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Mixed convection boundary layer flow of a viscoelastic fluid over a 
horizontal circular cylinder

Ilyana Anwar and Norsarahaida Amin

Department of Mathematics, Universiti Teknologi Malaysia,
 Johor Bahru, Johor, Malaysia

Ioan Pop*

Faculty of Mathematics, University of Cluj, R-3400 Cluj, Romania

Abstract

     The steady mixed convection boundary layer flow of a viscoelastic fluid over a horizontal circular 

cylinder in a stream flowing vertically upwards is numerically studied for both cases of heated and  

cooled cylinders. The governing partial differential equations are transformed into dimensionless forms

using an appropriate transformation and then solved numerically using the Keller-box method.  The 

comparison between the solutions obtained and those for a Newtonian fluid is found to be very good. 

Effects of the mixed convection and elasticity parameters on the skin friction and heat transfer 

coefficients for a fluid having the Prandtl number equal to one are also discussed. It is found that for 

some values of the viscoelastic parameter and some negative values of the mixed convection parameter 

(opposing flow) the boundary layer separates from the cylinder. Heating the cylinder delays separation 

and can, if the cylinder is warm enough, suppress the separation completely. Similar to the case of a 

Newtonian fluid, cooling the cylinder brings the separation point nearer to the lower stagnation point. 

However, for a sufficiently cold cylinder there will not be a boundary layer.

Keywords:  Viscoelastic fluid; Boundary layer; Mixed convection; Circular cylinder; Numerical method

1. Introduction

There are many fluids whose behaviour cannot be described by the classical Navier-Stokes and 

boundary layer equations.  The homogeneous and incompressible second grade fluid is one of the many 

models that have been proposed to describe the non-Newtonian behaviour of such fluids (see Kumari et 

al. [1]). Mechanics of non-linear fluids present a special challenge to researchers due to its many 
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practical applications, for example, in the design of thrust bearings and radial diffusers, drag reduction, 

transpiration cooling and thermal oil recovery, to mention just a few. One of the simplest ways in which 

the viscoelastic fluids have been classified is the methodology proposed by Rivlin and Ericksen [2] and 

Truesdell and Noll [3], who presented constitutive relations for the stress tensor T as a function of the 

symmetric part of the velocity gradient D , and its higher (total) derivatives (see Massoudi [4]). The 

boundary layer theory for second-grade fluids has been developed by Oldroyd [5], Beard and Walters 

[6] and Rajagopal et al. [7]. However, the boundary layer equations are an order higher than those for 

the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the 

solution of these equations completely. Therefore, we need a boundary condition in addition to the usual 

adherence boundary conditions. Rajagopal [8,9] and Rajagopal and Kaloni [10] have discussed this 

question in detail. Garg and Rajagopal [11,12] studied the flow of a fluid of second grade near the 

stagnation point of a semi-infinite wall by augmenting the boundary condition at infinity. It has been 

shown that their results agree well with the results of Rajeswari and Rathna [13] based on the series 

expansion for small values of the viscoelastic parameter , which multiplies the highest-order spatial 

derivative in their equation. The advantage of augmenting the boundary conditions over the perturbation 

approach is that the analysis is valid even for large values of the parameter   and, as shown by Garg 

and Rajagopal [11], significant deviations from the Newtonian behaviour are possible for even 

moderately large values of  . The augmenting of the boundary condition at infinity has also been used 

by Kumari et al. [1] for the steady non-similar mixed convection boundary layer flow of a viscoelastic 

fluid over a permeable vertical wedge, by Ariel [14] for the two-dimensional stagnation point flow of a 

second grade fluid, by Garg [15] for the flow of an incompressible fluid of second grade past a wedge 

with suction at the surface and by Cortell [16] for the flow and heat transfer of a second grade fluid past 

a stretching sheet. Very recently, Hayat and Sajid [17] presented an analytic solution using the 

homotopy analysis method (HAM) for the flow and heat transfer of a second grade fluid over a radially 

stretching sheet. Also, Mushtaq et al. [18] studied the effects of thermal buoyancy on flow of a second 

grade fluid along a vertical, continuous stretching sheet of which the velocity and temperature 

distributions are assumed to vary according to a power-law form. The governing partial differential 

equations are non-similar and they were solved using (1) the series expansion method together with the 

Shanks transformation, (2) the local non-similarity method with second level of truncation and (3) the 

Keller-box method for some values of the mixed convection parameter. However, the authors have not 

mentioned whether they have used the extra boundary condition at infinity or not.

