FT® = T - | (3.15)

9x
these conditions may be expressed as

L F 6t - e = £,6) - £,(a

2 "a, (k =1,..,N) (3.16)

D
giving, with (3.13), a system of N linear algebraic equations in CoretaCyo1e
1’

If L2 instead of Ll is finite (i.e., a; = —m,bN = ®) the procedure to

“solve the problem is quite similar to that given above with the following

main differences: the branch cut should'be iﬁtfoduced»along L, by defining b

G(z) as
F'(z) , zesT B
G(z) =Y _ : S - (3.17)
F'(z) , z€S
ﬁhich would give the,fundamental solution as follows:
N-l s ' |
n \-1/2, =1/2 , ~
X(2) = FI] (z=b) ~"“(z=ay gy T o 3as)
:,Considering only the solution forywhich E
{wvsg-u(x,O)dx = Q = finite T . TR (3'19)

- 15
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1-N for [z|+W,‘it may be seen that in the expression

and noting that X(z)->z
{ E ' of G(z) similar to (3.13), the degree of the arbitrary polynomial will be
i . N-2, i.e., the solution will contain N-l arbitrary constants CoreesCy ot
These constants are then determined from (3.l9) and (3.3), completing

* the solution.

: i o 3.2 The Case of Periodic Cuts
In the problem considered in the previous section let the cuts (ak,bk)
g ‘be equal in length and be equally spaced. Thus, one may define the end

£ f’ - points of 2mtl cuts by

a =2kb-~-a , b =2b+a , (k=0,¥,..,%m)

' m _ ‘ :

Lix = (asb) L) _gx L - T o (3.20) i
.~ The fundamental solution (3.10) of theiptoblem.then becomes é

- . v o : s S ' : ;

] X(z) = [‘] (z—a ») /z(z—b y~1/2

= Z+a z=a,2,,-1/2 ' . ;

= A[(z+a) r_l(l (Zkb) )(Z a)[_T(1~ Gy 1] | | ‘(3.21) S

e , Where A is a eonstant given by
A= (=-1)"(2b) 2 (m!)

Because of the homogeneous nature of (3, 8), since X(2z) is determinate within
;A ' g a multlpllcatlve analytlc functlon, the constant A may be (and will be)
»‘lgHOIQd It is seen that 1f we now let m*m, geometrlcally the problem

‘becomes that of a plane with perlodlc cuts. In addltion to. this 1f the

functlons f1 and f are assumed to be. perlodlc then we have a problem for

a half plane with perlodlc mlxed boundary condltions For 51mp11c1ty, here.,

i
i
H
i
i

" 7 ) 1t Wlll be assumed that any homogeneous "loadlng condltlon at 1nf1nity has
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been separated through a proper superposition and consequéntly in the : %f
problem under consideration F(z)-0 as |zl*w. First ignoring the constant

A and then using the relation [14]

- [ee) 62
sin6 =6 [ ] (1 -5 ) (3.22)
. 1 kem _

in limit from (3.21) X(z) may be obtained as

_ .. 2Tz .2 ma,-1/2 |
X(z) = (sin 5p ~ Sin 2b) s _ (3.23)

where the particular branch which is positive for a<Re(z) = t<2b-a will

be considered.

With X(z) as given by (3.23) the solution (3.12) is still wvalid.

Since the geometry and the boundary conditions in the problem are periodic

in x with a period of 2b, the potential G(z) must also be periodic in z

“with a real period 2b. On the other hand from (3.23) it is seen that

, K(t) = - X () = - X' (t42b) = X' (t44b) , el

| X

X(t) = - X'(t+2b) = X' (e+4b) ,  tel, o 3.28)

namely, X(z) is periodic with a period of 4b. Therefore,kin order to have
i ‘ a periodic potential with (real) period 2b, the arbitrary polynomial in

; R (3.12) must be of’the following form

: S . TZ TZ. ' , ;
P (2) = (31‘sln Eﬁi+‘?2.cos 757 Q(2) R 3 (3.25)

where Q(z) is an arbitrary‘bériodickaﬁalytic function with period 2b and

' 'Bl and B, are arbitrafy‘constants. From

5 2
: lin  6(z) = 0= lin  X(@P(2) = (B #BA=  (3.26)
A |z]se ozl | e i ;

17
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it follows that Q(®) = 0, or since Q is analytic in the entire plane,

Q(z) =

The solution of the problem may then be written as

Vo
X(2) @ bk fl(t)dt v(z) a1 fz(t)dt
6(z) = -===2, /[, T + S ST e, (3e2D)
: k (t=-2)X (t) k  (t=-2)X (t)
where X(z) is given by (3.23). Letting
t=T+2kb ,  £,(tr) = £ (T+2kb) = gy (1)
£2(0) = gy(T) s, xT(e) = (1), -b<t<hb k = 0,+L,.. (3.28)

and using (3.24) the integrals in (3.27) may be modified as follows:

=5 R L L L -n*
1 T Ze a, (t—z)X+(t) ~a  X(t) == (T-z)+2kb

a 81(Ddt 4

el hrarwid (3.29)
1 (1-z)%-(2Kb) >
In (3.29) the series may be summed by using [14]
—el—+ )3 .2292 = Tcot T 5 5 2n2$ RV tan 6 - o . (3.30)
1 6%n ' 1 n(==)"-6 , :
which gives
T M8 gl(T)dT -
_Sl = Zg.£é~——§zgy— [cot 4b (T z) + tan 4b (t=2)1
I --”g.l-(T)c-l'T R ol L
2b ~a X(i)sinﬁlL(T—z)-' s 3 o (3.31)
Similarly ‘ _ v
gy f(Ree %_a gyt
=00 " 2b

K (t~z)X (t) | iX(T)Si“'£%<T~Z)-

'13
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Thus, the solution becomes

: g, (T)drt _ g, (T)dT
o -5 HOT g e IS
X(1)sin EE(T~Z) X{(T)sin 53{T~z)
where X(z) is given by (3.23) and
Z(t) = X%(t) = (sin2 Te sin2 320"1/2 . (3.34)

2b 2b

Consider, for example, the simple case of an infinite plane containing
uniformly "loaded" periodic cuts for which fl(t) = - po;and fz(t) = 0.

From (3.33) G may be obtained as

G(z) = ipo[l—X(z)sin‘gE] . (3f35)‘

Using now the relations

L a0 = 2@ - ),
g% u(x,+0) = - 20676 + @I (3.36a,b)

the components of the flux vector on the boundary may be expressed as

follows:
5 0o, a<lx|< ,
-é;ku(x,‘FO) = ,
: ~"posin(ﬂx/2b) , 0<|x|<a
[sin (ma/2b)-sin (mx/26)1 12 '
X Py v 0<|x|<a
= u(x,+0) = e
0
7 p sin(mx/2b) ; : :
) —— 7y " Py o 2<lx|<e (3.37)
[sin“(mx/2b)=sin”(na/2b)] K : : :

In limit, for b, a = finite, (3.35)-(3.37) reduce to the following re—

| ’ s ‘ . 4 :
sults for a plane with a single cut, (-a,a) for Whlch‘ﬁ; u(x,0) = =Py»
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(-a<x<a) is the only external disturbance:

G(z) = 1p 1 - z(z2 2 1/2] s

) 3 _ POX .
Ae U(x:0) = - 5 3.1/ ° 0slx|<a

N (a™-x%)
2 G, 40) = 2 Jx] (3.38)
= u(x,+ = - p s a<ix]| <o 3.38
oy (x a2)1/2 o

In the general case the real and imaginary parts of G(z) give the
components of the flux vector in the upper half plane and (3.36) that on
. the boundary. G+(x) and G (x) may in turn be obtained from (3.33) by using

(3.24) and the following Plemelj formulas [3]:

_ 1 f(r)dt
b2) 2mi { sin ——~(t z)

B ' ' o, x€eL’

IR E)

£(x) ’ XEL

20(x) ,  xeL'

0T+ 9T

1 £(t)dt o, xEL (3.39a-c)
™ in 5 (t=x) | o

2b '
where f(t)‘is any ﬁBlderucontinuoﬁs function defined on the open iﬁtervai

L, L + 'L"_2 (—b,b).

From (3 13) and (3 33), or more speciflcally, from (3.37) it is seen‘ e
that the components of the flux vector Bu/ax and Bu/ay have 1ntegrable f 
singularities at the points:of 1ntersectlon ak, b of Ll and L2 w1th a-
power Of - 1/2 (see also (1.7) for 6 -W) A_close examlnation of.(3fl3)

ﬁf   : ;and (3 33) would 1ndlcate ‘that
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? G(z) = Fl(z) + X(z)Fz(z) (3.40)

é ‘ where Fl and Fz are holomorphic in the entire plane. By letting z-a = %;
%x rele, for small values of r G(z) may be expressed as EE
; cos 2 i sin s %
é»‘ = .aﬂ - .@. = -l.. 2 - 2 f
MW T Ty T ez 2@ oW i
26 D
0<B<T (3.41)

For example, in the case of uniformly '"loaded" cuts, from (3.35) it follows

that (1) | S | R
o _du_  du__ b, ml/2P . 8, . 8 | R
z G(z) 5~ F 3y (W tan 2b) = ( sin 5 + i cos 2) + 0(1) :
| 056270 (3.42)

!

E" Note that in this simple example u(x,0) = 0 on L1 ; u(x, 0) = - p on L2

Hence, the boundary conditions around the flux singularity x = a are iden-
v ~tical to (1.6). It would then be expected that the resulting asymptotic 3

solutions be the same which may indeed be seen from (1.7) and (3.42).

3.3 An Elasticity Problem for a Nonhomogeneous Plane

As another example for the direct application of complex potentials f

to mixed boundary wvalue problems consider the following elastidity problemn:

5 e ' R PIEICREE p T 2
Let two linearly elastic isotropic half planes with material constants( )

','uu,K. (i = 1 for y>0, =-w<x<o, i.e., S+ and i = 2 for y<o0, —®<x<w' i.e., S—)

be bonded ‘along the (nonlntersectlng)llne segments L (ak’bk)’ (k="1,. N);

N . SN
i R on the real ax1s, Let L = 5 Ly be finite and the x and y— components of o i
: ' -5 : : o ‘ L

[ o (l)In (3.41) and (3.42) the terms ‘0(1) stands for bounded terms and come_

| ~from: Fl(z) in (3.40), Note that the second term in (3 40) is of the

asymptotic form O(r™ 1/2) +0(x /2)

P I ( )Where U -is the sheat modulus, K= 3—4vl for plane strain, and Ki =
(3—v1)/(l+vl) for plane stress, Vv, being the P01sson s ratlo. :

| o REPRODUC]BEITY OF THE
- ORIGINAL PAGE IS POOR.



the resulting force acting on the half planes at infinity be Q and P,
respectively. Let L' be the complement of L on (~®<x<®, y=0) and -pl(x)
and pz(x) be the normal tractions acting on the half planes along L',

(D

Thé problem will have to be solved under the following conditions:

+ _ - . - .
(t) = Gzyy(t) -1 Ony(t) , telAL

+ .
01 y(t) - i Glxy

S(0) =10 T(6) = - Ipy(6) + 1p,(0)] = - p(e) , el

[uj(c) + ivj(t)] - Tu, () + v, ()] = £,(8) + if, (1) = £(8), tel ,

! (3.43a-d)

L+L'(02yy - 10, 4t =P - iQ

where the superscripts + and - refer to limits as y*+0 and y+—0,'uk, Vies
are the x,y— components of the displacement vector, and ijt, (k = 1;2;
G, ) = (x,y) is the stress.

The simplest method to solve this problem would be the use of complex

potentials known as Kolosov—Muskheliéhvili or Goursat functions.  In

terms of these potentials the stresses and displacements may be expressed

as follows [2,8-10):

Ox + gy = 210 () + B @],

Okyy - ka‘ + 210, :— 2[z® (z) - ¥ (Z)] ,
2, (o +ivy) = k¢k(z) - z@ (z) wk(z)

B@ =G G ‘“k“

(1)The input function f(t) may be non-zero in, for example, thermal stress

“and resldual stress problems [15].
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where zeS+ for k =1 and ze$S for k = 2. Noting that @1 and Wl are de-
fined in S+ and @2 and Wz are defined in S only, by extending the def-
inition of @1 into S~ and @2 into st in such a way that they are bolomor-
phic on the unloaded parts of the boundary (i.e., the real axis), one

could make the following substitution [2]:
Y (2) = = § (2) - @k(z) - 28y (2) (3.45)
where zeS+ for k = 1 and ze$~ for k = 2. TFrom (3.44) and (3.45) it then

follows that

kay - igkxy = @k(z) e ¢k(2) + (2_2)5{{(2) s (k= ‘l"2> (3'46)

2 o (ot = Kk § (2) + 5.3 - EDEE . =1,2)  (3.47)
Substituting from (3.46) into (3.435) we find
§r(e) + p(0) = F(6) + §y0) L LT (3.48)

meaning that él(z) + @2(z) is holomorphic in the entire plané including
the real axis. Noting that the stress state at infinity vanishes and
assuming that the rotation at infinity is zero, following [2], for large

values of lzlfit may be shown that

§,(2) = 4 o(1/2)
3, ()= LI 4 o(1/2) o | : (3.49a,b)

where, in the usual notatidn:o(l/z)fc/z, ¢ being a positive quantity which

depends only on |z| and tends to zero as |z|+®. Since +0¢, - is holomorphic,
: NN : 1 +2 PR

from (3.49) it is clear that
8 +§ =0 e | @50

2




in the entire plane.

‘Substituting now from (3.46), (3.47), and (3.50) into the boundéry
conditions (3.43b) and (3.43c) (after differentiation), we obtain the
following Riemann~Hilbert problem for the sectionally holomorphic func-—

tion éz(z):

3,(t) + 0 35(t) = h(t) ,  teL

&0 - 5,(0) = pt) , el @D
where
U K, =21 ,
17272 v 172 , )
= h(t) = ———— £"(t) . (3.52)
HoktHy HoKytHy

Referring to [3], the fundamental solution of (3.51) satisfying the related

homogeneous equations
+ -
X (t) +wX (£) =0 , tel
+ - = ¥
X (L) ~X () =0 , tel,

T =

= M =

L, LK = (ak’bk) ’ ; ; (3.53)
may be expressed as

x(@) = [T %k

1. | _1 . log
O = opg LOBEW) T A =g - 1T b A

S T e T
Bk T lpg(~w) + ? = 2’{ l;_ZW +‘Bk s (3.54)

k

" vwhere A, and Bk'(k = 1,..,N) are again arbitfary~(positivé, zZero, Or mneg-

2%
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ative)integers In the present problem the singular points a, and

k

bk correspond to the ends points of interface cracks. Consequently, at
these points the stresses and displacement derivatives will have an in-
tegrable singularity giving Bk = 0, Ak = -1, (k=1,..,N). Here, we will
then consider the particular branch of X(z) which is single valued in

the plane cut along L and for which

lim  23%(z) =1 . (3.55)

2]+

Dividing by (3.51) by X'(t) and using (3.53) it is found that

@ (t) + o, () -
2y 2 _ h(t)
STOL X(t) ey teL
o (t) +. O, (r) - ¢
2 2 - p{t)
ey X(e)” Fo tel! (3.56)

Noting that the stress state vanishes at infinity, the general solutiomn

of (3.56) vanishing at infinity bacomes

+3 ezt ,  (3.57)

L' (t-z)X (E) ¢ o

Q) h(t)dt 1 f p(t)dt

= 5 + 5
X&) 2T o oxteey | 2T

where Cyre are arbitrafy constants. From (3.49b), (3.55), and (3,57)

2%y g
it may be shown that

o L o= - IHE | (3.58) -

The condition of single—valuédness of displacements gives the remain-

ing N-1 constants, Cos+»3Cyne We recall that in deriving (3.51) thev

‘l)In most physical problems and B, are such that,~1<Re(ak,Bk)<l. Even
though in literature one finds this as a mathematical condition, clearly
Ay and By‘must be determined from the physics of the problem.
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continuity condition (3.43c) was used in differentiated form. Thus, this

condition requires that

Brdl D L -
fbk . [(u1+1v1) - (u2+iv2) ldx = f(ak+l) - f(bk)
(k = 1,..,N~1) (3.59)
or
Bepp, M Ky 15 B
fbk [(-Eﬁz’ *3ﬁ;9¢2(t) + (Eﬁz’+'§ﬂ;99(t)]dt = - f(a k+l) + £(b)
(k = 1,..,N~1) . (3.60)

In (3.60) and elsewhere, to obtain the boundary values of the Cauchy

integrals the following general Plemelj formulas may be used

F(z) = 5 s BLEME

2ﬂ L t-z

+ - g(x) ,  xeL
F (x) ~F (x)

0o , x€lL,’

1 I g(t)

i 1 t-x
\N2F (%) xeL.’!

