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Abstract

The impingement of CuO-water nanofluid flows upon a cylinder subject to a uniform magnetic field with constant surface

temperature and embedded in porous media is investigated for the first time in literature. The surface of the cylinder can

feature uniform or non-uniform mass transpiration and is hotter than the incoming nanofluid flow. The gravitational effects

are taken into account and the three-dimensional governing equations of mixed convection in curved porous media, under

magnetohydrodynamic effects, are reduced to those solvable by a finite difference scheme. Through varying a mixed

convection parameter, the situations dominated by forced, mixed and free convection are examined systematically. The

numerical solutions of these equations reveal the flow velocity and temperature fields as well as the Nusselt number and

induced shear stress. These are then used to calculate the rate of entropy generation within the system by viscous and heat

transfer irreversibilities. The results show that Nusselt number increases with increasing the concentration of nanoparticles,

while it slightly deceases through intensifying the magnetic parameter. Non-uniform transpiration is shown to strongly

affect the average rate of heat transfer. Importantly, it is demonstrated that the specific mode of heat convection can

majorly influence the intensity of entropy generation and that the irreversibilities are much larger under natural convection

compared to those in mixed and forced convection. Calculation of Bejan number shows that this is due to more pronounced

relative contribution of viscous irreversibilities when free convection effects dominate the mixed convection process.
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List of symbols

A1, A2, A3, A4 Constants

a Cylinder radius

B0 Magnetic field strength

Be Bejan number

Br
Brinkman number Br ¼ lf

�k�að Þ2
kf Tw�T1ð Þ

Cp Specific heat at constant pressure

f g; uð Þ Function related to u-component of

velocity

G g; uð Þ Function related to v-component of

velocity

Gr Grashof number Gr ¼ g�bf :a3: Tw�T1ð Þ
16t2

f

g Gravitational acceleration

h Heat transfer coefficient

k Thermal conductivity
�k Freestream strain rate

k1 Permeability of the porous medium

M Magnetic parameter, defined as M ¼ �r�B2
0

2qf
�k

NG Entropy generation number NG ¼
_S000gen
S000
0

Nu Nusselt number

p Fluid pressure

P Non-dimensional fluid pressure

P0 The initial fluid pressure

Pr Prandtl number

qw Heat flow at the wall
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r Radial coordinate

Re Freestream Reynolds number Re ¼ �ka2

2tf

S uð Þ Transpiration rate function S uð Þ ¼ U0 uð Þ
�ka

_S0000 Characteristic entropy generation rate

_S000gen Rate of entropy generation

T Temperature

T1 Freestream temperature

Tw Wall temperature

u; v;w Velocity components along (r � u� z)-

axis

U0 (u) Transpiration

z Axial coordinate

Greek symbols

a Effective thermal diffusivity of the porous

medium

b Thermal expansion coefficient

g Similarity variable, g ¼ r
a

� �2

h g; uð Þ Non-dimensional temperature

k Permeability parameter, k ¼ a2

4k1

k1 Dimensionless mixed convection parameter

k1 ¼ Gr

Re
2 ¼ g�bf � Tw�T1ð Þ

4a��k2

e Porosity

K Dimensionless temperature difference

K ¼ Tw�T1ð Þ
Tw

l Dynamic viscosity

t Kinematic viscosity

q Fluid density

r Shear stress

�r Electrical conductivity

/ Nanoparticle volume fraction

u Angular coordinate

Subscripts

w Condition on the surface of the cylinder

1 Far field

nf Nanofluid

f Base fluid

s Nanosolid particles

Introduction

Convection of nanofluids in porous media is as an attrac-

tive area for heat transfer and thermodynamic research

communities [1, 2]. Free convection of nanofluids in por-

ous media has already received significant attention [3, 4].

However, the equivalent problem under forced and mixed

convection is relatively much less investigated. In partic-

ular, evaluation of thermodynamic irreversibilities

encountered during forced convection of nanofluids in

porous media has been identified as an underdeveloped

area demanding more research [2].

The general problem of forced convection of nanofluids

through porous media has been, so far, visited by few

researchers [5]. The existing studies can be generally cat-

egorised into two classes of nanofluid flows in porous

conduits [6, 7] and those over rotating porous discs [8, 9].

Only the latter can involve boundary layer flows and thus is

further discussed here. In a numerical investigation,

Bachok et al. [10] analysed fluid dynamics and heat

transfer of nanofluids in a configuration including rotating

porous discs. These authors used two different models of

the effective thermal conductivity and examined the fluid

dynamics and heat transfer behaviours of the system [10].

Hatami et al. [11] studied the nanofluid flow between two

counter-rotating discs with porous faces. They considered

water-based nanofluids with a number of different metal

and metal oxide as nanoparticles [11]. Their investigation

included an elaborated study of the effects of nanoparticle

size and type on the heat transfer characteristics of the

system [11]. The problem of convective heat transfer by

nanofluid flows between rotating porous discs was also

examined by Hosseini et al. [12]. These authors employed

homotopy perturbation method and showed that increasing

the concentration of nanoparticles enhances the convection

coefficient. This finding was later confirmed by another

group of authors in other configurations [6, 7]. According

to Hooseini et al. [12], there is a monotonic and nearly

linear relationship between the volumetric fraction of

nanoparticles and the increase in Nusselt number. A three-

dimensional investigation was conducted by Saidi and

Tamim [8] to predict the heat and mass transfer behaviours

of a system involving two rotating porous discs. The

Brownian motion of nanoparticles was considered in this

study, and the magnetohydrodynamic effects were also

investigated [8]. Amongst other findings, it was reported

that augmenting the permeability of the porous discs

enhances the heat and mass transfer coefficients on the

surfaces of the discs [8]. Through considering a moving

permeable surface, Khazayinejad et al. [13] solved the

governing equations of the transport of momentum in a

nanofluid boundary layer. They put forward a similarity

solution for the problem and included the influences of

nanofluid suction and injection in their analysis [13].