     In this paper, the steady non-similar mixed convection boundary layer flow of a viscoelastic fluid 

over a horizontal circular cylinder is considered. The coupled nonlinear partial differential equations 
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governing the flow have been solved numerically using a very efficient finite-difference scheme, known 

as the Keller-box method, which is described in the book by Cebeci and Bradshaw [19] after 

augmenting the boundary condition at infinity. The effects of the mixed convection and viscoelastic 

parameters on the skin friction and heat transfer around the cylinder are studied. The effects of these 

parameters on the velocity and temperature profiles near the lower stagnation point of the cylinder are 

presented here only for the Prandtl number equal to one, although they can be obtained for other values 

of the Prandtl number, as well. The particular cases of the present results for a viscous (Newtonian) fluid 

have been compared with those of Merkin [20] and Nazar et al. [21]. The results have also been 

compared with those of Hiemenz [22] and Eckert [23] for a viscous fluid and with those of Ariel [14] for 

a viscoelastic fluid when the buoyancy forces are absent. It is shown that the agreement between all 

these results is very good. We wish also to mention to this end that to our best knowledge this classical 

very important problem has not been studied before for a viscoelastic fluid so that the results are new for 

these fluids.

2. Basic equations

     The problem that we will study in this paper is the steady mixed convection boundary layer flow past 

an isothermal horizontal circular cylinder of radius a  placed in a viscoelastic fluid. Figure 1 illustrates 

the geometry of the problem and the corresponding coordinate system. It is assumed that the constant 

temperature of the surface of the cylinder is wT , and that of the ambient fluid is T , where 

 TTw corresponds to a heated cylinder (assisting flow) and  TTw corresponds to a cooled cylinder 

(opposing flow), respectively. It is also assumes that the viscous dissipation is neglected. Further, 

following Merkin [20], 

Fig. 1. Physical model and coordinate system.
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we assume that the velocity of the free stream is U)2/1( . Under these assumptions along with the 

Boussinesq approximation, the boundary layer equations can be written as follows, see Garg and 

Rajagopal [12] and Mushtaq et al. [18],

Continuity equation
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subject to the boundary conditions  
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where  x  and y  are the Cartesian coordinates measured along the surface of the cylinder starting from 

the lower stagnation point of the cylinder and y  is the coordinate measured normal to the surface of the 

cylinder, u  and v  are the velocity components along the x  and y axes, )(xu e is the velocity outside 

the boundary layer, T  is the fluid temperature, g  is the acceleration due to gravity 0k  is the 

viscoelasticity and  ,, and   are the thermal diffusivity, thermal expansion coefficient, dynamic 

viscosity and density of the viscoelastic fluid.

     We introduce now the following non-dimensional variables
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(5)

where Re = U∞a/v is the Reynolds number. Substituting (5) into Eqs. (1) – (3), we get the following non-

dimensional equations
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subject to the boundary conditions (4), which become
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where Pr  is the Prandtl number, K  is the viscoelastic parameter and   is the mixed convection 

parameter, which are defined as 
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with 23 /)(  aTTgGr w   being the Grashof number. It should be mentioned that 0

corresponds to assisting flow (heated cylinder), 0  corresponds to opposing flow (cooled cylinder) 

and 0 corresponds to the forced convection flow, respectively.

3. Solution

     To solve Eqs. (6)-(8) with the boundary conditions (9), we follow Merkin [20] and assume that 

xxue sin)(  . Thus, we look for a solution of these equations of the following form

                                   ),(),,( yxyxfx                                                             (11)
where   is the stream function defined as yu  /  and  xv  / . Substituting (11) into Eqs. 

(7) and (8), we obtain
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subject to the boundary conditions
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It is worth mentioning that when 0K , Eqs. (12) and (13) reduce to the equations governing the mixed 

convection boundary layer flow of a viscous and incompressible (Newtonian)) fluid studied by Merkin 

[20]. 

     At the lower stagnation point of the cylinder, 0x , Eqs. (12) and (13) reduce to the following 

ordinary differential equations
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where primes denote the differentiation with respect to y . 