It

Frx) + F (x) e, xek

(3.61la-c)

where L' is the complement of L (on an infinite line or on any closed con-

four in the complex plane). Thus, (3.57) with (3.58), (3.60), (3.50),

(3.45) and (3.44) gives the complete solution of the problem. TFor example

if L = (~a,a) (bonding along a single segment), p(t) = 0, and £(t) =
the solution becomes

S i(logw)/2m
. (z ~a )

77 &2 - (3.62)

where w is given by (3.52).
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Observing that the general solution of the problem is of the form
@2(2) = FI(Z) + FZ(Z)X(z) , (3.63)

as in the previous example, the asymptotic behavior of the stresses and

. displacements around the points of singularity may easily be investigated
(see [16] for details). If the positive constant w appearing in (3.51)
and defined by (3.52) is not unity, from the behavior of the fundamental
function X(z) given by (3.54) it is clear that the stresses and displace-
ment derivatives will have a typical oscillating singularity around the

end points of the branch cuts which is of the following form:

T

05(1,0) = L [£,;(8)cos(y log D+ 8;;(0)sin(y log Pl +o)
Y= (og /21 , (4,5 =xy , (<< (3.64)

where 1,0 are the polar coordinates around the singular point, fij and :
. gij are bounded functions, and the term O(l) again comes from the analy-

tic function Fl(z) in‘(3.63).

4. TREDUCTION TO SINGULAR INTEGRAL EQUATIONS

As pointed out in the previous section, in order to obtain‘the,
correct behavior of the singularitiés and a1so in most'casés to find
a simple closed form solution of a given mixed ﬁoﬁndéﬁy valuelptoblem,ﬁ

whenever possible it is élways preferable to use the complex pbtentials

and the related coﬁplex function theory. 'Hdwever, the tééhniﬁﬂe‘has its
limitations./ Firsf; fhe particular ptoblem may nOt adﬁit complex potéﬁ? 
tials. SeCOndlf;‘fhe.successful applicationkof the technique isréevérely;:
limited to ceftéin geOmetries.’ Finally;,there are ceftain types of

boundary conditions which would make the direct use of complex potentials
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extremely difficult if not impossible (e.g., the boundary conditions

described by differential operators containing the unknown function as

1)y

- well as its derivatives In such cumbersome cases, the method which
is perhaps the most general and the easiest to apply is the reduction |
of the problem to singular integral equations either by using a Green's
function.formulation or by formulating ehe problem’first in terms of
multiple series or multiple integral equations. Reduction of the bound-
ary conditions to integral equation is always possible. . The maiﬁ prob-

lems here are the selection. of the appropriate auxiliary function (i.e.,

the new unknown function defined on the boundary) and the proper separa-

tion of the dominant parts of the kernel for the correct study of the S
; | singular behavior of the solution. In this section this important step
of reducing the mixed boundary velue‘problem to a‘siﬁgqlae integral
- equation will be discussed by considering some typical examples, and
o some general remarkswill be made regarding the mnature of the kernel. §
‘and the solution.
4.1 Reduction of Dual Series Equations to 4 B R » %
Singular Integral Equations ' '
Considerrthe/typical simple mixed boundary value problem described .-
by (2.1-2.3) and formulated by the dual series equations (2.6).. At the
generality‘that'the problem is-stated, it is not very ftﬁitful‘tofpursue:
"~ a technique basedlon the operational methods to solve the problem and, |
7eas stated before, because of the 1mportance ef ex1 ting singuiarities,
a dlrect numerlcal soluLlon is nearly useless : To reduce the problem to

an 1ntegral equation, the flrst step is the deflnltlon or selectlon of ‘an

Le (1)For thisefype of mixed beundary/conditions even the. siﬁplest>problemsj
o : such as that in potential theory for a half plane do not seem(to have
‘ closed form solutlons (see the following sectlon) '
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appropriate auxiliary function. In this problem let this function be

9 : ,
$(8) = 5§~u(1,0) , esL1 + L, = (0,2m) . | (4.1)
Note that
£1(6) , 6&:L2 ,
$(0) = ~
unknown -, 6€L1 . (4.2)
From (2.5) and (4.1) it follows that
nA = - lf ¢(t)sinnt dt
n m L1+L2 ?
an = ,n. fL +L2¢(t)COS nt dt . | ‘ - (4.3)

Equations (4.3) and (2.5) give the solution once the function ¢(t) and

the constant Ao are determined.

In applying the technique described in this section, in order to
circumvent the difficulties arising from the divergent series or integrals
giving the kernels, for analytical convenience the boundary condition form-
ing the basis of the integral equation wiliyalways be expressed in limit
form(l). Thus, the boundary condition (2.6a) may be expressed as

lim Znr (A cosnf+B sinnb) = g(6) , = BeL ' (4.4)

: n n 1

r+1-0 !} : :

Substituting now from (4.3) 1nto (4 43, observing that for r<l the related

infinlte series w111 ‘be unlformly convergent, and hence changing the order

(I)The exception here is, of course, the case in which the related series
or integrals are unlformly convergent giving bounded kernels. In that case

the limit may be put under summation or integratlon sign before evaluating

the kernels
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of integration and summation, it is found that

. 1 n-1 '
lim = ¢(t)dt Z r “sinn (t-0) = - g(8) , OeL, . 4.5)
rs1-0 " L1+L2 1 1

First performing the sum as

Kr'eiz

n-1 1
r sinnz = —
; 2ir

n ~iz.n, _ sinz (4.6§
Y = (re )] =

= 8
- M8

1+r2-2rcosz

and then going to limit, (4.5) becomes

a7 Fp 0(cot 52 ae = - g(0) - 5 /) £r(0)cot 57 at, oel

2 or '1, 5 dt, OeL;  (4.7)

giving an integral equation to determine $(6).

It should be observed that (4.7) is a typical singular integral equa-

tion of the following form

1, 6 . . o, S »

T fLI t-o dt + lek(e,t)¢(t)dt = g,(0) ! OeL, (Afs)
where the kernel

| [ SR e 4.9)

k(x,t) = 5o cot 5~ - = =5 DG

is bounded everywhere on L (1nc1uding the end pnlnts a, bi’ i= 1,;.,N),
and the known function g, is the right hand side of (4 7). Since the -
fundamental solutlon (or the behavior of the singularity) depends only onr
the dominant part of the 1ntegra1 equation, for the purpose of obtaining

this solution tentatively expre331ng (4~8) as

(4.10)

27ri L

1 S (t) g . j‘ |
i e 6T e ® . By

defining a sectionally holomorphic funetionqby
F(z) = 5o/ ﬂE—dt L D
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and using the Plemelj formulas

F(0) - F(8) = ¢(8) , el ,

‘ + —ay L d(t) -
F(6) + F (8) = -~ le T dt (4.12a,b)
one obtains the following Riemann-Hilbert problem:
+ -
3 F () -F (B) =0 , 6€L2 >
F'(6) + F(8) = - ig (6) ,  OeL, . | (4.13)

v ‘ ; N ‘
Again, following [3] and observing that L1 = § le, le = (ak’bk)’ the funda-
mental solution of (4.13) satisfying the related homogeneous Riemann-

Hilbert problem is found to be (see (3.5)-(3.10))
N ' |
X(z) = ['1‘[ (z-ak)'l/?“‘o‘k(z-bk)l/z’fﬁk | (4.14)

- where the arbitrary integers Oy and Bk (k = 1,..,N) have to be selected in

-such a way that the solution is consistent with the expected phySical be-

havior. In this problem since at ay and b, the "flux" has an integrable

k

singularity, Oy = 0 and Bk = -1, k = 1,..,N. Referring, for example, to
| ‘ the solution of (3.5) as given by (3;12)‘and noting that X+(6) + X (8) =0,
L OeLy, from (4.12a) iﬁ is seen that ¢(9)“X+(6), BeLy. We now define the

fundamental function, w(8) of the singular integral equation (4.10) by

N _‘

w(8) = [IT[(G—#k)(bk—e)]fl/z

e .

Thus, the solﬁtion of (4.10) or (4.7) will be of the follqwing'fofm’
$(8) = w(6)p(d) el R | o ae)

where p;iS-an‘unknoanbounded,function.
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Referring again to (3.12) (and [3]), it is seen that the solution
of (4.13)>vanishing at infinity (and hence ¢(8) obtained from (4.12a))
will contain N arbitrary constants. These constants are determined from
the single-valuedness conditions of u(rze). We recall that in dgriving
(4.7) the boundary condition u(1,8) = £(0), €Ly, was used in differ-
entiated form. Thérefore $(0) must satisfy the following conditions:
bk , | | : ,
fak'¢(9)d6 = f(bk) - f(ak) , (k=1,..,N) . (4.17)

To complete the solution of the problem the constant Ao in (2.5) must

.~ be determined. From (2!5);;(2.3), and (4.1) it is seen that

_ 1 a6 = LY A+l
A =37 fL1+L2u(1,9)d6 = 5 % by £(0)ae
2“ Z P ?} doff(ay) + / j<1>(t:)dt:] R (§N+1 = a.l)'_ - | (4.18)
Using the Dirichlet transformation
1% dy £ F(x,y,9)£(s)ds = [} £(s)ds [] F(x,y,8)dy (4.19)

equation (4.18):Beéomesb

1 N 3+l by o e
A =5 % [fbk _ £(6)do - fak to(t)dt + bkf(bk) - akf(ak)] ,

‘»(?N+1 =’al)~’-
The solution of (4 13) is given by (3. 12) with g1 = 2f1, é = 0, and'

N - 1 as the degree of the polynomiaerk. Thus, using the Plemelj formulas

’::(4.12); the solution of (4.7)'or.(5.8) may-he exp;essed-as
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N-1

g _(t)dt
$(8) = 2w(B) g cne“ _ w(6) o

T L1 (t-0)w(t)

+ 2(0) i, RS ECOUCTIES ieeLl . (ha2D)
Considering now the definition (4.16), it is found that
p(8) - %’len(e,s)P(s)ds = 2 g-lcnen - %-ILI zégé;%%;y s
‘eeLl (4.22)
where
n(o,s) = £, E.sdvls) .. C(4.23)

L (£=-6)u(t)

Equation (4.22) may be treated as a Fredholm integral equation [3,5] giving

the solution of the problem with (4.17) and (4.20).

It should be remarked that any singular integral equation of the form
(4.8) may be "regularized" and reduced to a Fredhom type integral equation
by following the foregoing procedure. However, for the solution of (4.8)
a considerably simpler numerical technique will be described later in this
article. It should also be noted that the particular miied boundary valﬁe
problem considered in this section can be solved in closed form. First
gonsider the case of geometric symmefry with respeét to ‘the line 0 = 0.
That is, let us assume that | |

1 M T @b

e =
=

N=2m , L =M +M , le

g E e

M= My s M= Chema) oo (28

Then thé problem may be reduced to a Singulér integral equation with dom-—

ipant part (i.e., Cauchyfkernel)voﬁly.'kar.thiérthe problem is first
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decomposed into symmetric (i.e., u(r,8) = u(r,-0)), and antisymmetric,

(i.e., u(r,9) = - u(r,9)) parts by separating the input functions into

even and odd components. In the symmetric problem g(8) = g(~8), £(9) =

£(-6), ¢(8) = - $(-8), and (4.7) may be expressed as

m b

z —1— d)(t) [cot =0 + cot ~t-:i--@-]dt =g (0) =~ g(0)

1 21T ay 2 &

g S £'(t) [cot t—_g + cot —t—te—]dt 0eM (4.25)
2T M2 2 ’ 1 *
Where-M2 is the complement of M1 on 0<6<m. Or, from
_ sin 2b

cot (a~b)+cot(a+b) = Z{Sin 9a }/(cos 2b - cos 2a) (4.26)
- it is found that

1y, oIt 4o op @ , oey, . (4.27)

T M1 cos O-cost

If we now define

1

cost =a , ¢(t) =y , cos® =B , g (6) =GB ,

ot m
tz—:M1 +qel, T.= i I’k | (4.28) .
equation (4.27) becomes
L V@ gy oy , Ber . L (4.29)
T o~ ; ,

Similariy for the antisytmnetric’problem' g(8) = - g(-8), £(8) =~ -f(,-VQ)v,,

‘¢(’9) = ¢(-0) And .7 ’byecomes

t+6 - g(8)

fM c{)(t)[got‘t‘; e cot »2’]d 8, (8) =
L og (t)[ . —~9-- cot Ei@thrf T (4.30)
"21r M, e 2 B A e Y LR k
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with the substitutions (4.28) giving
o[ " CBY | ger . (4.31)
T 1-&2 6—82

In both cases the solution is given by (4.21) with k(t,s) = 0 and approp-
riate changes in notation. m integration constants arising from the solu-
tion are again determined from the single-valuedness conditions (4.17).

In the symmetric case A0 is given by (4.20) (with, again the appropriate

changes) and in the antisymmetric case it is zero.
For example, if
m=1, M, = (61,62) s Oy = cosS1 sy O, = cos@2 ,
0<8,<By<m ,  g(0) =g(-6) , £(®) =0 |, (4.32)

it may be shown that

. L o 68 (B0 M2 (o -y /2
1/2 ?'fq p—0, tel o,
[(oc-'ocz) (ocl—oc)] 2

Yla) = ; ‘ : (a2<a<ul) s

0 , (-l<a<o, , @ <o<l) A o (4.33)

where ¢, and Aokare determined from

o 8 . ! .
pruede L, g = -1 eeeae (4.30)

uZ;VI—az ' : : 1

Furthermore, if g(f) = a, = constant, P(a) becomes

o
l+0bk Oo=Cy R O wer) : 21(0‘:_& )
.z 271 12 o2 1% -
o " w1 Gy 0 © 7 N T ey
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dx :(

NGRS (4.35)
(140x?) (1-x$) 2 (112 12

where K(k) is the complete elliptic integral of the first kind. ;i’
o ;§

Consider now the general case (4.7),i.e. ;%

hx

&S

. $(t)cot ——§~dt = ] 8 v 1

o L c 5 = go( )y €L, (4.36) %g

. i

where go(e) is the right-hand side of (4.7) and L1 = % le has no symmetry. %%
Let'the;brigin is selected in such a way that 6 = 7 is not on Li. Defining E%
- : 2

t 0
tan s =s , tany = » o) =) , g (8) =G(p) , 2
tel. = sel r, = ¥ T ” | | 1
€L, + sely) Ty- % 1k (4.37)

equation (4.36) may easily be expressed as

? 1 1+ps ds . ' ,
? =1 W) == 5 =60 pel', (4.38)
! T 111 STP l+52 1
| 1, 0(s)
w S mom v, el 4.39)
1 .
K = %—f SW(g)' ds v ' ' o L ‘ (4.40)
Pl 1+s” ’ o :

2 The sihgular iﬁﬁegrél equation (4.39)“may be solved”iﬁ a straightforward -
manner ﬁith (4. 40) aocoﬁnting for the'additibﬁal ébnétant K. Again, the
solutlon of (4 39) will contain N arbltrary constants Whlch may be de~ -

termined from (4 17) and (4 20) gives the. constant A

4.2 An Example on Trlple Series Equatmons :

Con31der now the somewhat more’ general mlxed boundary value problmn1

@l

fo;‘the unit circle defined byv(2.10) and formulated by the»ttlple serlesf:
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equations (2.11). 1In this problem let the auxiliary function be(l)
= 9 =T =
$(0) = - u(l,8) , Se:L1 + L:2 + L3 = L = (0,2m) . (4.41)

From (2.5) it then follows that

1

nAn -7 fL d(t)cosnt dt
nB = —}T- fL ¢(t)sinnt dt (4.42)

where ¢(t) = fl(t) is known on Ll. After differentiating (4.11b) and,
again for analytical expediency expressing them in limiting form, the

remaining boundary conditions (4.11b and c) may be written as

- ,
lim = I n rn(~A sinnf + Bnc‘os nd) = fé(e) s Bel

r+1-0 1 n 2
lim {h,A_+ h,Z r (A _cosnO+ B sinnf)
17 1 n n
r>1-0 1 ,
+ h 07? n rn-l(A cosnB+ B sinnB) = f,(8) feL (4.43)
271 n n 3 ’ 3 :

Substituting now from (4.42) into (4.43), using (4.6) and [17]

™8

we obtain

L s d(ereor £ ge - 53O 6L, |
hl R o ‘, L
e f19(t)1og(2|sin T])dt + h2¢(Q) = £4(8) —Vhle‘,eeLB. ,(4.455;,1))1

(1)See the general remarks and the broad guidelines at the end of Section 4
regarding the selection of the auxiliary (i.e., the new unknown) function. .
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Just a superficial observation would indicate that the two integral
equations in (4.45) are of entirely different character. Hence, near
and at the end points of L2 and L3 one would expect the function ¢(t)

behave quite differently. For closer examination let us assume that

d(t) = ¢, () , tel, , dp(t) = ¢2(t) » teL, . (4.46)

Equations (4.45) may then be expressed as

1 -0 1 -0
5 L ¢1(t)cot T dt + = o L q)z(t)cot T de
= £1(0) - 5= [, £, ()eot £ dt = g, (0 feL
2\ T o L &1 ’ 2
h h
1 . t=% 1 . t-6
s fL2¢1(t)108(2|Sln‘*E'I)dt - fL3¢2(t)log(2|51n ~E—4)
hy
By, (8) = £5(8) = hyA +— f f (t)log(ZIS:Ln ——])dt = 8,(8)
eeL3 (4.47a,b)

Separating the dominant parts of the kermels it is seen that (4.47) is of

the following general form:

T sz tg dt = 8,(6) - szkll(G,t)¢1(t)dt - ngklzce,t)¢2(t) at
6€L2 R
By
= Y4
h,9,(0) ~,7F-fL3¢2(t)loglt—9ldt = g,(8) - L ky (6,1 (t)dt
fL k?z(e £, (£)de feL, , o (4.48a,b)

where‘the kernels kij(e,t), (i,j = 1,2) are bounded in their respective

domains.
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It is clear that (4.48a) is a typical singular integral equation
of the general form (4.8), it has a fundamental function of the form
(4.15), and if L, § Lys L (ak’bk)’ ak<bk<ak+l’ its solution will
contain N arbitrary constants. On the other hand, (4.48b) is an integral
equation of the second kind with a weakly singular but square integrable
kernel. Hence, its solution is bounded everywhere on L3, including the
end points (as ﬁhey are approached from L3) and is uniquely determined
without any reference to any additional conditions. The coupling of the
two integral equations is through Fredholm kernels. Therefore the basic
singular behavior of the solution will be unaffected(l) by coupling.