A particular type of boundary layer flows in porous

media includes stagnation points [14–16]. This class of

flow finds wide applications in cooling technologies and,

therefore, has been investigated by different authors. These

have been mostly focused on the stagnation flows of

ordinary fluids over flat porous inserts. Here, a concise

summary of the literature in this area is presented. A

pioneering work on the hydrodynamics of stagnation-point,
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isothermal flows on a flat porous insert was conducted by

Wu et al. [17]. They assumed a Darcy–Brinkman flow and

developed an asymptotic solution for the velocity field in a

horizontal porous plate under an impinging jet configura-

tion [17]. In their numerical investigation, Jeng and Tzeng

[18] investigated the transport of heat when a slot jet

impinges upon the surface of a metallic foam heat sink.

These authors reported that the location of the maximum

convection coefficient varies with the jet Reynolds number

[18]. Jeng and Tzeng, later, set an experimental study of

the same problem [19] and demonstrated that by increasing

the jet Reynolds number the convection coefficient grows

in magnitude. Nevertheless, the flow pressure drop is also

intensified [19]. Subsequently, Wong and Saeid [20, 21]

conducted a heat transfer optimisation on the problem of jet

flow blowing on the surface of a horizontal porous insert

heated from below.

Harris et al. [22] built a similarity solution for the

boundary layer developed near the stagnation point on a

porous plate positioned vertically. A numerical work on

mixed convection in jet impingement on a flat porous plate

revealed that increasing the jet width and the Reynolds

number lead to the magnification of the average Nusselt

number [23]. It was also shown that decreasing the distance

between the jet and the heated section increases the Nusselt

number [23]. Kokubun and Fichini [24] presented an ana-

lytical solution for the stagnation-point flow in an infinitely

long, horizontal porous insert subject to different thermal

boundary conditions. This work showed that a dimen-

sionless parameter, including information on the transport

properties of the fluid and solid, dominates the heat transfer

process. In an experimental and numerical study,

Feng et al. [25] investigated the problem of tube flow

impingement on a heated porous insert. They examined

metal foam and finned metal foam and demonstrated that

by magnifying the thickness of the metal foam heat transfer

coefficient decreases. Yet, this was not the true for the

metal finned foam [25]. More recently, Buonomo et al. [26]

investigated the interactions between a downward vertical,

laminar jet and a confined, horizontal porous insert in an

axisymmetric configuration. Buonomo et al. illustrated that

Peclet number determines the opposing or supporting

arrangements of natural and forced convection [26]. Mixed

convection of stagnation-point flows over a vertical plate

covered by a porous layer was investigated by Makinde

[27] and also by Rosca and Pop [28]. Thermal radiation

and magnetic effects have been further considered

in the problem of mixed convection on vertical flat,

porous walls [29].

All cited literatures, so far, have been entirely focussed

on flow configurations over flat porous inserts. A review of

literature reveals that the problem of stagnation-point flow

formed upon curved surfaces in porous media has been

rarely studied. An exception to this is the most recent work

of the authors, in which they developed a semi-similar

solution for the stagnation flow upon the surface of cylin-

der embedded in a homogenous porous medium [5]. This

investigation was concerned with the hydrodynamics and

heat convection only [5]. Importantly, it was limited to

ordinary fluids and did not consider magnetic and gravi-

tational effects nor it involved analysis of entropy gener-

ation. Another highly unexplored area includes nanofluid

stagnation-point flow in porous media. The shortage of

research in this area extends to both flat and curved con-

figurations. An early investigation of flow over a cylinder

embedded in porous media was reported by Abu-Hijleh

[30]. A laminar flow of ordinary fluid through the porous

media and over a cylinder was investigated in this work

and the rate of entropy generation was calculated numeri-

cally [30]. It was demonstrated that increasing the thick-

ness of the porous layer covering an isothermal cylinder

reduces the total generation of entropy [30]. Entropy gen-

eration in magnetohydrodynamic (MHD) flow of nanoflu-

ids in porous media has been analysed in a few recent

works. Rashidi and Freidoonmehr [31] considered the

MHD and nanofluid equivalent of the classical configura-

tion of Heimenz [32] when the solid plate was replaced by

a flat porous insert. Their work was exclusively concerned

with the generation of entropy and made the conclusion

that the effects of increasing the values of Hartmann,

Brinkman and magnetic interaction numbers and reducing

Prandtl and Reynolds numbers are similar and lead to an

augmentation of the entropy generation. This study was

later extended to the configurations including rotating

porous discs with ordinary fluids [33] and nanofluid [34].

In addition to these studies, there exists a series of studies

on entropy generation by nanofluid flow over permeable

surfaces [35–37]. Although mathematical models similar to

those of porous media are used in these works, the physical

differences between them and stagnation flows inside

porous media are rather significant. Thus, these investiga-

tions are not further discussed here.

The preceding review of literature reveals that the

general problem of forced and mixed convection of

nanofluids in porous media and the particular problem of

entropy generation by such flows have been highlighted as

largely unexplored fields. Further, there have been already

a number of studies on the impingement of external flows

in flat porous plates under. However, stagnation-point

flows in curved porous media have so far received very

little attention. The existing studies on boundary layer

nanofluid flows in porous media are entirely concerned

with flat porous inserts or preamble surfaces. Thus, there is

currently no study of nanofluid stagnation-point flow in

curved porous inserts. In practice, many curved objects are

covered with porous layers and nanofluids are increasingly
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used as the cooling agents in such configurations [38].

However, there is currently no systematic evaluation of the

heat transfer and second law performance of such systems.

The present work, therefore, aims to fill this gap through

a study of a cylindrical object embedded in porous media

and subject to non-axisymmetric, nanofluid stagnation-

point flow. The current study builds upon the earlier work

of the authors [5] and advances that on four main fronts.

These include consideration of a nanofluid flow, addition of

gravitational and magnetohydrodynamic effects upon the

convection problem and also evaluation of the encountered

thermodynamic irreversibilities.