     The physical quantities of principal interest in this problem are the skin friction coefficient fC  and 

heat transfer coefficient wQ . We define these coefficients in non-dimensional form as
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where w  and wq are the skin friction and heat flux from the surface of the cylinder, which are given by
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k  being the thermal conductivity of the viscoelastic fluid.  Using (5) and (11), we obtain
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     For small values of the viscoelastic parameter )1(K , we look for a solution of Eqs. (15) and (16) 

subject to the boundary conditions (17) in series of the form
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where the functions )(yfi  and )(yi  ( 2,1,0i ) are given by the following three sets of equations with 

the corresponding boundary conditions
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     Thus, the reduced skin friction and heat transfer from the surface of the cylinder are given by
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for 1K .                                                         
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4. Results and discussion

     The systems of equations (12-14) and (22-24) were solved numerically for some values of the mixed 

convection parameter  and viscoelastic parameter K  using the Keller-box method, which is described 

in the book by Cebeci and Bradshaw [19]. All three cases of the assisting ( 0 ) flow, opposing 

( 0 ) flow and forced convection flow ( 0 ) are considered. In order to save space we present here 

results only the case when the Prandtl number Pr  is one. The value of 10   at infinity with the 

step size of 02.0  and 02.0x  has been used for the computation. The iterations were continued 

until an accuracy of 10-6 was achieved.

     The comparison of the present results for the skin friction coefficient fC  and the heat transfer from 

the cylinder wQ with those of Merkin [20] and Nazar et al. [21] for a Newtonian fluid ( 0K ) is shown 

in Figs. 2 and 3. The comparison shows that the numerical solutions obtained by the present authors are 

in very good agreement with those of Merkin [20] and Nazar et al. [21]. We are, therefore, confident 

that the present results are very accurate.  The trend exhibited by the curves is consistent with the 

expected effect of favourable pressure gradient. A positive mixed convection or buoyancy force 

parameter ( 0 ) induces a favourable pressure gradient that enhances the fluid motion, which in turn 

increases the skin friction coefficient fC  and hence the local heat transfer coefficient wQ also increases

and the heat transfer from the cylinder is increased with   (see Fig. 3).   

     The variation of fC  and wQ  with x  for a viscoelastic fluid ( 0K ) is shown in Figs. 4 to 7 at 

different positions x  at the surface of the cylinder and some values of  when 1and2.0K  and 

1Pr  . Numerical values of fC  and wQ  are also given in Tables 1 to 4.  It is found that both skin 

friction fC and heat transfer wQ coefficients decrease as K  is increased. A similar trend has been 

observed by Gard and Rajagopal [12] for the problem of forced convection flow of a viscoelastic fluid 

past a wedge and by Kumari et al. [1] for the problem of mixed convection flow of a viscoelastic fluid  

past a vertical wedge. This can be attributed to the thickening of momentum and thermal boundary 

layers as K  increases. Kumari et al. [1] have explained that the increase in the boundary layer thickness 

with K  can be attributed to tensile stress in the boundary layer, which cause an axial contraction and 

hence the thickening of the boundary layer in the transverse direction. We can also see from Figs. 4 to 7 

and tables 1 to 4 that, as it is expected, the boundary-layer separates from the cylinder for some negative 

values of   (cooling cylinder) and also for some positive values of   (heated cylinder). On the other 

hand, the results show that, as for the case of a Newtonian fluid, increasing  delays separation of the 
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boundary layer from the cylinder and that separation can be suppressed completely in the range 

 x0 for sufficiently large values of 0 . In addition, Figs. 4 to 7 and Tables 1 to 4 show that

there is a value of )(Kc  , which depends on K , below which a boundary layer solution is not 

possible. As it was explained by Merkin [20] for the case of a Newtonian fluid ( 0K ), the reason is 

that for 0  the cylinder is cooled and the natural convection boundary layer would start at the top 

stagnation point of the cylinder ( x ) and for sufficiently small   there comes a point where the flow 

of the stream upwards cannot overcome the tendency of the fluid next to the cylinder to move 

downwards under the action of the buoyancy forces. 

     Using the boundary conditions (14) and the fact that 0)/( 0
22  yyf  at sxx  , we get from Eq. 

(12), see Merkin [20],

                                                          0sin)cos(
0

3

3














xx
y

f
x

y

s                                                (26)

Though 0)/( 0
22  yyf  at sxx  , the streamwise velocity component 0/  yf  near 0y  and 

so   0/ 0
33  yyf  at sxx  . From (26) it means that 0sin)cos(  xx , which cannot hold in 

01800  x  for  1  and any value of )0(K .