From (4.10) it is clear that if hl or h2 is zero the problem reduces to

that considered in the previous section. This can also be seen from (4.47).

Tor h1,=;0 this is quite clear. For h, = 0 differentiating (4.47b) and

observing that

de log(2]sin ~——]) = l—cot 26 ‘ . | (4.49)

(4.47) is seen to reduce to a simple singular integral equation defined on
L2 + L3.7 It is worthwhile to reemphasize that an integral equation of the
second kind with a logarithmic kernel is basically a Frgdholm'integral
equation and has a bdunded solution. However, if the integral equation

is of the first kind and has a logarithmic kernel, then it is equivalent to

a siﬁgular integral equation with a simple Cauchy type kernel. Also, the .

dominant equation

A(b(x)+B”fL<I)(t)log]t—x|vdt=’f(x) ,  xeL S (4.50)

(1)

generallzed Cauchy kernels, then the 31ngular behavior of the solutlon'w1ll
be affected :
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has apparently no closed form solution. Even though at the end points
of L the solution of (4.50) is bounded, it may easily be shown that its
derivative has a logarithmic singularity. This can be seen by differ-

entiating and modifying (4.50) as follows:

' _B . o ) £'1&x)
¢'(x) =+ [p S At + ST

~ which, in the neighborhood of a typical end point x<c becomes

' (x) = %-¢(c)log|c—x‘ + G(x) , (x*) (4.52)

where G(c) is bounded.

N
If L2 = ZLZk, to complete the solution of the problem.the arbitrary
‘ 1

constants C 3CyseesC arising from the solution of the singular integral

N-1
equation (4.47a) and Ab must be determined. = Observing that the boundary
condition u(1,8) = fz(G), 6€L2, was satisfied only in differentiated

form and

u(l,0) = A

ﬁIH

7 $(6)10g(2|sin S2hae (4.53)
L .

d(t) must satisfy the following single-valuedness'conditions:

t- 9

A == 9(t)10g(2|sin I)dt = £,(0

k)
- L

8,6l g,: I (4.54)

where ek is any convenient point on L2k' Thus, equations (4.54) with the

flux equilibrium condition
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lefl(t)dt + szd)i(t)dt + fL3¢2(t)dt =0 (4.555

provide N + 1 algebraic equations to determine CoreesCyay? and Ao.

4.3 Reduction of Multiple Integral Equations

To demonstrate the technique of reducing a system of multiple in-
tegral equations to that of singular integral equations consider the’
somewhat general mixed boundary value proﬁlem in potential theory which
is defined by (2.21) for the half plane y>0. The solution is expressed
by (2.17) in terms of the unknown function A(a) which is to be determined
from the multiple integral equations (2.22). 'In this problem let the
normal flux

3

3y ulm0) = 0G0 = [ ~lala@ye ™ ay , secx<w  (4.56)

be selected as the new unknown function. If ¢(x) is known, the Fourier

inversion

~lolat@) = 5= 17 ¢(e)e*ar .57

with (2.17) would give the complete solution. From (2.21) it is seen

that ¢(x) = fl(x) is known on Ll and is unknown on L, and L3. Again for

reasons of uniform convergence writing the boundary conditions (2.21b)

and (2.21c) in limitform,differentiating (2.21b) and using (4.57) wekfind

 1im‘D§F f:e_a(y+ix)da £: ¢(t)eiutdt

: a) : : ot :
'§; £oea(y 1X)da £Z ¢(t)el dt =‘fé(x) > XeL, o

Lo, Lim [- ST OO 07 )10

SRV
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+ 12 L0 L8 7 4 ()61 % 4] + b0 = £4(0)
xeL,y . (4.58a,b)

Changing the order of integrations and evaluating the inner integrals,

(4.58a) becomes

1 = L ™ o(t) - g
Zﬂ iiz f ¢(t)[y~1(t~x) y+i(t-x)]dt__ T o t—x 9t = £5G0)

xaL2 . (4.59)

Similarly, the first term on the left hand side of (4.58b) may be ex-

pressed as

hl o ‘o e—ay

- 1lim {m d(t)deS cosao(t-x)do
Cy+0 °

' h, —a§

= - ——-llm f ¢(t)dt{f do + log vy
yv~+0
1/2, _ P = | |
- log[y + (t=x) ] } = 7F'£m ¢(t)log|t~x]|de 7 © (4.60)

where the following condition of flux equilibrium is used to eliminate

(1)

the divergent terms:

[oe(e)de =0 . . o (4.6D)

Now observing that Ly + L2.+ Ly = (=0,%), ¢(t) = fl(t), tELi; and

defining

e = 6,(8) , tel, , 6 = §,(t) , teLy (4.62)

(1)

Note that if (4.61) is not satisfied and if u is zero at infinity (as

assumed in the present problem) then u(x, 0) w1ll not-'be bounded and will

tend to 1nf1n1ty as log v, y>0.
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the integral equations (4.58) may be expressed as

d (x) -+7 f1(0)
: t=- f X) - =
Lz t—X Tr L3 t—X TT I.ll t-X

dt , xeL ,

~h
h2¢2(x) + 7%—fL3¢2(t)log|t—x‘dt + 7%-fL2¢1(t)10glt—x{dt

h '
1
= S - (
f3(x) - fL1f1(t)log]t x|dt x€Ly . (4.63a,b)

In structure the system of equations (4.63) is identical to (4.47) or (4.48).
N

If L2 is finite with L, = ?sz, sz = (aj’bj)’ the solution of (4.63a) will

again contain N arbitrary constants which may be obtained #rom (4.61) and
the following N-1 single-valuedness conditions:

+ 12 o(e)log| =

t—a.+1
—E:l——‘dt = fya) - £,(0) 5§ =181 . (4.64)

In the type of problems under consideration thz case of non-zero re-
sultant flux may be particularly important. From (4.60) it is clear that

if (4.61) is not satisfied the derivation leading to (4.63) is not valid.

& and

Let us now assume that L2 is finite

[ o(t)de = Q | | (4.65)

(since u(x,0) = fz(x), xeL, is assumed to be bounded) u(x,y)”log y as y¥o,
However, the components of the flux vector may still be,expreséed in terms

of an unknown function A(a) as follows:

- - [

2 iy = {:,idA(d)ehy'dl—idx

oy da

(l)If L, is infinite, by a proper superp031tlon the problem may always be

reduced” to that in which (4.61) is sarlsfled
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jL u(x,y) = -~ f IalA(a)e_y'al_iuxda . (4.66a,b)

Again, defining the auxiliary function ¢(x) by (4.56) and substituting
from (4.57) into (4.66a) we obtain
= u(x,0) = 2 1im [Te Mgy 17 eyl

ox PAN 0

- 12 ag 17 g (e)e O ar]

pie o]

= 11m f d(t) —%255:513 dt
T g0 ; yoH(t-x) "
= .1]1;- £: ¢(t) —tg:.}_;_ ) (...oo<x<oo) (4-67)

from which it folloés that

ulx,0) = £,(x ) + —-f ¢(t)1og| ldt ,  (—o<x<oo) (4.68)

‘where,xo is any point on L2‘ ‘Thus; the integral equation (4.63a)kis still
valid and, with the definitions (4.62) and using (4.68), (4.63b) will have
to be replaced by
h

hyd, () + = L, 3¢2(t)log

hl
dt + —= f ¢ (t)log
*o

Xl

= £, - hyfy(x) - 1} I fl(t)log (4.69)

3

'dt s X€EL
5 :

the N integration’constants arising from the solutioh of (4.63a) arerdeterm—
ined from (4.64)7(which follows now ffom\(4.68) and from the fact that
u(x,0) =_f2(x), xeLz) and (4.65).' Note that undet the Stated conditions

of the problem'(4.63b) and (4.69) aré’always,nonhomogeneous;‘~Alsb note

that if L, = 0, the problem is reduced to
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h

hot, (x) + 7%'IL3¢2(t)1og}t—x|dt = f(x) , €L, (4.70)

where f(x) is a known function. fquation (4.70) has no closed form solu-

tion. In this case it should be noted that u(xo,O) = fz(xo) which appear
in (4.69) is an unknown constant and is determined by the flux equilib-

rium éondition (4.65) where X mow is an arbitrary point‘on the real axis. &
On the other hand if L3 = (0 and L2 # 0, the problem is formulated by |

(4.63a) which may easily be solved in closed form.

As pointed out previously the solution of the system of singular

integral equations (4.63) will be of the following form §

N i
WEOF, (), W) = r?[(x-ak)(bk—xn‘” P, e, i

it

6, ()
by (x) = T (x) , xEL, (4.71)

where Fl and F2 are bounded functions and at the end points of L3 ¢2 is

bounded and has a behavior similar to (4.52) whereas at the end points

of L2 ¢l is singular.

In order to have a better undérstanding of the flux distribution
¢ (x) on the boundary it may be worthwhile to relate the foregoing results
to a simple physical problem. Conéider, for example, the énti—plane
shear problem for a symmetrically loadedrinfinite medium’shbwn in Figure 2.
Here u(x,y) is the z- component of the displacemeﬁt~ve¢tor, $(x) = Oyz(x,O)/ﬂ~k‘
represents the traction at y % 0, and uQ‘is~the reéultant‘force in-z- difecé ’
tion, | being the shear modulus of the medium. Thekpaft bf the x-axis :

L, = IL,. corresponds to a series of cracks on which the surface traction

1 1j ,
b(x) = fl(x) = gyz/u* is specified;' L2'is clearly the uncut portion of

X
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} » the real axis on which (in this problem) u(x,0) = fz(x) = 0. Physically

; the part L3 on which
. ,
» hlu(x,O) + h2 3y u(x,0) = fs(x) (4.72)

. corresponds to a series of cracks the surfaces of which are joined through
3 an elastic adhesive layer. If the thickness of the adhesive is sufficiently

small it may be represented by a one-dimensional spring and may be modeled

by (4.72) with : ;

v hl = ua/h s h2 ==\ ] f3(X) =0 . - ‘ E ' (4'73)

where “a and h are, respectively, the shear modulus and the thickness of

the adhesive. Thus, the spring force uau/h will act as a traction on’

the crack surface along L3. Physically then the plane is cut along

Ll + L3, which means that the stress Oyz(x,O) = ¢ (x) must have the ex-

pected square root singularity at the end points of L2 (as x approaches"

L these points from Lz). Note that whether the end point belongs to the

intersection of L2 and L1 or L2 andkL3, this singular behavior will remain

unchanged. On the dtﬁer hand in the adhesive layer (i.e., on L3) the

shear stress will be bounded everywhere, including the end points. Further
applicationsrof the technique to the mechanics of bonded joints may be‘ » | : i

found in [18} and [19].

|- 4.4 Reduction of Multiple Series-Multiple Integral Equations

i ; o In Somermechanics'?roblems because of the geometry of the domain

- the separation of variables technique may lead to a formulation in-which

. . some of the unknown functions are expressed as series of eigenfunctions

having z set of undetermined coefficients and some és'inversion,integrals;

{
i
i
i
i
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involving certain undetermined functions. Substitution of these ex-
pressions into the mixed boundary conditions invariably gives rise

to a system of equations involving both multiple series and multiple
integral equations. Once the auxiliary functions are preperly selec-

ted, reduction of this type of problems to a system of singular integ-

ral equations is also rather straightforward. In this section we again ey
select a highly representative and a relatively simple example to dem-

onstrate the technique.

Consider the "load transfer'" problem shown in Figure 3. The figure
describes either a coupling in which the torque is transmitted from the
shaft 1 to the shaft 3 through the sleeve 2, or a gear or pulley in which
the external torque acting on the sleeve 2 is not zero. In this problem
it is assumed that the shafts are made of the same material with shear
modulu's'u1 and the sleeve has the shear modulus pz. It is further assumed
that (in addition to axial symmetry) x = 0 is a plane of symmetry (or

antisymmetry) with respect to the external loads and the geometry of the

- problem, Thus, in both media the circumferential component of the dis-

placement us, (i = 1;2) is the only non-zero displacement which satisfies

the following differential equation:

0 u; 1 Bui ui 3 uy
o —— = r<a =
2 * r Or r 4 2 0, (s d=1lo,

or ox :

a<r<R : i = 2) (4.74)
the nonvanishing stress compouenie are given by
E)ui uy ‘ i Sui : e :
= — i — = bareaames i = ‘l',;
O, o= W52 > Oige = M PR (i =1,2) (4.75)
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For the sake of generality at this point it is assumed that the end clear-

ance 2b1 is not zero and 2c¢<2b (Figure 3). Because of symmetry it is suffi-

cient to consider one half (x>0) of the composite medium only.