Theoretical and numerical methods

Problem configuration, assumptions
and governing equations

Figure 1 shows schematically the problem under investi-

gation. This includes a cylinder with radius a centred at

r = 0 covered with a porous medium. The surface of the

cylinder can include uniform or non-uniform transpiration

with prescribed circumferential distributions, while the

temperature of the external surface of the cylinder is

maintained constant. It should be noted that the mathe-

matical model developed in the following section can

accommodate transpiration in either of suction or injection

of the fluid. An external axisymmetric radial stagnation-

point flow of strain rate of �k impinges on the cylinder.

Because of the non-uniformity of transpiration, the flow

configuration around the cylinder can be un-axisymmetric.

Although the investigated configuration is rather generic, it

finds specific applications in magnetic chemical separation

[5]. The following assumptions are made through this

work.

• The flow is steady, incompressible and laminar.

• The nanofluid is assumed to be Newtonian, electrically

conductive and single phase.

• The cylinder is assumed to be infinitely long and its

axis is parallel to the direction of gravity. Also, the

cylinder is subject to a uniform magnetic field.

• The porous medium is homogenous, isotropic and

under local thermal equilibrium.

• The radiation heat transfer and viscous dissipation of

kinetic energy of the flow are ignored.

• Physical properties such as porosity, specific heat,

density and thermal conductivity are assumed to be

constant and hence the thermal dispersion effects are

negligible.

• A moderate range of pore-scale Reynolds number is

considered in the porous medium and hence nonlinear

effects in momentum transfer are negligibly small.

• The physical mechanisms causing significant deviations

from the local thermal equilibrium, such as internal

heat generations, are ignored [39, 40].

Suction

S (  ) = Constant S (  ) = Ln (  ) 

Injection

Nanofluid in

Porous media

a

z

r

U0 (   )ϕ

ϕ

ϕ ϕ ϕ

ϕ = π

ϕ = 0

Fig. 1 Schematic view of a stationary cylinder under radial stagnation flow of nanofluid in porous media
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A three-dimensional Darcy–Brinkman model of trans-

port of momentum together with the one-equation model of

transport of thermal energy in cylindrical coordinate is

used in this work [41–43]. The governing equations and

boundary conditions, in the cylindrical coordinate system

shown in Fig. 1, can be summarised as follows.

The continuity of mass reads,

o ruð Þ
or

þ ov

ou
þ r

ow

oz
¼ 0 ð1Þ

The transport of momentum in the radial direction is

qnf
e2

u
ou

or
þ v

r

ou

ou
� v2

r
þ w

ou

oz

� �

¼ � op

or
þ lnf

e

o
2u

or2
þ 1

r

ou

or
� u

r2
þ 1

r2
o
2u

ou2
þ o

2u

oz2

� �

� lnf
k1

u;

ð2Þ

and that in the angular direction is given by

qnf
e2

u
ov

or
þ v

r

ov

ou
þ uv

r
þ w

ov

oz

� �

¼ � 1

r

op

ou

þ lnf
e

o
2v

or2
þ 1

r

ov

or
� v

r2
þ 1

r2
o
2v

ou2
þ 2

r2
ou

ou
þ o

2v

oz2

� �

� lnf
k1

v� �rB2
0v: ð3Þ

The transport of momentum in the axial direction takes

the form of

qnf
e2

u
ow

or
þ v

r

ow

ou
þ w

ow

oz

� �

¼ � op

oz
þ lnf

e

o
2w

or2
þ 1

r

ow

or
þ 1

r2
o
2w

ou2
þ o

2w

oz2

� �

� qbð Þnfg T � T1ð Þ � lnf
k1

w� �rB2
0w

ð4Þ

The transport of thermal energy is expressed by

u
oT

or
þ v

r

oT

ou
þ w

oT

oz

¼ knf

q � Cp

� �

nf

o
2T

or2
þ 1

r

oT

or
þ 1

r2
o
2T

ou2
þ o

2T

oz2

� �

:

ð5Þ

As also defined in the nomenclature, in Eqs. (1–5) p,

qnf , lnf , T , q � Cp

� �

nf
, knf and b are the pressure, density,

kinematic viscosity of the nanofluid, temperature, the heat

capacitance of the nanofluid, effective thermal conductivity

of the nanofluid and thermal expansion coefficient of the

fluid, respectively. It is noted that in general the effective

viscosity should be used in the governing equations.

However, it has been shown previously [7, 39, 40] that

ignoring the effective viscosity does not result in any

noticeable error. Further,g, T1, e, �rnf , B0 and k1 denote

gravitational acceleration, given temperature at the wall,

porosity, nanofluid electrical conductivity, uniform mag-

netic field and permeability of the porous medium,

respectively. The flow characteristics are evaluated inside

the boundary layer and in the vicinity of the flow

impingement point. These nanofluid properties are defined

by [6, 7, 44],

qnf ¼ 1� /ð Þqf þ /qs;

q � Cp

� �

nf
¼ 1� /ð Þ q � Cp

� �

f
þ/ q � Cp

� �

s

lnf ¼
lf

1� /ð Þ2:5
;

knf

kf
¼ ks þ 2kf � 2/ kf � ksð Þ

ks þ 2kf þ 2/ kf � ksð Þ

ð6Þ

where / denote the nanoparticles volume fraction. In

Eq. (6), the subscripts, ‘‘f’’ and ‘‘s’’, refer to fluid and solid

fraction properties, respectively. The thermo-physical

properties of the base fluid (water) and the investigated

nanoparticle (CuO) are given in Table 1.