     The numerical solutions indicate that the value of )(Kc  which first gives no separation lies in the 

ranges 89.088.0  c  for 0K  (Newtonian fluid), 77.576.5  c  for 2.0K  and 

09.508.5  c  for 1K , respectively. We notice that the value of )(Kc  decreases with the increase 

of K . Thus, for a viscoelastic fluid ( 0K ), the value of )(Kc  for which separation of the boundary 

first takes place is much lower than for a Newtonian fluid ( 0K ). In other words, the separation of the 

boundary layer for a viscoelastic fluid is less delayed in comparison with that of a Newtonian fluid. 

     The variation of the boundary layer separation point sx  with   is shown in Figs. 8 for 0K

(Newtonian fluid), 2.0K  and 1K  when 1Pr  . It can be seen from this figure that )(Kc

increases with increase in the value of K .

     Further, Table 5 presents some values of the reduced skin friction )0(''f  and heat flux at the surface 

of the cylinder )0('  given by the series (25) for small values of the viscoelastic parameter K  ( 1  ) 

without using the extra boundary condition 0)('' f . The values obtained by direct numerical 

integration of Eqs. (15) and (16) using the boundary conditions (17) with the extra boundary condition 

0)('' f  are also included in Table 5. The classical results reported by Hiemenz [22] and Eckert [23] 
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for 0K  (Newtonian fluid) and 0  (forced convection flow) are also included in this Table. In 

addition, the results reported by Ariel [14] for a viscoelastic fluid ( 0K ) obtained using the direct 

numerical solution of Eqs. (15) and (16) with the boundary conditions (17) when 0  (forced 

convection flow) and the series solutions for small values of K  ( )1  are included in Table 5. In all 

cases he results are found to be in very good agreement. Further, it is noticed that the results based on 

the series expansion agree well with the exact numerical solution of Eqs. (15) and (16). Therefore, the 

advantage of using the extra boundary condition 0)('' f  over the series expansion is that the 

analysis is valid even for large values of the parameter K . Garg and Rajagopal [11] have shown that 

significant deviations from the Newtonian behaviour are possible for even moderately large values of 

K .

     Finally, Figs. 9 and 10 illustrate the velocity and temperature profiles at the lower stagnation point of 

the cylinder against y  for several values of the parameter K  when 1  (assisting flow) and 1

(opposing flow), respectively, and 1Pr  . These figures show how the viscoelastic parameter K  affects 

the fluid velocity and temperature profiles. Thus, Figs. 9 show that the velocity profiles decrease when 

K  is increased and that the values of these profiles are lower for a viscoelastic fluid than for a 

Newtonian fluid ( 0K ). Therefore, the thickness of the velocity boundary layer for a viscoelastic fluid 

is higher than for a Newtonian fluid.  Further, it is seen from Figs. 7 that the velocity profiles are lower 

for the case of the assisting flow ( 1 ) than those for an opposing flow ( 1 ), respectively. The 

reverse trend is observed for the temperature profiles, which are shown in Fig. 10.

5. Conclusion

The steady mixed convection boundary layer flow of an incompressible viscoelastif fluid past an 

isothermal horizontal circular cylinder has been investigated numerically. The governing boundary layer 

equations are transformed into a non-dimensional form and the resulting nonlinear system of partial 

differential equations is solved numerically using the Keller-box method. Both the cases when the mixed 

convection parameter 0  (  TTw ) heated cylinder and 0  (  TTw ) cooled cylinder are 

considered. It is found that for a heated cylinder ( 0 ) the separation of the boundary layer is delayed 

and that there is a value of )(Kc   for which the boundary layer does not separate at all. The value 

of )(Kc  increases with the increase of the viscoelastic parameter K . On the other hand, for a cooler 

cylinder ( 0 ), the buoyancy forces also retard the fluid and therefore the separation point is brought 

nearer to the lower stagnation point. A value of )0()(  Ks has been found for which the boundary 

layer separates at this point. It is found that this value of )(Ks  decreases as the parameter K  increases. 
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For values of )(Ks   a boundary layer solution of Eqs. (12) and (13) subject to the boundary 

conditions (14) is not possible. The results of Merkin [20] for viscous fluids can be recovered easily 

when the viscoelastic parameter 0K .
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Table 1. Values of the local skin friction coefficient Cf  for K = 0.2, Pr = 1 and various values of λ.