In this problem the solution of (4.74) must be found subject to the

following conditions:

g% [u2(a + 0,x) - ul(a'— 0,x)] = £(x) -, b1<x<c . (a)
Ulre(a,X)= Oyrg(@%) , by<x<c ; (b)
Ulre (a,x) = 0 s X>c ’ : (c)

che(a,x) =0 , 0sx<b; , c<x<b , | (d)
olex(r,bl) =0 , 0§r<a y ' (e)

‘: Gzex(r,b) =0 , a<r<R , | (£)
. 0, o(Rx) = 0_(x) , or uy(Rx) =0 , O<x<h , (8)

g%-uz(r,o) = 0 (symmetric case)

’ T a<r<R (h)

,uz(r,O) =0 (antisymmetric case)
I8 ama’p(dx = T | | . (1) (4.76)

where the functions f£(x), Qb(x)‘andkthe constant T dare known. . Referring

to Figure 3, the following/sy@metry conditions must be gatisfied:
For the symmetric problem:

3

pi(§,x)-= uz(r,-x)' > Uif9<r’x) = Oire(r,—x) , io=1,2

e g e T S
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f(x) = ~ f(~x) , Tl = T2 , Go(x) = 00(-x) . (4.77)

For the antisymmetric problem:

ui(r,x) = - ui(r,—x) s Oire(r,x) = - Oire(r,—x) , 1=1,2 ,

f(x) = £(=x) , T, =-T, , oo(x‘) = - oo(—x) . 4.78)

Considering (4.77) and (4.78) the solution of (4.74) satisfying (4.76e,f£,

and h) may easily be expressed as

o0

=2 =
ul(r,x) == fé A(a)Il(ar)cosa(x bl)da , x>bl » 0<r<a
- cost_x

uz(r’x) = §[BnKl(anr) + CnIl(anr)] sinanx » 0xb -,

a<r<R , (4.79a,b)
where from (4.75) and (4.76f) it is seen that
a = m/b  for symmetric problem
o = (2n - 1)7/2b  for antisymmetric problem (4.80a,b)

In (4.79b) the’upper'and lower terms in the series stand for symmetric
and antisymmetric problems respectively. Substituting now from (4.79)
into the mixed boundary conditions (4.76) (a-d) we find

P E— - sinahx
lim X% an[BnKl(anr) + Cnll(unr)]

r>atl cosa_x

+ 1lim 2 5 0A(a) I, (0r)sino(x~b )da = £(x) , b;<x<c , (a)
™0 1 1 1
r+a-0
‘m ; , coso_X
U, L[~ B K, (o.a) + C I, (o a)lo ¢
24 n2'mn n2' T sing x
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Zul

- ———'f A(a)aI (aa) coso(x~b )da =0 , b1<x<c , (b)
2u
1
. —_— f A(a)uI (aa)cosa(x-b Jda =0 , x>¢ , (c)
. o cosanx
- u2§[~ BnKz(una) + CnI?_(ocna)]an ) =0 ,
sino x
' n
05x<b1 , c<x<b (d) (4.81)

Note that one set of constants Bn or'Cn may be eliminated by using the con-

dition (4.76g). TFor example,(l)

BnKl(unR) + Cnll(unR) = 0 for uZ(R,x) =0

b

cost X

= n v

- BnKz(anR) + CnIZ(anR)> bu2 f o*( ) sino_x dx
i for GZrG(R’X)7= UO(X) . , (4.82a,b)
. With (4.82), (4.81) provides a system of dual series-dual integral equations

to determine the set of unknown constants Bn (or Cn) and the unknown func-

tion A(Q).
In this problem, the contact stress
Glre(a,x)’= 0y.gasx) = p(X) ’ | (4.83)

suggests itself as being the most appropriate auxiliary function. Thus,

from (4.82) and the expressions

2
0, (a0 = —-—1- I Ao, (aa)coscx(x-b Do = px)

(1)In (4.82b)'do(x) =0 being,the~practicalicése of coupling.
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(b, <x<x)

’

1

o cosa x
OZIG(a’X) = uzi[— BnKz(ana) + CnIz(ozna)]OLn . = p(x)
sind x
n
(0<x<b) (4.84a,b)
evaluating A(q), Bn’ and Cn in terms of p(x) and substituting into (4.81a)

we obtain

1

[=2]
- lim = fS p(t)atIL_(r) [sinc_ (t-x)F sinc_(t+x)]
a0 buz b1 1 B n n
1 © f”Il(ur)
- lim —— [, p(t)dt) ——— [sina(t-x)~- sino(t+x-2b.)]ldo
rra-0 ™1 by o I,(0a) 1
= f(x) , bl<X<c R (4.85)

where the upper and lower signs in the series refer to the symmetric and
the antisymmetric cases, respectively, and

L LW Kl(ran)ll(kan) - Il(ran)Kl(Ran)
n Kz(aan)ll(Ran) + Iz(aan)Kl(Ran)

ft

for uZ(R,x) =0

i L) o Kl(run)Iz(Ran) + Il(run)Kz(Ran)
n Kz(aqn)IZ(Ran) - Iz(aun)Kz(Ran)

for Go(x) =0 . (4.86a,b)

In deriving (4.85) the conditions (4.81b-d) has been used.

We now observe that for .t = x the series and the integral'gi#ing the
kernels in (4.85) are divergent. These divergent parts may be studied and
~separated by considering the asymptotic behavior of the terms in the series

and of the integrand. In (4.86) note that since R>a, letting r = ate, for

J . large values of o we obtain-
K, (a0 + €0.) : ' :
: 1Y n n ~E0. » ;
~ ~ psi . .
. }Ln(r) ® 7K, (o) = e . (4.87)
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where € is a small positive number and Ln(r)+1 as €0 and.aﬂ*w. Sim-

ilarly, note that for large values of o and for a small €= a-r we have

Il(ar) Il(aa-ae)
I, (ca) = 1,(0a)

= o EY (4.88)

Thus making use of the following results

lim S& p(t)dtZe -6 ‘sinAn = lim f p(t)dt sink

B+0 bl 80 1 2(coshB-cos))
1 : A
= E-fglp(t)cot'E dt ,
Ilim fb p(t)dt f e *%sin\ado = lim f p(t)dt ZA 5
er0 1 _ e~+0 1 AT+e
L 2 A T (4.89a,b)
b, A

and adding and subtracting the asymptotickvalues under the summation and

integral signs in (4.85) we obtain

. m, J [eot T(t-x) cot 7 (t+x) ] ]
Lo loyaell oL, 25 2b
m b1 L-x t+x—2b1 2bu?_ [cosec ﬁ(zt—}() + cosec ______‘rr(r+x)]
, feo b _ 2b
L ik, t)p(t)dt = ~ WEX) , bi<x<c 5 (4.90)
i bl 1 1
. Il(ua)
k(x,t) = fo Cfgfagy~— 1) [sino(t-x) - sina(t+x—2b)]§a.
T o - . ‘
+ biug Z[Ln(a) - l][sin&n(§-x)+sinun(t+x)] s " (4.91)

where upper and lower signs and kernels again correSpoﬁd to symmetric and
antisymmetric problems, respectively, the kernel k(x,t) givenvby (4.91)

is bounded and continuous for all x and t in the closed 1ﬁcerval [bl,c],~

‘and in (4. 91), because of unlform convergence, the limit has been put

under tha ‘integral and the summation s;gns. The integral equation (4.90)
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must be solved under (4.76i), the only condition in (4.76) which has

not been satisfied.

At a first glance it may appear that (4.90) is a simple singular
integral equation of the type discussed in the previous sections.
However, a closer examination would indicate that the term 1/(t+x—2b1)
in the kernel of (4.90) is not bounded in the closed interval [bl’C]

and becomes unbounded (as 1/x) as x and t go to b, together. Hence,

1
this term would be expected to influence the singular behavior of the
solution at the end point bl' Dominant kernels containing, in addition

to the Cauchy kernel 1/(t-x), terms such as 1/(t+x—2bl) will be called

generalized Cauchy kernels. The properties of the solution of singular

integral equations with generalized Cauchy kernels will be discussed

in Section 6.

4.5 Remarks on' the Selection of Auxiliary Functions

In studying multiple series and multiple integral equations if the
objective is their reduction to singular integral equations, the selec-
tion of the auxiliary function (i.e., the new unknown function) and the
procedure followed in the redﬁction process appear to . be quite straight-
forward. It may’be worthwhile to note that in boundary value problems

in mechanics it is always possible to recognize pairs of "complementary

~functions" on the boundary having basically the same dimension. Such

pairs are, for example, the normal and tangential derivatives of the po-
tential, or the potential'and the integral of the normal flux along the

boundary din poténtial thedry, and the surface tractions and the tangen—

tial derivatives of the displacements or the integrals of the tractions
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and the displacements in solid mechanics. If one considers the struc-—

ture of the dominant part of a singular integral equation, namely

(t

-x

Ea

2=

Lat = £(x) , xelL (4.92)

T

f
L
it is clear that (with proper normalizations) the unknown function ¢(x)
and the known function f(x) on the boundary have the same physical dimen-
sion and in a correct formulation of the problem they invariably are the

complementary pair on the boundary. Thus, if one does not pay any atten-

tion to the dimensional consistency in selecting the auxiliary function

b(x) at the beginning, the resulting integral equation may have a sing-
ular kernel with a singulazrity either weaker or stronger than the Cauchy
singularity, 1/(t-x). Tor example, in the former case the kernel is the
integral of 1/(t-x), i.e., loglt—x], and the integral equation may be
reduced to the standard form by formally differentiating the both sides
with respect to x (i.e., the téngential coordinate), indicating that the
particular auxiliary function selected is the complement of £'(x) rather
than the input function £(x). Analytically, this selection usually does
not create any difficuity,‘since one may easily recover and isolate the
Jogarithmic kernel by‘following the procedure described in sections 4,1~
4.4, However, if the selection is made in such a way that ¢(x) is the
complement of the integfal of f(x), theﬁ technically the dominant kernel
iskexpected to be the‘xf derivative of 1/(t—x)ﬁki.e.,'1/(t-x)2.k For a:
Holder-continuous ¢(t) since the intégral‘f¢(t)dt/(t—x)2 does not,exiét,
this fOrmulation becomés meaningless, and besides it is not possible to
recover the strong singularity l/(t;-x)2 through’a norﬁal procedure out-

lined in the preceding sections. Clearly, the correct thing to do in
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such a case is to integrate parts of the multiple series (or integral)

equations so that dimensionally consistent auxiliary function can be

defined.

One should again emphasize the importance of writing the boundary
conditions in limit form on that part of the boundary which will be the

support of the resulting integral equations. Without this, one may not

be able to change the order of integrations or integration and summa-

tion legitimately to evaluate the kernels. Even if this is &Bne, with
the limit under the integral or summation sign, the resuiting infinite o %
integrals or series giving the kernels are usually divergent or simply 2
meaniﬁgless. Consider, for example, the integral equation (4.5) -express-—
ing the boundary condition on Ll' If it is not written in limit form

the kernel becomes

: K(0,t) = I sin n(t-0) | (4.93)

%
s

which is not summable. The same thing may be said about the kernels

arising from the reduction of multiple integral equations or multiple

series-multiple iﬁtegral equations (see equations (4.58), (4.85), and ; ‘ f

(4.90)).

5. NUMERICAL SOLUTION OF SINGULAR INTEGRAL EQUATIONS OF THE FIRST KIND

In the previous sections it was shown that, unless the problem has

(1

~ convective boundary conditions, the mixed boundary value problems in

mechanics may invariably be reduced to a system of singular integral

x (1)ConveCtive boundary conditions generally reduce to integral equations
; , of the second kind with a logarithmic dominant kernel which have bounded
i solutions and which may be treated as Fredholm type equations (see Section
- 4.2 equations (4.48)-(4.49) and Section 4.3 equations (4.63), and (4.70)).
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equations of the following general form:

N
a ¢ (x) + Zf[1 ——1-+ k (x t) + k (x,t)]¢ (t)dt

= fi(x) s, 1i=1,..,N , XELi (5.1)
my t
where L = Z i3’ the matrices (a..) and (bjj) are nonsingular, the kernels
1 .

(x t) consists of terms whlch become. unbounded as x and t approach
the end points of L. and which, with the singular terms b../(t—x), con~
stitute the generalized Cauchy kernels, kf (x,t) are bounded Fredholm
type kernels, and f (x) are known functlons. For the 31ngular equations
with generalized Cauchy kernels there does not seem to be any generel
method of regularization. The singular behavior of the solution of these
equations will be studied in Section 6 where a numerical technique fot
solving the integral equations will also be discussed. Also, the treat-
ment of the singular integral equations of the second kind will be post-
poned until Section 7. - Thus, in this section we will consider only the
51ngular 1ntegra1 equatlons of the first kind with 51mp1e Cauchy—type
singularities which represent by far the largest class of mixed boundary
value problems in mechanics. The method will be described for a s;ngle-

equations defined in the normalized interval (-1,1), namely

_ % {i ¢€23 dt + [ik(x,t)¢(t)dtt= £(x) , -l<x<l . - (5.2)

 From the development of the method, it willibe ‘clear that the extension

of the method to a system of singular 1ntegral equatlons (with unknown '

fUnctions ¢ (x), . ¢ (%)) deflned in a 51ngle 1nterval a<x<b is qulte

stralghtforward It is also easy to show that if each equatlon 1n the

svstem is deflned on a (dlfferent) union of arcs, the technlque developed
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for (5.2) may easily be used for the numerical solution of this general

system. For example, consider

:5 % i ?ft) dt + f k(x,t)d(t)dt = f(x) , =xeL
; -X E
‘ L L
& n »* w.
- L=2l; , Lp=(agb) , byag, - (5.3) s

Defining the following new variables and functions,

b,+a. ‘ @
t, = 2. .14 s a,<t<b, , -I<g.<1 , ‘ :
i b,-a. bi-a. i i i
1 1 1
b.+2
2x 14
*1 = %,-a, " b,-a, > Py > leg<d o,
[ K - S §
(L) = o,(t)) 5 a<t<h, o, -l<eg<l 5
% f(x) = fi(xi) , a;<x<h, —1<xi<l ,
o k(x,t) =kij(xi’tj) 5 ai<X<bi R aj<t<bj 5

—l<xi<1 s -1<tj<1 y 1 =.1,..4n (5.4)

and writing (5.3) on each interval xf-:Li separately we obtain

b.-a.

n . Ly (rae,

. 7 =1 b.-a, b;+a, b.=-a, b.+a,

j=1 SO Rl e S SR S

: 2 i 2 -2 i 2
n 1 » bf._a.' : R
P Fa Gty T A = 50
i=1,..,n , —1<Xi<l‘ . 7 (5.5)

: L | |
= It may be moted that all the variables Xy and tj in {5.5) vary between -1
o ; : and 1 hence, the indices i and j :'Ln‘x_i and tj may be suppressed. Also note f

“that in the first term of (5.5) if i # 3 the kernel~is bounde& and continuousg
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in the closed interval [-1,1], i.e., for —lf(xi,tj)fl. Thus (5.5) is
equivalent to the following simple system of singular integral equations
defined in the normalized interval (-1,1):

1 n 1
de + % [
1 t-x j=1-1

hij(x,t)¢j(t)dt = fi(x) ,
~1<x<t , i=1,..n , (5.6)

where hij is the sum of kij and the corresponding nonsingular kernels in

the first term of (5.5)(1).

Referring to equations (4.10-4.15) and [3] the fundamental function of

(5.2) may be expressed as

1/2+0

wx) = (40 V20 V20 e C(5.7)

where 0 and a, are (positive, zero, or negative) integers. -(al +a,) =K

)
is known as the index of the integral equation. The first step in the num-
erical procedure which will be described in this section is the determin-
ation of the integers oy and o, or the index of the problem. . As pointed
out earlier, generally this is not possible without‘reférring to the
physics of the problem For example, consider thekplane contact problem
shown in Figure 4 for a rigid stamp with a given profile acting on the

1

the Green's functions, or the complex potentials [1-4] it cankeaSily be

elastic for half plane x2<0, -®<x, <=, Using the Fourier transforms, or

shown that in the absence of friction the mixed boundary value problem is

reduced to the following simple singular integral. equation:

(1)

From the analysis and particularly numerical view point another advantage

. of this procedure is that one now is dealing with a simple fundamental func-

tion , for example, of the form w(t) = (1-t2)*1/2 rather than a complicated -

function defined by (4.14) or (4.15).
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-Tl?:[i 000 4¢ - £(x) , =-1<x<1 (5.8)

: where
2x
=1 _bta -
iy X = -a b-a °* ¢(x) = - Oyy(xl’o)
4 9
f(x) = - HKo g;IV(xl,O) s a<x1<b (5.9)

with | and K, being the elastic constants (Ko = 3-4v for plane strain,
Ky = (3-v) /(14+v) for plane stress, V: Poisson's ratio). Note that the

fundamental function of (5.8) is given by (5.7) and the solution is of

the following form [3]
O(x) = PF(x)w(x)  , -=l<x<l ' (5.10)

where F(x) is bounded in -1<x<1. Thus, the singular behavior of the solu-
tion is completely determined by that of w(x). In Figure 4a the contact
at both ends x = a and X = b is "smooth" and a and b are unknown. Con-~

sequently at the end points the contact stress ¢(x) must be bounded (and

necessarily zero). Therefore, in (5.7) we have al =1, u2 = (0, énd the
fundamental function and index become
R 9 1/2 ’ ,
w(x) = (I-x) , k=-1 . S (5.11)

Oﬁ the other hand, in Figure 4b the 1éading edges of the stamp are

"sharp" and a and b are known. Thus, since the contact stress at these

end points is known to be unbounded, from (5.7) and (5.10) it follows that .-

. ; e , ; o L ’ |
| =0 , g,=-1 , k=1, wx =UAx) . (5.12)

Similarly fotr the stamp given'in Figute 4c a is known, b us-unknown and
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-1/2 1/2
ml =0 = az , K=0 , wx)= (1+x) (1-x) . (5.13)
Also, for the stamp given in Figure 4d b is known, a is. unknown and
1/2 -1/2
a; = 1, a, = -1 , k=0, w&) = (I+x) (1-x) . (5.14)

Referring now to (4.8) and (4.21) the general solution of (5.8) may

be expressed as

o(x) = - w(x) fl f(t)dt

T L1 (t-—x)w(t)+CW(x) y ~1l<x<1 (5.15)

where C is an unknown constant. Although there are very general rules for

determining the unknown constants such as C, a, and b [3], as pointed out

earlier in this section, since it is always possible to reduce the general
singular integral equations to a system defined only in the normalized
interval (~1,1), for the numerical methodé which will be de&eloped'in this
section‘it is sufficient to stéte the rules for a simple singular integral
equation suéh as (5.8) (or (5.2) for which one simply replaces f£(x) by
[£(x) - [ik(x,t)¢(t)dt]). One may also note that the statements made here
for the singular integral equations of the first‘kind are also valid for

the equations of the second kind without any modification.