The velocity conditions for the momentum equations are

as follows.

r ¼ a : w ¼ 0; v ¼ 0; u ¼ �U0 uð Þ; ð7Þ

r ! 1 : w ¼ 2�kz; lim
r!1

rv ¼ 0; : u ¼ ��k r � a2

r

� �

ð8Þ

Further, the two boundary conditions with respect to

u(angular coordinate) are given by

u r; 0ð Þ ¼ u r; 2pð Þ; v r; 0ð Þ ¼ v r; 2pð Þ;
ou r; 0ð Þ
ou

¼ ou r; 2pð Þ
ou

;

ov r; 0ð Þ
ou

¼ ov r; 2pð Þ
ou

:

ð9Þ

Equation (7) represents no-slip conditions on the exter-

nal surface of the cylinder. Further, Eq. (8) indicates that

the viscous flow solution approaches, in a manner analo-

gous to the Hiemenz flow, the potential flow solution as

r ! 1 [41, 42, 45]. This can be verified by starting from

the continuity equation in the following. � 1
r
o

or
ruð Þ � ov

ou
¼

ow
oz

¼ Constant ¼ 2�kz and integrating in r and z directions

with boundary conditions,w ¼ 0 when z ¼ 0 and u ¼
�U0 uð Þ when r ¼ a.

The boundary condition for the transport of thermal

energy is given by

r ¼ a : T ¼ Tw ¼ Constant,

r ! 1 : T ! T1
ð10Þ

and the two boundary conditions with respect to angular

coordinate u are

T r; 0ð Þ ¼ T r; 2pð Þ;
oT r; 0ð Þ

ou
¼ oT r; 2pð Þ

ou
;

ð11Þ
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in which Tw is the cylinder surface temperature and T1 is

the freestream temperature.

Self-similar solutions

A reduction in the governing Eqs. (1–5) is obtained

through applying the following similarity transformations.

u ¼ �
�ka
ffiffiffi

g
p f g;uð Þ; v ¼

�ka
ffiffiffi

g
p G g;uð Þ;

w ¼ 2�kf 0 g;uð Þ �
�k

g

oG

ou

� �

z; p ¼ qf
�k2a2P:

ð12Þ

where g ¼ r
a

� �2
is the dimensionless radial variable.

Transformations (12) satisfy Eq. (1) automatically and

their substitution into Eqs. (2), (3) and (4) leads to the

following system of coupled differential equations.

e � gf 000 þ f 00 � 1

8g2
o
3G

ou3
� 1

2

oG00

ou
þ 1

2g

oG0

ou
� 1

2g2
oG

ou
þ 1

4g

o
2f 0

ou2

� �

þ Re � A1 � 1� /ð Þ2:5

1þ ff 00 � ðf 0Þ2 � f

2g

oG0

ou
þ f

2g2
oG

ou
� G

2g

of 0

ou
þ G

4g2
o
2G

ou2
þ f 0

g

oG

ou
� 1

4g2
oG

ou

� �2
" #

þ e2:k 1� f 0½ � � e2 � A4 � k1 � hþ e2 � Re �M 1þ 1

2g

oG

ou
� f 0

� �

¼ 0;

ð13Þ

P� P0 ¼
1

e2
1

2�k2

Z g

1

1

g2
G2 þ G

of

ou

� �

dg� 1

e � A1 � 1� /ð Þ2:5

f 0

Re
� 1

4Re

Z g

1

1

g2
o
2f

ou2
dgþ 1

2Re

Z g

1

1

g2
oG

ou
dg

� ��

þ k

Re

Z g

1

f

g
dg

�

� 2
1

e2
þ 1

A1 � 1� /ð Þ2:5

k

Re
þM

" #

z

a

	 
2

� 1

2e2
f 2

g

� �

ð14Þ

in which Re ¼ �ka2

2tf
is the freestream Reynolds number, k ¼

a2

4k1
is referred to as permeability parameter, M ¼ �r�B2

0

2qf
�k
is the

magnetic parameter, Gr ¼ g�bf �a3� Tw�T1ð Þ
16t2

f

is the Grashof

number,k1 ¼ Gr

Re
2 ¼ g:bf : Tw�T1ð Þ

4a:
�k2

is the dimensionless mixed

convection parameter and prime indicates differentiation

with respect to g. Considering Eqs. (6), (7) and (8), the

boundary conditions for Eqs. (13) and (14) reduce to:

g ¼ 1 : f 0ð1;uÞ ¼ 0; f ð1;uÞ ¼ S uð Þ ð15Þ
g ! 1 : f 0ð1;uÞ ¼ 1 ð16Þ

f g; 0ð Þ ¼ f g; 2pð Þ; of g; 0ð Þ
ou

¼ of g; 2pð Þ
ou

; ð17Þ

in which S uð Þ ¼ U0 uð Þ
�ka

is the transpiration rate function.

Note that Eqs. (13) and (14) are the complete form of

Eqs. (9) and (11) in Ref. [46]. Substitution of Eq. (12) into

Eqs. (3) and (4) results in a differential equation in terms of

G g;uð Þ as well as an expression for the pressure. This

reads

e � gG00 þ 1

4g

o
2G

ou2
� 1

2g

of

ou

� �

þ Re � A1

� 1� /ð Þ2:5
f � G0 � G

2g

oG

ou

� �

� e2 � G kþM½ �

¼ 0; ð18Þ

Considering conditions (7)–(9), the boundary and initial

conditions for Eq. (18) can be written as

g ¼ 1 : Gð1;uÞ ¼ 0;

oGð1;uÞ
ou

¼ 0; ð19aÞ

g ! 1 : Gð1;uÞ ¼ 0 ð19bÞ

G g; 0ð Þ ¼ G g; 2pð Þ; oG g; 0ð Þ
ou

¼ oG g; 2pð Þ
ou

: ð20Þ

To transform the energy Eq. (5) into a dimensionless

form, the following transformation is introduced,

h g;uð Þ ¼ T g;uð Þ � T1
Tw � T1

ð21Þ

Substitution of Eqs. (12) and (20) into Eq. (5) and

ignoring the small dissipation terms yields

gh00 þ h0 þ 1

4g

o
2h

ou2
þ Re � Pr �A2

A3

� fh0 � G

2g

oh

ou

� �

¼ 0;

ð22Þ

while the boundary conditions reduce to

g ¼ 1 : hð1;uÞ ¼ 1; ð23aÞ

Table 1 Thermo-physical

properties of the base fluid and

different nanoparticles [36]

Physical properties Cp/J kg
-1 K-1 q/kg m-3 k/W m-1 k-1 b 9 10-5/K-1

Fluid phase (water) 4179 997.1 0.613 21

CuO 531.8 6320 76.5 1.8
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g ! 1 : hð1;uÞ ¼ 0; ð23bÞ

h r; 0ð Þ ¼ h r; 2pð Þ; oh r; 0ð Þ
ou

¼ oh r; 2pð Þ
ou

: ð24a; bÞ

In Eqs. (18) and (22), A1, A2, A3 and A4 are constants in

the following forms.