(a) &k = -1 (Figure 4a):
In this case the conditions at infinity require that the constant C

must be zero and the following consistency condition must be satisfied [3]:

[ G - [l kGoeemar] 2 -0 (5.16)

w(x) =

Noting that f(t) contains the constants a and b (seet(5.9)); (5.16) pfovides

one equation for the determination of remaining unknowns a and b. The
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second equation is obtained by considering the following equilibrium

condition:
~ b _ b-a /1 -
fa Oyy(xl,O)dx1 == [1 d(x)dx =P . (5.17)

(b) k = 1 (Figure 4b):
In this case C is the only unknown constant and is determined by sub-
stituting from (5.15) into the equilibrium condition (5.17) (which must

y (D,

be satisfied in all cases

(¢) &k = 0 (Figure 4c or 4d):

In this case again the conditions at infinity require that the constant

. C be zero and (5.15) gives the unique solution without any reference to any

additional conditions. The problem is solved by assuming that both a and
b are known and if, instead of the contact area, the resultant load P is

specified, (5.17) is used to relate the two.

The numerical methods used for the solution of singular integral equa-
tions may be considered in tﬁo separate categories. The fifst‘is a rather
direct approach which is based on the developmenthauSS~Jacobi type inte-
gration formulas for singular integrals. The second is basically a series
solution with Chebyshev or JacoBi polynomials being - the related othogonal

polynomials used in the series expansion.

5.1 . Solution by Gaussian Integration Formulas

The most common numerical technique to solve a Fredholm-type integral

 equation of the form

(l)For k = 1 there is always a physical condition such as (5.17) to be sat-
isfied. TFor example, in crack problems instead of equilibrium one has the
‘singlevaluedness condition (in which P is replaced by zero).
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[k, )(e)de = £(x) , -l<x<l (5.18)

is the use of some kind of integration formula to evaluate the integral in
terms of some discrete set of values @(tl),...,¢(tn) thereby reducing the

integral equation to a system of algebraic equations in ¢(ti). In partic-
ular, if it is appropriate [20,21] one may prefer an integration formula of

Gaussian type for which (5.18) becomes
n -
%k(xi,tj)¢(tj)wj + Rn(xi) = f(xi) , i=1,..,n (5.19)

where Wj, (j = 1,..,n) is the weighting constant of the related integration
formula and Rn is the remainder. By selecting n sufficiently large, Rn can
be made as small as necessary for the desired accuracy and hence, may be
neglected. In (5.19) tyseest, are the roots of the related orthogonal
polynomial. This highly appealing simple technique could be used for the
solution of singular integral equations ifithe Gaussian integration formulas
for singular integrals were to be available. Some of thege formulas will be

developed in this and the following sections.

5.1.1. Gaussian Integration Formula for K = 1

For ¥ = 1 the fundamental function of (5.2) is given by (5.12) which

is the weight of Chebyshev polynomials (of the first kind) Tn(x). Thus,

before deriving the integration formula the following property of the Chebyshev

polynomials will be proved: Let

Tn(tkj =0, k'%'l,..,n; Un—

() =0, r= L,..,n-1 .  (5.20)
Then
I (T"(tki o | | (52D
k=1 n,tk ¥ UJ—l(Xr) s 0<<n

g
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Tn(x) = cos nf , Un(x) = , cos B =x . (5.22)

To prove (5.21) note that Tn(x) and Un(x) are polynomials of degree n and

consider the following simple fraction expansion:

U . ,(x) n a,
n-j=1 _ e k : -
Tn(x) % £, X ? Tn(tk) o
U (t,) U . .(t)
a n-j-1_k _n-j-l kT (5.23a,b)
k Tn(tk) nU_ l(tk)
Using [22]
Un-j—l(x> = Tj(x)Un—l(x) - Tn(x)Uj-l(x) ‘(5f24)

from (5.23) it follows that

g VTj(tk) . Un_j_l(x)
k=1 n(tk-x) Tn(x) '

(5.25)

First part § = 0 df (5.21) follows immediately from (5.20) and (5.25). Sub-
stituting now from (5.24) into (5.25) we find
n T, '(t

z
k=1l

) ‘ T.(x)U_ (%)
Koy o - A
n(tk—x) j-1 Tn(x)

(5.26)

which, for x =X and 0<j<n is reduced to (5.21) by (5.20), thereby completing

the proof.

Let the solution of the singular integral equation now be of the form
(5.10) with w(x) as given by (5.12). Let us assume that the unknown bounded

function F(x) can bé approximated to a;sufficient degree of accuracy-by
| - R R S : | : .
F(x) =2 & A T.(x) . _ (5.27)
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By using the relation [22]

T, (t)dt 0, =0

.71? I8 (~-1<x<1) (5.28)

(t-x) (1-t )1/2 Uj_l(x) » J>0 °

the singular integral in (5.2) or (5.8) may then be expressed as

T (t)dt

P
z: AU, (x) ,
=01 ™ (e- x)(l eHl/2 1

1=

-1<x<1 (5.29)

At x = X substituting from (5.21) and'(5.27), (5.29) becomes

AT.(t,) p n AWT.(t )

n
1100 4o F B —J(-tl_—l%=z R )
r j=1 k=1 PUETEL g=1 =1 PUETEL
+5 22k -5 = 5.30
k=1 “(tk X)) ey Bt .39
wherek
t, = cos L2k-L)m k=1 n,x = Ccos nr r=1,..,n-1 (5.31)
k zn 3 ey b} r n s 9 s e g L4 .

Note that if the expansion (5.27) is exact, then there is no approxi-
mation in (5.30) for any n>p. Also note that (5.30) is identical to the
following standard Gauss—-Chebyshev integratidn formula for bounded func-—

tions [20,21]:

__g__(_?.{_’t) dt ~

1
= f
T (l_tz)l/z

1
=1

[l e =]

Lg0et) 5 T (t) =0 , (5.32)

with the important difference that (5.32) is valid for any x whereas (5.30)

 holds only for certain discrete set of X, given by (5.31). Using now (5.l0),~

(5.30), and (5.32) the integral equation (5.2) may be reduced to the follow-

ing systEm'of linear algebraic equations'in’the unknOWns’F(tl),..,F(tn)i
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n

1 1 - _

k=1 1 F(tk)[tk'xr + ﬂk(xr,tk)] = f(xr) , r=1,..,n-1

n . :

T - F(tk) = A (5.33a,b)
k=1 T

where A is a known constant and (5.33b) comes from the additional condition

of the problem (such as (5.17)).

5.1.2 Gaussian Integration Formula for K = -~ 1

For kK = - 1 the fundamental function of the integral equation is given
by (5.11) which is the weight of Chebyshév polynomials of the second kind

Un(x). Thus, we will first prove the following property: Let
Un(tk) =0 , Tn+1(xr) =0 , » (5.34)

then

no (1-6)U, (t)

i=1 (o+1) (£, -x ) T Tj+1(xr) > J<n . ‘ | (5.35)
Proof: Using [22]

the following expansion may be obtained

9 _ :
Un-5-1 3 _m Py B s A S % 537y
“f = _ s =T t] .
Uh(x) 1 EX k (n+l)Un_1(tk)
Consideriﬁg fhe recursion formulas (5,24) and [22]
T (£) = U (£) - tU () Uj(t) = 'I'j(t) + ftUj_ﬂl(t) s ’(;).38)'
from (5.37) and (5.34) it follows that
n (1-t)HU,(t,) U . . (x U. ()T, (%)
s kiR o n-j-l - T () ntL , o (5.39)
k=1 (n+1)(tk*X) Un(x) S T Uan)
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Noting tha; Tn+1(xr) =0, for x = x_ (5.39) would reduce to (5.35)

completing the proof.

Consider now the singular integral in (5.2) with the solution ex~
pressed as in (5.10) and (5.11). Let the following truncated series

represent the unknown bounded function F(t) with sufficient accuracy:

F(t) = I B,U(t) | | (5.40)

J

oo

Using (5.35), (5.40), and the relation [22]

2)1/2

1 U. () (1-t :
] dt = - T , —l<x<l (5.41)

£l t-x i+l

=

for x = L the singular integral may then be,expressed‘as

’ : 2,1/2

B, U, () (1-t%)
1,1 M ~ b i 3 _ P )

v o, ,

p n  (1I-t7)B.U.(t.)) =n (1-t5)F(t, )

=5 5 k* 33 & _ k k L (5.42)
i=0 k=1 (o+1) (£, -x ) k=g (@FD) (%)
where
K r(Qr-1) | |

tk= cos e s k= l?.-,n;xr=cos~2—(;1-_;i—)-—, r:l’_.’n+l.(5,’43)

One may again note that (5.42) is identical to the following Gaussian

integration formula for a bounded function g(x,t)

n (i-ti)‘ S -

dt = %——ﬁ:r— g(X,t ) > Un(tk) =0 (5'44)

;l; {i g(x,t) (1-t2) /2

with the important difference that (5.44) is valid for any x whereas (5.42)
 is valid only for a certain set of x = X, given by (5.43). Also note that

if (5.40) is exact, again there is no approximation in (5.42) for any n>p.
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Using now (5.10), (5.11), (5.42) and (5.44) the integral equation

(5.2) may be reduced to
n 1~ ti
z F(t )[ + mk(x ,tk)] e f(x ) . or=1,..,nFl . (5.45)
k=1 k X

Referring to (5.10), (5.40), and (5.41) and using the orthogonality condition

0, k##r ,
1 _dx 0 _ - =
= £ Tk(x)Tr(X) o 2)1/2 = 1, k=r=0 , (5.46)
x 172 , k=1>0 |,

the consistency condition for (5.2) may be expressed as

I dx fl ¢(t)

[£(x) - f k(x,t)¢(t)dt] ——————-“;lffl( 172 71 eex
1-

(1-x )1/2

= 1P dx _
T LI ® et O (5.47)

Thus, (5.45) implies that the consistency condition of the integral equa-
tion has been satisfied. Note that in (5.45) there are n unknowns F(tk)
and n+l equations. If K = -1, usually there are two more unknown con-
stants such as a and b in Figure 4a and one more condition such as (5.17)

giving altogether n+2 unknowns and n+2 equations.

5.1.3 Gaussian Integration Formula for Kk = 0

Let the fundamental function and the index of the integral equation

(5.2) be
w(x) = '(_1—t)~1/2(l+t)1/2' y _t<’ =0 . : - (5.48)

Expressing again the solution by (5.10) and observing that w(x) is the

_welght of Jacobl polynomlals P (-1/2, 1/2)(x), it Wlll be assumed that. the

unknown bounded functlon T(t) may be approx1mated to a suff1c1ent degree

of accuracy by
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F(t) = 3 CJPJ(l/z l/2)(t) , =1<t<1l . (5.49)

)

From (5.10), (5.49), (5.48), and using the following general property of

Jacobi polynomials [23]

. ) i (=0 =
L Ii p(%B) 1y (1-y%(1+t) B é?; _ P(a)i(l @ , Kpé—z, B)(X) ,

-1<x<1 , Kk = =(o+B) = (-1,0, or 1) , -1<(a,B)<1 , (5.50)

the singular integral in (5.2) may be expressed as

1 3
1180 4 3 chJ(l/z Dy, -icx<l . (5.51)

Let

p CM2UD (20, k=1, , e (5.52)

and consider the expansion

Pn(l/z’—I/Z)(X)Pj(—l/z,l/Z)(X)-Pn(—llz,l/z)(X)Pj(l/z,_l/Z)(X)

Pn(—l/z,l/z)(x)

. d<m . -(5.53)

Using (5.24) and the relations [21]

Pn(-1/2,1/2)(222_1) _ I'(a+1/2)

1
=T (z)
n ,"1 2  z "2nt+l ’

Pn(l/z’f?/z)(ZBZfl) - Eizi%%gl.u (z) o o (5.54)

equation (5.53) may be modified as

(y)
T(j+1/2 2n -23-1 =>2y2_1

_ i ’ 3 »
J,Trl/Z T, +1( v) t % 7 7

1nd1cat1ng that the expansion in (5. 53) is indeed 90581b1e

-3

(5.55)
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Referring now to the results in Section 5.1.1 and to (5.54) and using [23]

(a B)( ) - n+B

40, (0-1,B+1)
dt P Tre,, 3 ()

(d+l,8—l) =
P () = -t 'n K

Pn(“’s)(tk) =0 , k=1,..,n, (5.56)

the coefficients Cy are found to be

2(1+t, )
_ K o (-1/2,1/2)
If we let

Pn<l/2’_1/2)(xr) = Q ’ r = 1,..,n ‘ ‘ (5'58)

from (5.53) and (5.57) it follows that

2 (l+tk)

: > p CU2UD) (g i = WD (5.59)
. T 2nFl T S S
. k=1
: Finally, from (5.49), (5.51) and (5.59) we find
SRR 1/2 a - 2(l+t,) F('t )
; 1 gg(t _ 1 1 F(t) 1+t N k k
' —1 t-x_ dt = T Il t-x (1~t) dt = 2_ 2n+l t,-x._ (5.60)
T : k=1 k Tr
where
(~1/2,1/2) ~ -1 - ,
Pn (tk) =0 , £, = cos (2 ) ™ 5, k=1,..,n
(1/29—1/2) o — v =
Pn (xr) =0 B X = cos (2 +1) , r=1,..,n (5.61)

Equation (5. 60) too is 1dent1ca1 to the corresponding,GausséJacobi integra—

tion formula for a bounded functlon g(x, t) given by [21]

1/2 2(t +1)

o
-1 2n+1

l

1 g (x, t)(1+t
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with again the important difference that (5.62) is valid for any x

whereas (5.60) is valid only for x = X, ¥ ® 1,..,n.

Using the integration formulas (5.60) and (5.62), the singular in-
tegral equation (5.2) may easily be reduced to the following system of
linear algebraic equations in F(tl)’°"F(tn):

2( 1+tk)

_Z—;T*F(tk)[ % + 'ﬂk(x ,t )] = f(x ) , r=1,..,n (5.63)

n
z
k=1 b

where ty and x_ are given by (5.61).

If the weight function is w(x) = (1-—::)1/2/(1+t)1/2 following a simi-

lar procedure, it can be shown that

1/2 2(1-t,) F(t,)

1 F(t) ,1-t n '
= f X)  dt = 3 R (5.64)
™=l t-x 1+t k=1 2n+1 tk—xr
and (5.2) is reduced to
n 2(1—tk) ) » ;
X ——2_'[-1—';—1—_ F(tk) [t—*_—x— + ﬂk(xr,tk)] = f(xr) s I = 1,..,n (5.65)
k=1 : k “r
where
(1/2,-1/2) _ E ~ 2kw ' -
Pn ‘ (tk) =0, tk = cos Zp*l) s k= 1,..,n
(-1/2,1/2) - G 2r-1 L
Pn s ’(xr) =0 , x_ = cos(2 +1 ™, r = 1,..én‘ ° | (5.66)

5.2 Solution by Orthogonal PolYnomials
In the previous sections it was indicated that the fundamental function

of the singular integral equation (5.2) is of the general form
Wi = =0%0P k== @) = 05D . (5.67)
e i @B oy 4 1
Noting that (5.67) is the weight of Jacobi polynomials Pn ‘ (x), it is
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natural to look for a solution of (5.2) in the following series form:
S (¢,B)
o(t) = w(t)X CnPn RAe)  , ~1<g<l . (5.68)
5 .

Thus, substitdting from (5.68) and (5.50) into (5.2) we obtain

[ Z—K (_'(x 9—-6)
Z:o CQ[— sinta Pn_K (x) + kn(x)] = f(x) , -1<=x<l
kn(x) = {i k(x,t)Pn(a’B)(t)w(t)dt . (5.69)

Equation (5.69) can further be reduced to an infinite algebraic sys-

tem in Cn as follows:

8

Z-K

- Sinma 6k6ds—BXi*K + ?:1 ijcj =cp k =0,1, (5.70)
where for K = -~ 1, C_1 = 0 and
R R =Sy B
S5 = {1 Py (x)kj(x)(l-x) (1+x) “dx :
1 (-a,- - -
e, = 11 £G4 ) (10 (0 Pax | (5.71)
‘the constants ek come from the orthogonality condition
1 ‘[b ., n#k
/P (a’B)(t)Pk(a’B)(t)w(t)dt =
o B R CHO R
d
k=0,1,2,..,
oot 2B ()T ety
B (0sB) = [y wlt)dt = “—Frmny” ;
O+B+1 . :
2 T (kbort1) T (k+B+1) R (5.72)

Gk(a,B) T Okt kI D (etodBrL)

The infinite system (5.70) may be solved by the method of treduction [24].

Note that if K =-1 in the reduction 1etting‘k,= 0,..,n in (5.70) involves
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the unknowns Co""cn+l’ that is, there is one more unknown than the
number of equations. The additional equation is provided by the follow-

ing physical condition (e.g., (5.17)):
1 .
[, ¢(x)dx = A = €6 (c,B) (5.73)

where A is a known constant. On the other hand if k = - 1, from (5.69)

and (5.71) it is clear that the first equation in (5.70), (i.e., k' = 0) is
equivalent to the consistency condition (5.16). It should further be noted
that the integrations necessary for the evaluation of the constants ckj and
Cp in (5.71) are of Gauss-Jacobi type may easily be evaluated by using [20]

- n

Ii g(X)(l-X)_a(l+x)'de = §=l welx)
(-a’-B) — —
Pn (Xk) =0 , k=1,..,n ,
L ‘ .W S (2n—a—8+2)T(n-a+1)F(n—S+l)
b k (o*+l) T (n-a-B+1)T (n~-a-B+1)
‘ g
* 2 ) e (5.74)
d p (-0,-B) (-a,~B)
o v , ax n (xk)P +1 (xk)

1/2

In the special case of k = 1; w(x) = (I-x ) the related ortho-

gonal polynomials are Tn(x), (n=10,1,2,..), and we have

) = (1-xHH ZE%TJX) K

(5.75)
0 , n#k :
11 U (D0 (0 (-t )”2 (5.76)
| melm /2 , n=k T
, Trzk' & . R
' TR I gk s ks 0L BN R0
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2,1/2

= f1 £GoU o axDH M 2ax .
1
a = 17 0,60 A=) ax 1] k01 () (e 2a
[] 6Gdx = A = A | (5.78)

where (5.28) and (5.46) have been used. Truncating (5.77) at the Nth

e
s ot

term and retaining first W equations, (5.77) and (5.78) give the N+1

unknown. constants A SAL .. 5A .
1 n

1/2

In the other special case k= - 1, w(x) = (1~ x it may easily

be shown thatb

o) = (1-x2) /2 3 IBU () (5.79)
i @ _‘ |
e 2 Bk"‘l -+ =0 bkan = bk. 3 k= 0, 1, v e ‘ (5. 80)

1 -
b, = L) £@T D THE

1/2 124,

1 -
b= Ly T (=) T Pax £ kG0 (6) (1-eH]

kn

where (5.41) and (5.46) have been used. Again in (5.80) the first equa-

tion (k = 0) corresponds to the consistency condition (5.16).

Some. typical applications of the numerical methods described in this
section may be found in [25~27] which also include extensive references to
the solution of mixed boundary value problems in mechanics obtained by

applying these methods.
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6. INTEGRAL EQUATIONS WITH GENERALIZED CAUCHY KERNELS
As pointed out earlier in this article, in some mixed boundary value

problems formulated in terms of singular integral equations, in addition

to Cauchy type singularities the kernel may contain terms which become un-

bounded as both variables in the kernel approach an end point. For example,
in the torsion problem shown in Figure 3 and formulated by the integral
equation (4.90) if b>¥c, separating all the singular terms, (4.90) may be

expressed as

U,
1 .c o 1 1 1 ‘
T fb p(t)de[(1 + " ) X ~ tre=2p)
1 2 1
C B W
+ beklf(x,t)p(t)dt = - ulf(x) , b1<x<c , ,C6L1)

where klf(x,t) is a Fredholm type kernel which is bounded in the closed
interval b,<(x,t)<c and is the sum of k(x,t) (see, 4.91) and the nonsingular
terms in cotangent or cosecant kernels appearing in (4.90). Note that in

(6.1) the term 1/(t+x—2b1) becomes unbounded at the end point b;-

Similarly, if ¢ = b the kermel in (4.90) contains additionai '"singular"

terms which may be separated by observing that

R e R (L

,'2% cot Hoe t+zl<—2b T8,

g% cosec ﬂ(gg%)k %‘tix+ 33(x,§) ,”

_21% cosec 'W%}S)‘= B EI}};EE+ Byl | - (6.2a-d)
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where hl""h4 are bounded in the closed interval blf(x,t)fb. Thus, sub-

stituting from (6.2) into (4.90) we find

1 ,b Uy g 1 Y1
ki fb p(t)de (1 + ! ) t-x  t+x-2b _'ﬂ_ t+x—2b]
1 2 1 2
+ fb k., . ( dt = £( b,<x< 6
! b, “2f x,t)p(t)dt = - W f(x) , b;<x<b (6.3)

where, again sz is a bounded kernel. As seen from (6.1) and (6.3), the
integral equations for the symmetric and the antisymmetric problems have
- the same dominant parts but different Fredholm kernels. 1In (6.3) in addi-
tion to the Cauchy singularity, the dominant part of the kernel contains
terms which become unbounded at both ends, b, and b. 'The dominant kernels

1

of this type are defined as generalized Cauchy kernels.

In the torsion problem under consideration there is one more limiting
case which is worth considering. This is the case of bl =0, (e.g., a
broken shaft). Thus, for b1 = 0, ¢ = b, observing that in addition to

(6.2a and c¢), around the end points one may write

. m(t+x) _ 1 1

26 °°F T gy " Tm T omea TR0
M M) L 1 : (
26 €8¢ b T o theb | Re(Ht) | (6-4)

the integral equation (4.90) may be expressed as

1 b oMy LS R T

mfo POOEELA +3) = (L Hi0) fix = ) Taer)
Ll | ‘ 1 | |
+ fokka(x,t)p(t)dt = - ulf(x) ;o 0<x<h o, | (6.5)

where hs; h6’ and ksf‘are bounded inkOS(x,t)Sb,'and'the upper and lower

 signs in (6.5) correspond to the symmetric and the antisymmetric problems,
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respectively. Structurally, (6.5) is identical to (6.3), however, at

x = 0 their solutions may have quite different behavior.

6.1 A Plane Elasticity Problem for Nonhomogeneous Media

Perhaps the most typical application of the singular integral equa-
tions with a generalized Cauchy kernel arises in the study of crack prob-
elms in nonhomogeneous eiastic solids. Consider, for example, the three-
dimensional problem in which part of periphery of a plane crack extends to
the bimaterial interfiice in a nonhomogeneous medium. Consider the cross-~
section shown in Figure Sa; In the neighborhood of the point of interest
0 let the interface be a smocth surface and, for simplicity, let the crack
plane be perpendicular to the interface. Through a proper superposition
one can separate the singular or the perturbation part of the problem in
which staticélly self—eqﬁilibrating crack surface tréétions are the only

external loads. F¥rom the viewpoint of the stress state around the point O,

~ the perturbation problem in turn may be assumed as having three components,

namely, the in-plane extension (mode I), the in-plane shear (mode II), and

the anti-plane shear (mode III) with the corresponding surface tractions

shown in Figure 5a. Clearly, the behavior of the solution of the anti-plane

component of this problem around 0 will be identical to that of the torsion

problem shown in Figure 3 at x = 0 = bl’ r = a. This behavior should be
completely characterized by the first two terms of the genralized Cauchy

kernel appéarihg in- (6.5) .

Similarly, the Singular behavior of the solution under in-plane loading

conditions will be equivalent to that of the plane strain problem for two

semi~infinite media having a finite crack perpendicular to and ending at the
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interface shown in Figure 5b. Formulation of this problem is straight-
forward. For example, referring to [28] for details, in the case of in-

plane tension problem, i.e., for the following symmetric loading conditions:
Glee(r,ﬂ) = f(r) , Glre(r,ﬂ) =0 , 0<r<b , (6.6)

the integral equation of the problem may be expressed as

2

1 b 1 c1 czr .c3r 1+K1

= ==+ + + To(t)de = £(r)

mT0o "t-r t+r (t+r)2 (t+r)3 2u1

0<r<b -, (6.7)

where '

o(x) = - 2 fu,  (r,7™0) - u, (r,m0)]

or 16?2 1 ’ ’

¢, i T m(l+c))/ [2(wh,)] = 3(1-m)/ [2(Hmc )],

2

H

e, = 6(1—m)/(l+mK1) , Cq = 4(m-1)/(1+mK1) , m= uz/ul s (6.8)

and ui>and Ki are the elastic constants (i = 1,2, K = 3—vi for plane strain,
Ky = (3—vi)/(1+vi) for plane stress, vy Poiéson's ratio). TFor the in-plane
sheaf problem one obtains the same (generalized Cauchy) kernel as that shown
in (6.7). Thus in the general problem of more complex geometry and loading
conditions the system of three integral equations representing the problem
Qillrhave the domiﬁant kernels given in (6.5) and (6.7) (in uncoupled form)

and coupling will be through Fredholm,type kernels only.

Referring to Figure 5 if we now assume that the crack crosses the

boundary and extends into the medium 2 (dashed lines); it is again not diffi-

~cult to argue that the dominant parts of the related system of integral equa-.

-tidns will be the same as that of the idealized through crack problem for
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two elastic half planes shown in Figure 5b. The derivation of integral
equations is again straightforward. For example, in the symmetric problem

selecting the unknown functions

a U
¢1<r) = “'5; [ule(r’ﬂTo) - ule(raﬂ—o)] s O<r<bl >

I

0,(0) = 2 [u,g(r,40) = u,o(r,=0)] , 0<r<h, (6.9)

2

for the following crack surface tractions

it

Olee(r,ﬂ) fl(r) y Gire(r,ﬂ) =0 ,; 0<r<b .

1

I
(=]
-

Uzee(r,o) = fz(r) R Gzre(r,O) = 0<r<b2 . (6.10)

the integral equations for the perturbation problem may be expressed as

(see [29] for details)

b 14k,
1 b, ¢i<t) 2 1 .73 _ i,
Tl e de Ll g o k(e (ede =R £,
i=1,2; o<r<bi , (6.11)
where
3 cikfk—l
k‘-<r,t) =1 ) ] is= 1,2 >
H k=1 (t+r)~
. 9 dikrk~1 i . o
k-.(r>t> =} —_——__72 ’ i,j = 132; i # j ’ (69123,b)
H k=1 (t+r) | | et
ey = 1/2 - m1(1+K1)/[2(ml+K2)}‘- 3(1—m1}/{2(l+lel)] ,
Cip = 6(1—ml)/(1+le1) , c13,= é(ml—l)/(1+lel) 5
ey =‘1/2 - m2(1+K2)/[2(m2+K1)] - 3(1-m2)/[2(1+m2K2)]‘ ,
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99 = 6(1—m2)/(1+m2l<2) » Cyq = A(mz—l)/(1+m2|<2) .

d

1= 3(1+K1)/[2(m2+l<1)] - (1+K1)/[2(1+m2|<2)] .

d12 (l+|<1)/(1+m2!<2) = (1+K1)/(m2+l<1) s

dy, = 3(1+,)/ [2(m+,)] ~ (1+,)/ [2(km k)]

21

I

dy, = (1+:<2)/(1+le1) - (1+K2)/(m1+K2‘) ,

ml=uz/u1 , m, =ul/u2 . . (6.13)
From (6.11) and (6.12) it is seen that the integral eguations contéin dom-

inant kernels only which are of generalized Cauchy type.

6.2 The Fundamental Functions
The integral equations (6.5), (6.7), and (6.11) are some special cases
of the following system of singular’integral equations with generalized

Cauchy kernels:

N b A K k sk
1 S mn . d -
=% 7 [—+ B (x-a_ ) —— (t-z,)
T n=1 a, t-x  §=0 mnk n’ dxk 1n
J. T -1 ,
n J J
3¢ b -x)” T (tz, ) 10 (D)at
j=0 mj n dxcd n’ “'n
N bn o » :
+ §=1 fah kmn(x,t)¢n(t)dt = fm(x) s om="1y..,N am<x<bm ,  (6.14)
- where
bz = a + (x-a )eien ’ 0<6 <27
1n n n ? n~ 2
2. =b_ + (b-x)en ~T<_<T n=1,..,8 , (6.15)
‘211 n ' n e n s : |
A , C ., are known constants, £.,..,f,, are known input functions,
mn’ Tmok’ Tmnj , : R 12°°27N v
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kmn(x,t) are Fredholm kernels, and ¢l,..,¢N are the unknown functions.
In most practical problems Bn = T and mn = 0. However, occasionally one
may encounter cases in which Gn = F w2, wn = % 7/2 with the related terms

in the kernels of the form [28]
(t-a )/ [t-a )2 + (x-a)?1  ,  ® -0)/1® -0)2 + b -1 .  (6.16)
n’’ n’ n n n n

Referring to Figure 6a and (6.15) note that as the variable x varies on the

In 2n

respectively. In some problems the kernels may contain terms of the form

line of integration Ln, the variables z and z vary on lines Lln and LG,

(6.16) as well as, for example, (6.12). This means that in Figure 6a at a

given end point there may be more than one auxiliary line L. or LG, also

In

meaning that there may be additional terms in (6.14) and (6.15) defined by

additional angles 6_ or w_.
n n

In this type of proﬁlems another point which requires special emphasis
is whether the cuts Ln = (an’bn)’ (n=1,..,N) intersect each other or not.
The only type of intersection which is physically meaningful is for two
adjacent cuts to have a common end point (Figure 6b). A physical example
for this would be the through crack problem shown in Figure 5b. - In such
problems, aside from the necessary changes in the limits of integratiomns,
the integral equations (6.14) remain unchanged. Howevef, as will be pointed
out in this section, one may have to be somewhat more careful in determining
the fundaméntal functions. In the following, first it will be assumed that
all end points are distinct, then an eiample fof cbinciding ends will be

considered.

To find the fundamental functions of (6.14) we let
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Ocn Bn
¢,(6) = g (B)w (t) = g (£)(b -t) (t-a_)

~Ti0

Q. B
= N(+- Dt~ n
gn(t)e (e-b ) (¢t a_ ) , a <t<h o,

- 1<Re(an,8n)<0 s, n=1,..,8 , gn(an) £0 , gn(bn)'# 0, (6.17)

where the function gn(t), (n=1,..,N) is Holder-continuous in anftfbn,
(t-—-bn)un(t-—an)Bn is any definite branch which varies continuously in
an<t<bn, and dh and Bn are unknown constants which have to be determined.
Consider now the following sectionally holomorphiec functions:

b ¢n(t) i gn(t)

b
; =1 /Pn = D n o1 1O, B dt
F(z) = fan oy dt = —— fan (t-b_ ) (t-a ) tz (6.18)

Examining the singular behavior of Fn(z) around the end points (see, e.g.,

[3], Chapter 4) and separating the principal parts we obtain

B

(z—an)

Py

sinm

i Bn
1
51nWBn

T (2) = - g (a)(b -a )™
o
(20 ) ® +6_(2)

Bn
+ g, (b ) (b _~a)
n=1,..,N . (6.19)

The functions Gn(z) is bounded everywhere except possibly at ‘the ends an’bn

near which it may have the following behavior:

B
G (z)] <—>— , p <=Re(B) , |G (2)] < o ,
’ 0’ | |z-a Pn " n l n | | z-b |rn
n’ n
| rn<-Re(an5 (6.20)

where A , p., B , and r_ are real constants.
R n’ ‘n* n n

Using the Plemelj formulas (3.61), from (6.19) we find

d (E)
b “n 1 S L e
b e . R ) T >
g;r o dt ) [F ('h) F_oo(x) 1

1
T
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o
=~ gn(an)(bn—an) ncot(ﬂﬁn)(x—an) n
n %
+ gn(bn)(bn—an) “cot (mol n)(bn—x) +»Hn(x) R

n=1,..,N |, an<x<bn , (6.21)

where Hn(x) is bounded in an<x<bn, and at the end points its behavior is
similar to that of Gn(z) which is given by (6.20). TFrom the definition of

# a_  and

Fn(z), (6.18), and from Figure 6a it is clear that for z = Zin 0

z =2z, # bn i.e., on Lln and LG, Fn(z) is holomorphic. Therefore

dt = Fn(zsn) , zsneLsn s, s5=1,2, n=1,..,N , (6.22)

or, substituting from (6.19), using (6.15) and separating the principal parts

3 e -
1 b ¢n(t) 0Ln ean( n ™ Bn
L rn = - - -
L fa t-z dt gn(an)(bn an) sinmf (x an)
n In n
+ hn(x) s an<x<bn .
: i O
1 .bn ¢n(t) Bn e Tnn o‘n
Tla, Tey 96T B ) g — (B0 s )
n 2n
a <x<b C(6.23)
n n

[, . ) 03 < <
whe?e hn(x) is bounded in an<x§bn, sn(x) is bounded in a_<x bn’ and the
behavior of hn and s, mear the ends'an and bn’ regpectively, is determined

by that of Gn(z) as given by (6.20).