A1 ¼ 1� /ð Þ þ qs
qf

/; A2 ¼ 1� /ð Þ þ
qCp

� �

s

qCp

� �

f

/;

A3 ¼
knf

kf
¼ ks þ 2kf � 2/ kf � ksð Þ

ks þ 2kf þ 2/ kf � ksð Þ ;

A4 ¼ 1� /ð Þ þ qbð Þs
qbð Þf

/;

ð25Þ

It is recalled here that Eq. (22) is the complete form of

Eq. (14) in Ref. [46]. Equations (12), (18) and (22), toge-

ther with the boundary conditions (15–17), (19–20), (23)

and (24), are solved numerically using an implicit, iterative

tri-diagonal finite difference method similar to that dis-

cussed in Refs. [47, 48]. Although not shown here, the full

solution of the momentum equations in three dimensions

reveals that the component G is rather negligible (see Ref.

[5] for the details). It is therefore assumed in the reset of

the analysis that Gðg;uÞ ¼ 0.

e � gf 000 þ f 00 þ 1

4g

o
2f 0

ou2

� �

þ Re � A1

� 1� /ð Þ2:5
1þ ff 00 � ðf 0Þ2
h i

þ e2 � k 1� f 0½ � � e2 � A4

� k1 � hþ e2 � Re �M 1� f 0½ �
¼ 0; ;

ð26Þ

P� P0 ¼� 1

2e2
f 2

g

� �

� 1

e � A1 � 1� /ð Þ2:5

f 0

Re
� 1

4Re

Z g

1

1

g2
o
2f

ou2
dg

� �

þ k

Re

Z g

1

f

g
dg

� �

� 2
1

e2
þ 1

A1 � 1� /ð Þ2:5

k

Re
þM

" #

z

a

	 
2

;

ð27Þ

gh00 þ h0 þ 1

4g

o
2h

ou2
þ Re � Pr �A2

A3

� fh0ð Þ ¼ 0 ð28Þ

Shear stress and Nusselt number

The shear stress induced by the nanofluid flow on the

external surface of the cylinder is given by [5, 43]

r ¼ lnf
ow

or

� �

r¼a

; ð29Þ

where lnf is the nanofluid viscosity. Employing Eq. (12), a

semi-similar solution for the shear stress on the surface of

the cylinder can be developed. This reads

r ¼ lnf
2

a
2�kzf 00ð1;uÞ½ � ) ra

4lf
�kz

¼ 1� /ð Þ�2:5
f 00ð1;uÞ:

ð30Þ

For the current problem with isothermal boundaries, the

local heat transfer coefficient and rate of heat transfer are

defined as

h ¼ qw

Tw � T1
¼

�knf
oT
or

� �

r¼a

Tw � T1
¼ � 2knf

a

oh 1;uð Þ
og

; ð31Þ

and

qw ¼ � 2knf

a

oh 1;uð Þ
og

Tw � T1ð Þ: ð32Þ

Hence, Nusselt number can be written as

Nu ¼ h � a
2kf

¼ � knf

kf
h0 1;uð Þ ¼ �A3 � h0 1;uð Þ: ð33Þ

Entropy generation

Considering the assumption stated in Sect. 3.1, the volu-

metric rate of local entropy generation in the problem is

given by [49, 50]:

_S000gen ¼
knf

T2
w

oT

or

� �2

þ 1

r

oT

ou

� �2
" #

þ 2lnf
Tw

ou

or

� �2

þ u

r

	 
2

þ ow

oz

� �2
" #

þ lnf
Tw

1

r

ow

ou

� �2

þ ow

or

� �2

þ 1

r

ou

ou

� �2
" #

þ lnf
k1 � Tw

u2 þ w2
� �

þ �r � B2
0

Tw
w2

:

ð34Þ

Using the similarly variables given in Eqs. (12) and

(34), the local entropy generation becomes:

_S000gen ¼
4knf Tw � T1ð Þ2

a2T2
w

gh02 þ 1

4g2
oh

ou

� �2
" #

þ 4�k2lnf
Tw

gf 002 þ 4f 02 þ f 2

g2
� 2ff 0

g
þ 1

g

of 0

ou

� �2
"

þ 1

4g2
of

ou

� �2
#

þ
�k2lnf a

2

k1Tw

f

g

� �2

þ4f 02
" #

þ �r � B2
0

Tw
4�k2f 02

ð35Þ

in which NG ¼
_S000gen
S000
0

and S0000 ¼ 8kf Tw�T1ð Þ2tf
�k�a4T2

w

is the character-

istic entropy generation rate.

The dimensionless form of volumetric rate of local

entropy generation (NG) can be presented as follows.
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NG ¼Re � A3 gh02 þ 1

4g2
oh

ou

� �2
" #

þ Re � Br
K

� 1� /ð Þ�2:5

gf 002 þ 4f 02 þ f 2

g2
� 2ff 0

g
þ 1

g

of 0

ou

� �2

þ 1

4g2
of

ou

� �2
" #(

þk
f

g

� �2

þ4f 02
" #

þ 2Mf 02
)

ð36Þ

where K ¼ Tw�T1ð Þ
Tw

is the dimensionless temperature dif-

ference, and Br ¼ lf
�k�að Þ2

kf Tw�T1ð Þ is the Brinkman number. The

Bejan number, defined as the ratio of entropy generation

due to heat transfer to the total entropy generation, is used

to facilitate understanding of the mechanisms of entropy

generation. Bejan number for the current problem can be

expressed as

Be¼
Re �A3 gh02þ 1

4g2
oh
ou

	 
2
� �

Re�Br
K

� 1�/ð Þ�2:5
gf 002þ4f 02þ f 2

g2
� 2ff 0

g
þ 1

g
of 0
ou

	 
2

þ 1
4g2

of

ou

	 
2
� �

þk f

g

	 
2

þ402
� �

þ2Mf 02

 �

ð37Þ

Grid independency and validation

To establish grid independency of the developed numerical

solution, Fig. 2 plots f ðg;u) as a function of g with varying

mesh sizes of 51 9 18, 102 9 36, 204 9 72, 408 9 144

and 816 9 288. It is clear from Fig. 2a that there are no

considerable changes of f ðg;u) for (g;u) mesh sizes of

(204 9 72), (408 9 144) and (816 9 288). Hence, a

(408 9 144) grid in g� u directions was used for the

computational domain reported in this work. A non-uni-

form grid was applied in g-direction to capture the sharp

gradients around the external surface of the cylinder, and a

uniform mesh was implemented in u direction. The com-

putational domain extends over umax ¼ 360� and

gmax ¼ 15. In this expression, gmax corresponds to g!1,

which for all investigated cases, is located outside the

momentum and thermal boundary layers. Figure 2b shows

the computational mesh utilised in the current study. A

convergence criterion was employed in the numerical

simulations. This was such that when the difference

between the two consecutive iterations became less than

10-7, the solution was assumed to have converged and

hence the iterative process was terminated. On the basis of

the implemented numerical scheme, the numerical error is

of O Dgð Þ2 [46, 47]. The solutions developed in Sects. 2.2

and 2.3 were validated by comparing the Nusselt number

calculated by Eq. (33) with those from the literature for

flows over cylinders with no transpiration and large per-

meability (no porous layer). Table 2 shows the outcomes of

this comparison. The close agreement between the two sets

of Nusselt number ensures the validity of the numerical

simulations. Further, at / ¼ 0 the temperature and Nusselt

numbers reported in this work reduce to those in Ref. [5]

for an ordinary fluid flow on a cylinder embedded in porous

media.

Results and discussion

Table 3 summarises the default values of parameters that

the results presented in this section are based on. Any

changes to these default values have been explicitly stated

in the figures and tables. Further, three types of
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1 2 3 4 5 6 7
–2

0

2

4

6

8

10
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λ = 100
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204 * 72
408 * 144
816 * 288

Fig. 2 a Profiles of f ðg;uÞ distributions on the cylinder for various

mesh sizes. b Sample of grid system
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transpiration functions including S ¼ 0; S ¼
const:; S ¼ LnðuÞ (see Fig. 1) have been used in this

section.

Flow velocity, temperature fields and heat
convection coefficient

Figures 3 and 4 show variations of the hydrodynamic

parameters f 0 and f in the radial and angular directions as

the mixed convection parameter, k1, varies over several

orders of magnitude. Figure 3 clearly shows that the radial

distribution of f 0 is significantly affected by variations in

k1. For high values of k1; where free convection is

approached, the values of f 0 are considerably higher at radii

close to the surface of the cylinder. However, as the

numerical value of k1 decreases and mixed convection and

subsequently forced convection are realised, values of f 0

remain almost indifferent to k1. This trend is clear in

Fig. 3b in which for a given transpiration function little

changes to angular distribution of f 0 is observed for all

investigated values of k1. Figures 3a and 3b both indicate

that the functional form of the transpiration function is

influential upon the radial and angular distribution of f 0.
Very similar behaviours are observed in Fig. 4, which

depicts the radial and angular distribution of f for different

values of mixed convection parameter and two different

transpiration functions.

Figure 5 illustrates the distribution of the dimensionless

flow temperature as the volumetric concentration of

nanoparticles vary in the nanofluid. It is clear from this

figure that increasing the concentration of nanoparticles has

almost negligible effects upon the radial distribution of the

dimensionless temperature. However, considering the

angular direction, some slight increases are observed in the

Table 2 Comparison between

the current results and those of

Alizadeh et al. [9] when

S uð Þ ¼ 0, Re ¼ 1:0

Pr Num k Num

Present work Alizadeh et al. [9] Present work Alizadeh et al. [9]

0.1 3.59781 3.59774 0.1 3.84221 3.84219

0.4 3.74124 3.74114 1.0 3.84888 3.84888

0.7 3.84888 3.84888 10 3.88855 3.88851

1.0 3.93790 3.93788 50 3.95264 3.95263

10 5.07669 5.07670 100 3.98295 3.98287

Table 3 Default values of the

simulation parameters
Simulations

parameters

g / z u k M k1 Re e S uð Þ

1.45 0.1 a 72� 10 1.0 1.0 10 0.9 Ln uð Þ
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Fig. 3 Variation of f 0ðg;uÞ in terms of a g (radial), b u(angular),

Re ¼ 1:0, k ¼ 10, / ¼ 0:05 and for different values of dimensionless

mixed convection
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dimensionless temperature for higher values of nanoparti-

cles’ concentration. This is to be expected, as higher con-

centration of nanoparticles renders higher thermal

conductivity of the nanofluid, which enhances the heat

convection from the surface of the cylinder and hence

increases the nanofluid temperature. Influences of the

magnetic field upon the non-dimensional temperature field

have been shown in Fig. 6. This figure clearly shows that

by magnifying the strength of the magnetic field, the flow

temperature drops significantly in both radial and angular

directions. Magnetic field tends to decelerate the nanofluid

flow through application of Lorentz force. This hinders the

flow and therefore suppresses the heat convection process

and results in lowering the temperature of the nanofluid.