Sinée Fn(z) is.holomorphic on L1 and L (see (6.18) and Flgure 6a),

using (6.23) we may also write

b | A Lk
LR g eea) S (emr ) Mae = Gea ) Ao w (2 )

n- dx _ Loodx
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7
[.
l
i
I
|

By (By=1)*+* (B_—k+1) (x-a ) "

k
+ (x—an) ——-hn(x) , k = 1,..,Kn , an<X<bn ,

;g . o
" 0,0 (b 0) T (2 )T = b0 Lo v (2,0

b
an dx dx

1
= [
ki)
iw o
non o
e

. B
= (-1)9 - ne. - NG -x) B
= D 8y (by) (b-a) sinma O, (=) - (o) 3+1) (b =)

R
jd .
+ - —_— = - =
(b -x) dxj sn(x) s 3 l,..,Jn , an<x<b , I 1,..,N

(6.24)
Equations (6.21), (6.23) and (6.24) give all the terms in the dominant
part of the iﬁtegral equations (6.14). Thus, by substituting from (6.21),
(6.23) and (6.24) into (6.14), observing that for the mth equation am<x<bm,
multiplying both sides first by (x-—am)mBm and letting xra, then by (bm-—x)_O‘m
and letting x+bm, and also observing that g(am) + 0, g(bm) # 0, Ofrﬁ<Re(—an),
Ofpn<Re(—Bn), we obtain -

iBm(6m~ﬂ)

Amm cosTB + e (B (8,-1) "~ (B, —k+D)]

mmo + £=1 Bmkam

iu)mam ‘ m 3 o ;
Amm cosma, + e‘ , [Cmmo + §=1 Cmmj(—l) um(am-l)-~°(am—k+1)]

=0 , m=1,..,§N ,  (6.25a,b)

The characteristic eqﬁations (6.25) provide two sets of (highly monlinear)

~algebraic equations to determine the unknown constants o and Bm’ (m=1,..,N).

With o and Bm determined, (6.17) gives the fundamental functions Wm(t);
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In the foregoing analysis it was assumed that the 2N end points an,
bn are distinct. In practice this may not always be the case. To give
an example in which some of the end points may coincide, consider the
case of, for example, b1 = a, in (6.14) (Figure 6b). As seen from Figure 6b
(see also Figure 5), physically the problem really has 2N-~1 points of sing-
ularity, and mathematically there are oﬁly 2N-1 irregular points. This
» implies that in the expressions of the fundamental functions there will be

only 2N-1 exponents, i.e., ul = 82. Hence, the fundamental functions of

(6.14) given by (6.17) will have to be modified as

% By
Wl(t) = (bl—t) (t—al) . a1<t<b1 N
) %
w2(t) = (bz-—t) (t—bl) s b1<t<b2 N
o . )
w (£) = (b -t) “(t-an) no a <t<b_  , n = 3,..,N (6.26)

The solutions of (6.14) are still of the form ¢n(t) = gn(t)wh(t), and the
conditions on o, Bn’ gn(én), and gn(bn)’ (n=1,..,N) shown in (6.17) are
still valid. Alwyy with a

= b, and B, = o the definition of F_(2), (6.18)

2 1

and the asymptotic expressions (6.21), (6.23), and (6.24) are still valid.
Thus, proceeding as before, one obtains (6.25a) for m = 1,3,4,..,N and (6.25Db)

for m = 2,3..,N giving altogether 2N-2 algebraic équations for 2N-2 unknowns

61363,- . ’SN and (xz,(y‘3, .. ,CY,N.

Writingk(6.14) for m =1 and 1ettiﬂg’x+b1 and for m = 2 and letting

x*a, = blkdne obtains twoyhomogeneoué linear algebraic equations for gl(bl)

and gz(bl)‘of the form
2 ' ‘ _ ; ’ ; :
§~cij(a1)gj(bl);= O‘ » 1=1,2 . | = ’ (6.27)
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Since gj(bl) # 0 (6.27) gives the following characteristic equation to

determine al:

lcij(al)! =0 . (6.28)

Note that gl(bl) and gz(bl) are not independent and are related through
(6.27). This provides the additional condition which was eliminated by

letting a, = b1 and which is necessary for the unique solution of (6.14)(1).

2

As an example for coinciding end points consiger the crack problem
formulated by (6.11) and (6.12) and shown by Figure 5a (with dashed lines
included). Note that this problem was formulated by using polar coordinates.

Hence in the terminology &f this section, a, = 0 = a 82 =3, and the

1 20 By =

fundamental functions and the solution may be expressed as

n B —ﬂla n B

o, () =g (B)w (&) =g (£)(b -t) =g (e  "(t-b) ;

0<t<b_ ~1<Re(c_,B)<0 , gn(bn) #0 , g (0) #0 , n=1,2. (6.29)

ansider now the following sectionally holomorpﬁic functions

P ¢n<t> T b o 85 )
F 4t = == I (tb) o

F (z) = dt- n=1,2 , (6.30)

ﬂIH

where, noting that (6.11) is derived in polar coofdinates, the complex varia-

ble z = r+ip for n = 1 and n = 2 is defined in such a way that in each case

‘the cut (O<r<bn) lies along the positive real axis. Repeating the analysis

(1)For example, in collinear crack preblems letting ag=bj essentially elimin-
ates one crack while the number N of integral equations and unknown functions
remain the same.  Physically, since there are N-1 cuts, there will be only

 N-1 single-valuedness conditions. However, the general solution of N integral

equations will have N arbitrary constants. Thus for a unique golution one
more condition is needed which is provided by (6.27) (see [29]).
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given previously, we obtain

o e—'ﬂ'iB 8 8 ocn
Fn(z) - gn(o)bn sinmBR + gn(bn)bn sinﬂan (z_bn) + Gn(z) ’
b ¢ (£) o o
1 " n'n - n B B n
= fo o dt = gn(O)bn cotmBr” + gn(bn)bn cotﬂun(bn~r) + Hn(r)
1 bn ¢n(t) _ _ % 1 B
%‘fo t+r de = Fn(_r) - g(O)bn sinmR T+ uon(r)
1 b T9,(E) o a % B B
—fn dt = - F (-r) =g (0)b —=— 1 +u, (r) ,
T o (t+r) L ar n n sinTR in
2
b 7o (t) 2 .2 - o, a ’
%-fon ff—E——-dt = %?-Jli-Fn(—r) = - g (0)b n g%%%#g— rB + uzn(r) s
(t+r) dr e
O<r<b_ , n=1,2 , (6.31)
where the behav1or of H (r) and u, (r), (n = ; 3 =0,1,2) around r = 0

is similar to that of Gn(z) around a = 0 as given by (6.20), otherwise they-

are bounded functions.

If we substitute from (6.31) dinto (6.11), multiply both sides first by

-B

(b —r) n and let b 0’ then by r " and let r*0 we obtain

cotTrOLn =0 |, n = 1,2,

' oy
[cosTB + ¢}y = Be,, + B(B- 1)01,,./?] [g, (0)b, ! /sinmpl

OL

+ (d Bdlz)[gz(O)b /Sinws],= o,

11
OL
@, sd22>[g1<o>b }/sinmg]

: a
+ [cosTR +. ¢
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21 = Byy * B(B-1)cys/21 1z, ()b, */sianB] = 0 . (6.33)



Equations (6.32) are the well-known characteristic equations for crack
tip singularities which are fully imbedded in a homogeneocus medium and
give Q

1= @y = -1/2. Writing the determinant of the linear system (6.33)

one obtains the third characteristic equation giving B as follows:

[cosmR + cyy ~ Bclz + B(B—l)c13/2][cosﬂ8 + Cop Bc22

4 S(B—l)c23/2] - (dll—Bdlz)(dZI—dez) =0 . (6.34)
It should be noted that as expected (6.34) is identical to the character-

istic equation giving the stress singularity at the apex of two bonded

quarter planes by using an entirely different method (see, e.g., [30]).

Going now back to the other examples discussed in this section, in the
torsion problem for c<b the dominant part of the integral equation is given
by (6.1) which is a very special case of (6.14). Thus defining the solution

and the fundamental function by
p(x) = g(Xw(x) , wix) = (c“-X)O‘(x-*bl)‘3 » by<xe (6.35)
and applying the procedure described in this section we find

cosma = 0 , cosTR = uz/(ul+u2) . (6.36)

If ¢ = b, there is a contribution to the generalized Cauchy kernmel at both

ends, the integral equation is given by (6.3), and characteristic equations
are found to be(l)

cosmo = 1 /(M H,) 5 cosTB = U,/ (ALY . o (6.37)

In the case of the "broken shaft" that is, for bl ='0,»ck= b, the integral

<l)In this case note that in (6.14) N=1, Kl=0=Jl, 61=ﬂ, wl=0.
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equation is given by (6.5) from which the characteristic equations are

obtained as

cosTa = 1y /(uyH,) 5 cosmB = (Myh )/ (uyHa,) (6.38a,b)

where the upper sign is for the symmetric and lower sign is for the anti-
symmetric loading. Note that for symmetric loading (for which Ger(a,x) =
p(x) = p(-x), Figure 3) B = 0, that is the stress state at (r = a, x = 0)
is bounded, whereas for antisymmetric loading the characteristic equation
(6.38b) is identical to that of a semi-infinite crack perpendicular to a

bimaterial interface under anti~plane shear loading.

For the plane problem of a crack perpendicular to and terminating at
the interface of two bonded half planes (Figure 5), the integral equation

is given by (6.7). Thus, by defining,
8(6) = g(Ow(t) , we) = 0% , (6.39)

the characteristic equations are found to be

cosTo, = 0", Zylcosﬂ(8+l) + Y2(8+1)2 = Y3 = 0 : (6.40a,b)
Yy = (o)) (mky) 0y, = 4(oke,) (I-m) , mo= /0,
Yy = (1-m) (m+K2) -+ (l+m|<1) (m+x<2) - m(1+1<1)(1+|<1) Y

Again (6.40a) is the well-known result giving o = -1/2 and (6.40b) is identical

to the characteristic equation for a semi-infinite crack perpendicular to and

terminating at a bimaterial interface under in-plane loading (see, for example,

[281).
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6.3 Numerical Method for Solving the Integral Equations f?
with Generalized Cauchy Keriels

As shown in Scction 5 of this article, a general system of singular
integral cquations such as (6.14) can always be expressed by means of a
simple system in which both variables x and t vary in the normalized in-
terval (-1,1). Furthermore it was also indicated that, once the method
of solution is developed for a single equation, it can easily be extended
to a system consisting of any number of cquations.  The numerical method
for solving the singular integral equations with generalized Cauchy ker-

nels will therefore be described for a single equation of the following

form only:

L ot + G100 = £, -l<x<l (6.41)
-1 - -

where f is a known function, kf is a known Fredholm kernel, ks(x,t) becomes
unbounded as x and t appraoch the end points -+ 1, is otherwise bouﬂded, and -
with 1/(t-x) form,tﬁe generalirzed Cauchy kernel. Generally, (6.41) must be
solved under an additional (vhysical, such as an equilibrium or a single-

valuedness) condition of the form
1 '
[, o(dde = A, o | (6.42)

where A is a known constant. As indicated previously, the unknown and the

fundamental functions may be eipressed as
6(E) = g(Iw(r) , w(t) = (L-v)*a)P O (6.43)

where ¢ and B "are knovn constants with ~I<Re(a,R)<0 and g(t) is ‘an unknown

" function which is bounded in ~1<t<l. Observing that w(t) is the weight

function of Jacobi polynomials Ph(a’B)(t), the integral equation may be
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solved by using a numerical method based on a Gauss-Jacobi integration
formula which is similar to the methods described in Section 5. 1In this

case the related integration formula is [20]
1 o B >
[1 G(x,t) (1-t) (l+t)"dt = % WkG(x’tk) s, =1<Re(a,B)<1 (6.44)
where tk ére the roots of
(o, B) - -
Pn (tk) =0 , k=1,..,n (6.45)

and the weighting constants are given by

— (20t0tB+2) T (ot 1) T (nB4+1) 228
k () ! (bt B4 1T (ot DR_, (BB ey Lop (9B

. (6.46)

Analogous to the numerical integration methods developed in Section. 5,
the integrél equation (6.41) and the condition (6.42) may now be,expreSsed as
n

‘ 1 . . . k _
E—l g(tk)wk,[?:ﬁ.— + ks(xj,tk)"!' kf(xj,tk)] = ’ﬂ'f(xj) y J=1..,n-1 ,

n

% g(tk)Wk = A , (6.47a,b)
where

-1<Re(a,B)<0 ’ 'Pn(a’s)(tk) =0 , k=1,..,n ,

P (OL+1’B‘+1)(Xj) =0 . J - 1’_.,11._]_ 5 ’ (6-48)

n~-1

and Wk‘are given by (6.46). Equations (6.47) provide n equations to deter-

mine g(tl),..,g(tn).

If at one or both ends the solution is required to be bounded (hence,
ﬁecessarily zero), (6.46) and (6.47a) will etill be valid, the points;tk

describing the location and the number of the unknowns g(tk)'will still be
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obtained from (6.45) and the locations Xj giving the number of equations

will be obtained from

. . (a-1,B8-1) - .
. (a) O<Re(a)<l , O<Re(R)<1l : Pn+l (Xj) =0 , j=1,..,n+l,
. (b) O<Re(a)<l , -1<Re(B)<0 : Pn(ot—l,BH)(xj) =0 , j=1,..,n , X
H . 3
[}
(¢) -1<Re(0)<0 , O<Re(B)<l : Pn("‘”’e“”(xj) =0 , i=1,..n |

(6.49) |
In none of the cases given by (6.49) the condition (6.42) or (6.47b) is
part of the formulation of the problem. In (6.49a) the additional equation
(provided by Xl""xn+l) is equivalent to the consistency condition of the
integral equation and in (6.495 and ¢) the unique soluticem is obtained by
simply solving (6.47a) with j = 1,..,n. As explained in detail in Section 5,
the (physical).problem.may, however, have additional conditions and unknown

constants which may be handled in a straightforward manner.

In the application of the numerical methods described in Section 5 and
in this section it is essential that spegial attention is paid to the con-
bvergence of the calculated results. At least one technique regarding the

- evaluation of the limit wvalue (as n&w) of certain calculated results is de-
scribed in [25] and [27]. In the interest of space no numerical results
will be presented in this article. However, there are certain techniques
related‘tortﬁe methods deséribed in this article which are quite uééful fdé
extracting_relevant physical information from the solufion. Descriptioﬁ of
such techniqués also falis’butside the scope of this article. Among these
oné may mention the ﬁethods uséd to evaluate such physical quantities as

the stress intensity factors, the strain energy release rate, and the crack
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opening displacement directly in terms of the (calculated) density func-
tions of the integral equations (see, for example, [28], [29], [31]1-[34]).
The detailed numerical results of the torsion problem discussed in this
section may be found in [35] and [36]. In addition to [28, 29, 35,

36], further applications of the singular integral equations with general-

ized Cauchy kernels may be found in [37-39].

7. SINGULAR INTEGRAL EQUATIONS OF THE SECOND KIND

Some relatively very simple mixed boundatyy value problems in mechanics
give rise to singular integral equations which are of the second kind. For
example consider the following basic formulas for the elastic half plane

—o<x<w, y<0 relating the surface tractions and the displacement derivatives:

;ﬂ; gi u(x,0) = YUyY(X,O) + %-[: Oxy(t,o) ﬁ%;- , —o<x<o

T2 ox,0) = - yo, S G,0) + I 0, (6:0) 5, mwcxen

ﬁ;f' yy(x ,0) = -y gg'u(x,o) —'% f:-§%>V(t,O) E%§ , —o<x<o

12? Oy X0 =Y —3%; v(x,0) - -11; [m 5@. u(t,0) — dt L, —<x<® (7.1a=d)

where u, v are, respectively, the x, 'y~ components of the displacement vector,

O, .
1]

it is clear that if the displacement vector is specified on part of the

, (1,j = x,y) are the stress components and Y = (k-1)/(k+1). From (7.1)

boundary y = 0 and the traction vector is specified on the remainde;,_(7fla
and B) or (7;1c4and d) give the integral equations of the problem which are
éoupledkand are éf the second kind. It is also cléar that instéad ofa half
plane if one is dealing With an axisymmetric or plane problem for a domain

'>bounded by a "smooth'" surface the system of integral equations of the related
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EA 3

mixed boundary value problem will have a dominant part which is identical

to that given by (7.1).

As a very simple example consider the plane contact problem with
friction shown in Figure 7 in which a rigid stamp of given profile is
pressed against an elastic half plane. Assuming the coefficient of fric~

tion n to be constant and defining

cyy(t,o) =-p(t) , Oxy(t,o) = - np(t) , a<t<h
4u 3
Tig 3 V(%0 = £(x) , (a<x<b) , w=ny (7.2)

Equation (7.1b) gives the integral equation of the problem as follows:

b
wp(x) - _71? ;B8 e - og(x)

a tox , a<x<b (7.3)

Here the input function f£(x) is, aside from a constant multiplier, the de-
rivative of the function describing the stamp profile (i.e., £(x) = F'(x),
where y = F(x) is the stamp profile). At the end points if the contact

is smooth, the constants a and b defining the contact area are unknown.