Figure 7 illustrates the influences of variations in mixed

convection parameter upon the dimensionless temperature

field. This figure indicates that substantial variations in the

mixed convection parameter, from free convection domi-

nated to forced convection dominated, imparts relatively

small changes on the dimensionless temperature. This is

such that for high values of k1, reflecting free convection,

dimensionless temperature is slightly smaller than those

values of k1 that indicate mixed and forced convection. The

observed behaviour implies that the heat transfer process is

slightly weaker for high values of k1 and under free con-

vection in comparison with that for lower values of k1;

representing mixed and forced convection. This is physi-

cally conceivable as free convection is often the weakest

mode of heat convection. Nonetheless, the existence of

laminar flow in the current problem has minimised the

differences between the forced and free convection. Fig-

ure 7 further illustrates the strong effects of transpiration

upon the dimensionless temperature distribution. This
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Fig. 4 Variation of f 0ðg;uÞ in terms of a g (radial), b u(angular),

Re ¼ 1:0, k ¼ 10, / ¼ 0:05 and for different values of dimensionless

mixed convection
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Fig. 5 Variation of hðg;uÞ with a g (radial), b u(angular), Re ¼ 1:0,

k ¼ 10 and for different values of nanoparticle volume fraction
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figure shows that for a case with no transpiration (S ¼ 0)

radial dimensionless temperature is always smaller than

those corresponding to a non-uniform transpiration. How-

ever, the situation is more involved in the angular direction

and the relative magnitudes of dimensionless temperature

in the transpirating and non-transpirating cases that depend

upon the specific location on the cylinder circumference.

The angular distribution of Nusselt number and dimen-

sionless shear stress has been shown in Figs. 8 and 9.

Figure 8a shows the response of Nusselt number to varia-

tions in the volumetric concentration of nanoparticles. This

figure indicates that at u ¼ 0 the value of Nusselt number

is rather high, while it drops sharply for small values of u:

This represents a characteristic feature of stagnation-point

flows upon curved objects and has been already reported in

other configurations [5, 42, 43]. Further, Fig. 8 shows that

by increasing the concentration of nanoparticles the value

of Nusselt number increases considerably. This finding is

in agreement with the that observed in other flow conduits

involving convection of nanofluids in porous media [6, 7]

and it is also consistent with the temperature distribution

shown in Fig. 5. Part b of Fig. 8 clearly shows that the

viscous friction increases quite considerably through

increases in the concentration of nanoparticles. Once again,

this is a plausible behaviour and stems from the fact that

increasing the concentration of nanoparticles boosts the

viscosity of the nanofluid and hence strengthens the

imposed shear stress.

Figure 9 shows the angular variation of Nusselt number

with respect to permeability parameter indicating that by

increasing the permeability parameter Nusselt number

grows to a small extent. Increase in Nusselt number with

decreasing the permeability (or increasing the permeability

parameter) has been already reported in studies of con-

vection of nanofluid in straight porous flow conduits [6, 7].
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Fig. 6 Variation of hðg;uÞ with a g (radial), b u(angular), Re ¼ 100,

k ¼ 10 and for different values of magnetic parameter
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mixed convection
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The present study extends this to curved surfaces embed-

ded in porous media. Figure 9b shows that, as expected, by

increasing the permeability parameter the dimensionless

stress increases. The amount of this increase is particularly

large at small values of u and appears to feature a jump at

k ¼ 100:

To provide further quantitative data, Tables 4, 5 and 6

present the numerical values of circumferentially averaged

Nusselt number and dimensionless shear stress as a func-

tion of different pertinent quantities. In these tables, two

types of transpiration functions including non-uniform and

uniform mass transpiration have been incorporated. The

increase in average Nusselt number and shear stress with

increases in the concentration of nanoparticles is evident

from Table 4. This table also shows that the average value

of Nusselt number is generally higher when there is no

mass transpiration. Table 5 indicates that large increases in

the value of k1 (or approaching free convection) are asso-

ciated with small decreases in the average number. How-

ever, as that observed in Table 4, suppressing transpiration

enhances the average Nusselt number noticeably. Simi-

larly, Table 6 shows that increasing the magnetic param-

eter by a few orders of magnitude reduces the average

Nusselt number to a very minor extent. Yet, setting S = 0

has much larger enhancing effects upon the average Nus-

selt number. It is noted that increasing the magnetic

parameter causes substantial gains in the averaged shear

(a)

(b)

ϕ

Nu

0 20 40 60 80 100 120 140 160 180
0

0.6

1.2

1.8

2.4

3

φ = 0.1 , λ1 = 10

φ = 0.1 , λ1 = 0.01

S ( ϕ ) = Ln ( ϕ )

λ1 = 1

φ = 0
φ = 0.05
φ = 0.1

ϕ

σ
.a

 /
 4

 µ
f k

 z

0 20 40 60 80 100 120 140 160 180
0

4

8

12

16

20

24

28

φ = 0.1 , λ1 = 10

φ = 0.1 , λ1 = 0.01

λ1 = 10

S ( ϕ ) = Ln ( ϕ )

φ = 0
φ = 0.05
φ = 0.1
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stress in both mass transpirating and non-transpirating

cases.

Thermodynamic irreversibilities

The dimensionless form of local entropy generation has

been shown in Figs. 10 and 11. These figures illustrate the

variation of local entropy generation in the radial angular

directions shown for discreet values of mixed convection

parameter and concentration of nanoparticles. Figure 10

indicates that for small and moderate values of k1
(k1 ¼ 0:1; 1 representing forced and mixed convection

modes) the radial and angular distributions of entropy

generation are quite similar and almost indifferent to the

value of k1: However, for higher values of k1
(k1 ¼ 10; 100Þ the numerical value of entropy generation

increases in both radial and angular directions. The extent

of this increase is particularly significant at k1 ¼ 100 in

which heat transfer process is dominated by free convec-

tion. This is an important result and indicates that the mode

of heat transfer can substantially affect the irreversibility of

Table 4 Effects of the

nanoparticle volume fraction on

average Nusselt number and

average shear stress (rm:a
�

4l�kz )

for Re ¼ 1, / ¼ 0:1, k1 ¼ 1,

k ¼ 100

/ rm:a
�

4lf
�kz Num

S uð Þ ¼ Ln uð Þ S uð Þ ¼ 1 S uð Þ ¼ 0 S uð Þ ¼ Ln uð Þ S uð Þ ¼ 1 S uð Þ ¼ 0

0.0 5.43016 5.30734 5.34345 1.43516 1.57439 1.67149

0.05 6.18125 6.03449 6.07846 1.79811 1.95149 2.04587

0.1 7.07958 6.90923 6.96085 2.25555 2.42114 2.51241

0.15 8.16591 7.97235 8.03133 2.84526 3.02139 3.10921

Table 5 Effects of the dimensionless mixed convection in nanofluid

water-Cuo on average Nusselt number and average shear stress

(rm � a�
4l�kz ) when / ¼ 0:1, k ¼ 100, Re ¼ 1

k1 rm � a�
4lf

�kz Num

S uð Þ ¼ Ln uð Þ S uð Þ ¼ 0 S uð Þ ¼ Ln uð Þ S uð Þ ¼ 0

0.01 7.04650 6.94845 2.25569 2.51271

0.1 7.04950 6.94958 2.25568 2.51269

1 7.07958 6.96085 2.25555 2.51241

10 7.37972 7.07375 2.25426 2.50967

100 10.29258 8.22825 2.24233 2.48544

- 1 7.01273 6.93581 2.25584 2.51303

- 10 6.71127 6.82336 2.25716 2.51585

Table 6 Effects of the magnetic parameter in nanofluid water-Cuo on

average Nusselt number and average shear stress (rm � a�
4l�kz ) when

/ ¼ 0:1, Re ¼ 1, k ¼ 10, k1 ¼ 10

M rm � a�
4lf

�kz Num

S uð Þ ¼ Ln uð Þ S uð Þ ¼ 0 S uð Þ ¼ Ln uð Þ S uð Þ ¼ 0

0 3.64667 3.88497 2.50179 2.57364

0.1 3.65876 3.89552 2.50143 2.57123

1 3.76536 3.98846 2.50111 2.57051

10 4.64622 4.75670 2.50062 2.56991

100 7.64299 7.45287 2.49973 2.56711
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the heat transfer process. It should be emphasised that the

results presented in Sect. 3.1 already showed that changes

in the mixed convection parameter have relatively minor

influences upon the temperature field and Nusselt number.

However, these influences are highly magnified in entropy

generation analysis due to strong dependency of irre-

versibilities on temperature gradients. As shown in Fig. 10,

increases in the concentration of nanoparticles lead to an

increase in the entropy generation in radial and angular

directions. Similar to that shown in Fig. 10, it is clear from

Fig. 11 that for a fixed concentration of nanoparticles

increasing the value of k1 from 0.01 to 10 results in major

increases in entropy generation.

Figures 12 and 13 depict the spatial distribution of

Bejan number for the cases investigated in Figs. 10 and 11.

This reveals some interesting facts about the shares of

viscous and thermal entropy in the total entropy generation.

For instance, Fig. 12 shows that the magnitude of Bejan

number decreases as the numerical value of k1 increases.

This indicates that the relative share of thermal entropy in

the irreversibility of the process decreases at higher values

of mixed convection parameter. Given that Fig. 10 has

already shown a significant intensification of entropy

generation at higher values of k1; the observed behaviour

of Bejan number reflects a major growth in the significance

of viscous entropy generation at high values of k1.
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Figure 13 shows that by increasing the concentration of

nanoparticles, the value of Bejan number increases in the

radial direction. The extent of this increase is more

noticeable at g ffi 1: In the angular direction, however, the

value of Bejan number depends upon the circumferential

location. For values of u\80�; increases in the concen-

tration of nanoparticles result in increasing the value of

Bejan number. Nevertheless, this trend is reversed in the

larger values of u:

The influences of the magnetic field upon the entropy

generation distribution is depicted in Fig. 14. This fig-

ure shows that for small and moderate value of M the

entropy generation distribution remains almost unaltered.

Yet, further magnification of M (M = 10,100) results in

large increases in the value of NG in both radial and cir-

cumferential direction. Figure 15 shows that Bejan number

is highly suppressed at large value of M. This is an indi-

cation of the fact that as the magnetic field goes up in

strength the motion of nanofluid becomes progressively

more difficult and hence the viscous irreversibility plays a

stronger role in the entropy generation. Figures 14, 15

show, once again, that the parameters that only marginally

contribute with the thermal aspects of the problem can

affect the thermodynamics of the system quite

significantly.
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Conclusions

This work presented an analysis of heat transferring stag-

nation-point nanofluid flow over a cylinder embedded in

porous media in the presence of gravitational and magnetic

effects. By surveying the literature, it was shown that this

was the first analysis of mixed convection of nanofluids

through curved porous conduits. In the analysis, three-di-

mensional equations of transport of momentum together

with one-equation model of transport of heat in porous

media were employed and a temperature-independent

model of nanofluid was considered. Through assuming

certain self-similar solutions, these equations were reduced

to simpler versions solvable with a finite difference tech-

nique. Hydrodynamic, thermal and entropy generation

fields were analysed in details. The followings summarise

the main findings of this study.

• In keeping with that reported for other porous config-

urations, the Nusselt number was observed to increase

in magnitude by increasing the concentration of

nanoparticles.

• Intensifying the magnetic field was shown to result in

reducing the flow temperature slightly and also causing

a small decrease in the averaged Nusselt number.

• The functional form of mass transpiration was shown to

have important effects upon the average Nusselt

number.

• By increasing the numerical value of mixed convection

parameter, k1; the numerical value of the dimensionless

temperature and that of the average Nusselt number

decreases. That indicates that, as expected, under free

convection the flow is colder and the rate of heat

transfer is smaller than that under mixed and forced

convection.

• The entropy generation was found to substantially

increase at high values of mixed convection parameter,

which means free convection in the investigated

configuration involves much more irreversibility com-

pared to mixed and forced convection.

• It was argued that the share of viscous irreversibility in

entropy generation under free convection is signifi-

cantly higher than that of thermal irreversibility.

• Strong magnetic effects were shown to generate large

irreversibilities, while they reduce Bejan number and

magnify the relative importance of viscous

irreversibilities.
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