In this case the solution (or the input function) has to be such that the

following consistency condition is satisfied:

_1 Pople) odx £(x) o
S lopGo - 4/ s dtl ey =, oy dx =0

(7.4)

where w(x) is the fundamental function of the singular integral equation (7.3).
Also, if the load P is specified the cohtact pressure‘must satisfy the follow-'

ing equilibrium condition
b ; ‘
S p(t)dt =P ., . . ' . (7.5)
a - .
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In solving the problem the conditions (7.4) and (7.5) account for the un-

knowns a and b.

For an elastic medium with a more complicated geometry the foregoing
formulation basically remains the same with the only difference that the
integral equation (7.3) now contains a Fredholm kernel which comes from
the change in the geometry. For example, in the symmetric contact problem
for an infinite elastic wedge of angle 28, shown in Figure 8, using the
standard Mellin transform technique the integral equation for the contact

pressure may be obtained as

b .
wp(r) = 3 I [+ k(r,0)lp(tde = £(r) , awsh (7.6)
a
where
, . .
B(r) = - Oge(r,8) » T £(x) = 5- ug(r,8) = ¥'(x) 7.7
1 1 - sinzeo—nsineocoseo
k(r,t) = r log(t/xr) T tr T 290+sin260
co sinh20 ¥
_ 0 cospy
+ fo (1 56 n = dy
%) i - B .
P a+ n51n260+c03260 cosh?2 oY : sinoy 39
o D{y) x ?
D(y) = sinh260y +y sin26O s po= log(t/x) . (7.8)

The problem is formulated in polar coordinates and F(r) describes the

profile of’rigid stamp.

7.1  The Fundamental Function

The dominant paxrt of the Singular integral equations of the second kind

is of rhe following general form
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b N
M + 27 D g mf ), aws (7.9) :'

where the bounded function fo may contain the part of the integral equation

with the Fredholm kernel. Defining

F(z) = , (7.10)

SN

and using the Plemelj formulas (3.61), (7.9) may be reduced to the following

Riemann-Hilbert problem for the sectionally holomorphic functiow F(2z):

Fr(x) - %ﬁ—% FT(x) = 2if_(x)/(A+iB) . (7.11)

Considering the corresponding homogeneous equation

+ A-iB -, _ )
X (x) - Zrig X (x) =0 , (7.12)

the fundamental solution X(z) and the fundamental function w(x) of (7.9)

may be obtained as [3]

X(z2) = (z=0)%z-a)® , w(x) = (b-0)%x-a)P

o = A-iB 1 A-1iB

1 VR S A-iB.

Tz 108 Gaap) tN > B= - gy log Gy M (7.13)
where N and M are arbitrary (positive, zero, or negative) integers(l). From
(7.11) and (7.12) we have

o F - 2if (x) S
EGy By : , a<xsh (7.14)
X(x) X(x) (AHBYX (30 o o |
the solution of which is
£ _(t)/(a+iB) :
F(2) 1 .0 0 S
. . i o+ (7.
X(2) p fa dt + C ’ (7.15)

(t—z)X+(t)

(1)Note~that if A and B are real then the exponents ¢ and B are also real.
For an example of complex exponents see Section 3.3. Also, see [40] for
the equivalence of the two formulation. :
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where C is an arbitrary constant. From (7.10) and (7.15) the solution of
(7.9) may be expressed as

w(x) b fo(t)dt

: b = - AziBz m Ja (eow(ey T v+ ;Ef;i SO
N a<x<b (7.16)
where (7.13) is used to replace X+(x) by w(x) and
c = - Bce" %/ (a-1B) . (7.17)

The index of the integral equation is again defined by
K = = (0dB) = -~ (M) . (7.18)

The general remarks made in Section 5 in. connection with the contact problem
: shown in Figure 4 and the singular integral equation of the first kind re~
garding the determinatioun of the arbitrary integers N and M or the index of
N the problem and the constanfi Co which appears in the solution (7.16) are |

valid for the integral equations of the second kind also and will not be

repeated here.

It should be pointed out that the fundamental function of the problem
can also be determined directly by applying the method described in Section 6.2.

For this we let the solution of (7.9) be
P = g@u(x 5 w® = G- @af . (.19

From (7.10), (7.19), (6.i7) and (6.18) it is clear that (6.21) is still valid.
s ~ Thus, substituting from (7.19) and (6.21) into (7.9) and multiplying both
sides first by,(x—a)—B and letting x*a and then by (b—x)—a and letting x*b

we. obtain
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cotm = A/B , cotma = ~ A/B . (7.20)

From

cotmd = cotm(64K) , K = 0,+1,...,

1 A-iB
omi 8 GiiE)

= - %-Arccot(A/B) , (7.21)
it is seen that (7.13) and (7.20) are identical.

To develop a numerical method for the solution of the singular integral
equations of the second kind, it will égain be assumed that ¢(t) = g(t)w(t).
At a first glance the exact solution given by (7.16) appears to be not of
this form. However, the integral in (7.16) can be evaluated and it can be
shown that the expression for ¢(t) indeed has no regular terms. To do this

first observe that

b fo(t)dt~ + b fo(t)dt
“ w(x) fa Tewie) = X (%) fa z;i;;;;z;; ,
b F (£)dt b £ (t)dt a f (t)dt
o(z) = f —2 SRS RN . TN - AR,

3 (t-2)X () E 1-xTxm @ (t—z)X+(t) b (t-2)X ()

_ A+B £,(Ddt
2iB & (1-2)X(1) ’

(7.22)

where S is the contour shown in Figurev9 and (7.12) and (7.13) have been used.
Now if fO(T) is holomorphic outside S and continuous up to S, the contour

integral may be evaluated as follows:

| 1 E AT £ (2)

! 211 g (T=2)X(D) ~ X(2)

- P(z) | B o o (7.23)
where‘P(z) is such that for large ]zl

» o : ‘fo(z)'

Ry - B@ oW R S (724
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On the other hand using the Plemelj formula, from (7.22) it follows

that

b £ (t)dt ' :
° =3 107 + 07l | (7.25)

3 ()X (1)

Thus, substituting from (7.22)~(7.25) into (7.16) and observing that

.
- N

ariB)XT(x) = eM%(x) (a2482) 1/ 2.0, (7.26) i

i

‘ i

~we obtain %
o) = L +Bz>*1/2P<x)~+'colw<x) . g

 7.2 Solution by Orthogonal Polynomials

Consider the following integral equation in the normalized interval (-1,1) i

1 ¢(t)
: £1 t-x- ’

S

Ab(Gx) + dt + 1 k(x,0)0(t)de = £G) , -l<x<l  (7.28)

-Alw

Assume that the fundamental fuhction‘and the index of the problem have been

;
1
"
i

 determined and are given by (see Section 7.1)
w(t) = (1-;t.)°‘(1+t)B , K== (0AB) = (0,+1,-1) (7.29)

Observ1ng that w(t) is the welght of Jacobi polynom1a1s,{we may express the

solutlon.of (7 28) as
¢(t) g(c)w<t) . gle) = z p (% B)(t) , -l<t<l (7.30)

where the.coeffic1ents Cn are unkhown. Consider mow thé5fbllcwing property

- of Jacobl polynomlals [23, 41 26]:

ap (a 8)(x)w(x) 2. P (0,8 () W(t)

- ..."-K_".B'_ (a, B) BN
o :-2‘5 Sinﬁd Pn-K - (X)  > 1 3<1

3
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Re{a)>-1 , Re(f)>-1 , Re(a) # (0,1,..) (7.31)

From (7.30), (7.31), and (7.28) it follows that

-«
pX C[——."::B—
a=0 D sinTo T n—-K

(_QQ_B) (X) + kn<x)] = f(x) , -1<x<1 ’

1
k() =[] kx0p @B (e . (7.32)

An effective way of solving for c, in (7.32) would be to expand both

("aa_

sides into series of Jacobi polynomials Pj B)(x), and to compare the

coefficients. Thus, using the orthogonality relations (5.72) we obtain

—K ©

2 L
" einTo BJ( -Q.,: B)c §=0 djncn =F; 5, J-= 0,1.. (7.33)
1 (e ‘ '
4y = 41 2 TPk Goaxmto
J f 1( S P 8)(x)F(X)dx/w(y) . | | . (7.34)

It is again worthwbile to consider the following three cases separately.

(a) k=1
In this case g2lving (7.23) by the method of reduction [24], if the
series is trupcated at n = N, the system of N+l linear equation will con-

tain the unknowns.co,. " The additional equation to solve the problem

.y CN’L]. .

is provided by the:following cendition:

Ly o(0)de = A (7.35)

| which, substituting from (7.30) and using the orthogonality conditions, may

(1)

be expressed as

(I)Note that f£nr K = 1 the 41b1trary constant Co appearlng in the exact solu-
tion (7 16) or (7.27) is also determined from (/ 35).,




P PR

c B (a,8) = A . (7.36)

In this case, truncated at n = N, (7.33) has N+l equations and N+l

- unknowns and gives the unique solutiom.

(¢) k=~-1

In this case observing that Po(a’B)(t) = 1, the first equation (j = 0)

in (7.33) may be expressed as(l)
oo » 1 1 o
T “_§ doncnv= [ £ w(x) -4 w(x) L ek (%)
1 1 o
=/ ( ) [£(x) - [} k(x,t)$(t)dt] = 0 (7.37)

which is the consistency condition of the integral equation and is seen to
be automatically satisfied if this technique is used. If the boundary value
N has a symmetry with respect to x in the sense that, for example, in Figure 7

a = -b, then there is only one édditional unknovn, b and (7.33) and (7.35)

provide N+2 equations to determine oy and b. However, if the problem

has no symmetry (which is always the case when the friction is involved),
both a and b are unknown. Theoretically, the comsistency condition with
(7.35) provide the additional equations to determine a and b. In this case

an extra equation may be gained by writing (7.33) as

OB N-1 '- i
- SinTol J( -0, B)c A E—O djn a = FJ , Ji% 0,_._‘,1\} y (7.38)

which, with (7.35) provide N+2 equations to determine CorrtaCyayr @ and b.

It is seen that if k(x t) is zero and f(x) is a polynomial of finite.

>, degree, by expresszng it din terms of a series of Jacobi ‘polynomials P

-Q )Note that (7 32) starts with ¢ P (-a, B)(x) Therefore in (7.33) c_i:(L
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and using (7.31) the solution of the integral equation (7.28) may be
obtained in closed form by simple observation. Such solutions of some
simple examples regarding the contact problem shown in Figure 7 may be
found in [26]. The solution of the wedge problem shown in Figure 8 with
and without a crack initiating at th= apex will appear elsewhere. The
application of the technique described in this section to singular integ-
ral equations of the second kind with complex coefficients may be found
in [31], [33], [42] and [43]. Extension of the technique to a system of
equations in which.A, B, and k(x,y) are square matriceé is given in [44]

and [25].

7.3 Solution by Gauss-Jacobi Integration Formulas
In order to solve the singular integral equation of the second kind
(7.28) in a direct way one needs an integration formula for the dominant

part

K(¢) = Adp(x) +

1 ¢(t) '
It 4t . (7.39)

5|

Following closely the procedure outlined in Section 5 (see also: [26]) such
an integration formula can indeed be developed [45]. Analogous to (5.53)

first consider the expansion

( Oy B% )P«xB)( y - (u Bapl® By

i=x = oLk (7.40)
qu B)(x) T R
where
PIEOL,B) (tk) =0 5 k= l,..‘-,n_ ;’ ‘ . . ; : v ' (’7.41)>
(-0, ~B) (c,B) NCH PN o ;
= 2 P (e P 1 o Py P (7.42)
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If we now select X, as the roots of

(-u,—B) - : = .
Pn—K (xr) =0 , r=1l,..,n~K , (7.43)

from (7.40) it follows that

p(~%>=8) (o, 8)

e o — (t, )P. ()

P By = 2 ‘n B (7.44)
i k=1 (0{, 8) @) | ¥ K

dt n k

=}

We next consider (7.30) and assume that g(t) can be approximated to a

sufficient degree of accuracy by

g(t) 55 c.PfO‘.’B)(t)- . , (7.45)
j=0 33 : '

From (7.30), (7.31), (7.39), (7.44) and (7.45) for n>p it then follows that

R ( -0, -B)
K[¢(xr)] = T Sinmo §=0 cj j- G )
-2 0 Pr(1 Z B)(tk) ~ g(t A

(7.46)

sinma ', d ,(a,B)
k—l dt (t )

Again, the only approximation in (7.46) is due to the truncation in (7.45).

Using the properties of Jacobi polynomials (7.46) can be put into the stand-

ard form IQS]

R Bg(t ) ‘ .
K[q;(xr)] 7 VT o (7.47)
k=1 k “r ,
S 298 (9o B) T (n+a) T (n+B)’
k. nn:r(nm-.usﬂ)lﬁis) () S 2{® ()
°‘+B+11‘(a+n+1)r(s+n+1)
T ! T (ntoR+1) (l—tk) [HE Péa ;B)‘(tk)]2
- - 2P OnatD Nt DI @) T
vr(nn)'r(n+a+s+1)9(°‘ B)(t P(“’m(t ) B

k dt "n K*
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Using (7.47) the integral equation (7.28) may now be expressed as

n Bg(tk)
Dl F O] = ), r s L (7.49)

where t, and x_ are given by (7.41) and (7.43). TFor k = 1, (7.49) gives n-1
equations to determine g(tl),..,g(tn). The nth equation is obtained from

(7.35) which becomes
n
E=1wkg(tk) = Ao/w . (7550)

For k = 0 (7.49) contains n equations and n unknowns and gives a unique
solution. In this case (7.35) may be used to determine the unknown end value

(e.g., a or b in Figure 7).

For K = -1 (7.49) and (7.35) give n+2 equations to determine
g(tl),..,g(tn), and the unknown end values a and b. It can égain,be shown

that by using this method the consistency condition of the integral equation
[f(X) - f k(x,t)¢(t)de] ( vo "~ f K[¢(X)] ( 3 =0 (7.51)

is automatically satisfied. This can be seen by observing that 1/w(x) is

the weight df Pima’_s)(x),yc= -1, Pé”a’_B)(X) =1,

_ 28 B (-0.,-B) SR T ST
K[¢(X)1 7 sinmol §=0 ‘3 P1+l = _ g v (7.52)

and by using the orthogonality conditions for the Jacobi polynomials.

As'an example consider the wedge problem shown by Tigure 8 and form-—

ulated by (7. 6~7 8). Assume,that the rigid Wedge has flat faces w1th,sharpf

corners at the ends a and b. Thus, (?.6) must be solved for f(r) = 0 and

under the condition that
fa p(x)dr =P = Po/[Z(SLnSO —‘ncosgo)J =A . R ?)
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Let the coefficient of friction be n = 0.5. From (7.13) it then follows

that

o= - 0.545167 , B = - 0.454833 , k=1 ,

p(x) = g(@w(®) , wlr) = b-)%r-a)f . (7.54)

The solution is obtained in a very straightforward manner by considering

(7.6-7.8) with (7.49), (7.50), and (7.54).

Of particular interest in problems of this type is the strength of
stress singularity around the singular points a and b. This is known as

the stress intensity factor and, in this case, may be defined by

k(a) = lim vZ (r-a) Pp(r)
T>a .

k(b) = lp vZ (b-r) Op(r) . (7.55)
> S ,

Some sample nmumberical results.are shown in Table 7.1 where c = (b-a)/2 and

P is defined by (7.53), PO being the total wedging force.
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TABLE 1

Stress intensity factors for the contact problem
in an elastic wedge (Figure 8).

e

k(a) k(b)

%% 90(0) P/(1Tc1+8) P/(Trcl+a)
150.0 1.012 0.989
10 165.0 1.031 0.971
172.5 1.037 0.967
150.0 1.055 0.957
4 165.0 1.108 0.916
172.5 1.122 - 0.903
150.0 1.155 0.906
2 165.0 1.281 0.825
172.5 1.316 0.803
150.0 1.346 0.852
4/3 165.0 1.611 0.726
172.5 1.688 0.689
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Figure 1. Plane with collinear cuts.
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Figure 2. Plane with collinear cracks under antiplane shear loading.
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Figure 3. The torsion problems for two shafts coupled through an
elastic sleeve.
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Figure 4. Contact problem for an elastic half plane.
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Figure 5. Bonded elastic materials containing a crack terminating
at or going through the interface.

Figure 9. ‘Contour for evaluating the integral in equation (7.22).
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Tigure 7. The contact problem for an elastic half plane.

The contact problem for an elastic wedge in the presence

'Figure 8.
: ~of friction.