λx

-1.7 -1.2 -1 -0.2 0 1 5.76 5.77 6 8 10

0º 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

10º 0.007813 0.075842 0.095065 0.169066 0.188567 0.261702 0.486962 0.515861 0.474144 0.614049 0.694980

20º 0.137463 0.181342 0.327172 0.365709 0.512363 1.010971 1.020135 1.041244 1.215724 1.376883
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40º 0.257160 0.562992 0.624907 0.908811 1.933590 1.949691 1.991247 2.334419 2.651017

50º 0.630664 0.713081 1.074251 2.318635 2.354904 2.406207 2.829577 3.219836

60º 0.650538 0.753463 1.194724 2.689959 2.676071 2.735755 3.227941 3.681247

70º 0.739873 1.265578 2.973755 2.978261 3.074396 3.610686 4.129578

80º 1.284609 3.221288 3.217793 3.294293 3.924041 4.502841

90º 3.384216 3.390985 3.474664 4.162894 4.794822

100º - 3.495771 3.585573 4.323578 5.000657
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Table 2.  Values of the local heat transfer coefficient wQ  for K = 0.2, Pr = 1 and various values of λ.

λ
x

-1.7 -1.2 -1 -0.2 0 1 5.76 5.77 6 8 10

0º 0.412206 0.473390 0.489810 0.538464 0.548077 0.587800 0.699263 0.699432 0.703288 0.733679 0.759703

10º 0.402968 0.469605 0.486704 0.536168 0.545829 0.585939 0.698097 0.698126 0.702238 0.732440 0.758508

20º 0.457817 0.476582 0.529237 0.539012 0.580321 0.694121 0.694206 0.698099 0.728737 0.754924

30º 0.437275 0.459559 0.517571 0.527573 0.570973 0.687364 0.687711 0.691649 0.722593 0.748980

40º 0.433531 0.502232 0.514416 0.560355 0.678861 0.678697 0.682698 0.714061 0.740720

50º 0.480697 0.494088 0.544255 0.668180 0.667245 0.671325 0.703209 0.730204

60º 0.453277 0.468461 0.524541 0.654015 0.654937 0.659099 0.691531 0.718873

70º 0.436886 0.501286 0.639052 0.639146 0.641727 0.676521 0.704287

80º 0.474589 0.620440 0.621264 0.625642 0.659477 0.687687

90º 0.601702 0.601440 0.605935 0.640515 0.669168

100º 0.579831 0.584442 0.619747 0.648816

Table 3. Values of the local skin friction coefficient Cf  for K = 1, Pr = 1 and various values of λ.

λ
x

-1.5 -1.2 -1 -0.5 0 1 5.08 5.09 6 8 10

0º 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

10º 0.019289 0.052169 0.069744 0.103117 0.134492 0.173422 0.333750 0.321618 0.353994 0.398644 0.454355

20º 0.022726 0.093682 0.129311 0.199976 0.256058 0.341456 0.631982 0.637747 0.689319 0.791393 0.877552

30º 0.117588 0.173691 0.284381 0.373377 0.509827 0.920633 0.943049 1.013946 0.791393 1.313246

40º 0.108808 0.194033 0.346535 0.468475 0.663637 1.222005 1.232478 1.322962 0.791393 1.707582

50º 0.177420 0.389534 0.547616 0.785869 1.501428 1.501417 1.611837 1.878135 2.101442

60º - 0.401773 0.597900 0.889338 1.732533 1.722555 1.886163 2.142536 2.446388

70º 0.620877 0.976946 1.957941 1.941830 2.122024 2.476852 2.761005

80º 0.611955 1.030342 2.134117 2.130549 2.327203 2.687289 3.057205

90º 1.063992 2.281085 2.286574 2.499462 2.938649 3.311983

100º 2.408461 2.637173 3.085509 3.511960
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Fig. 4. Variation of the local skin friction coefficient Cf  for K = 0.2, Pr = 1 
and various values of λ.
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Fig. 5. Variation of the local heat transfer coefficient wQ  for K = 0.2, 

Pr = 1 and various values of λ.
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Fig. 6. Variation of the local skin friction coefficient Cf  for K = 1, Pr = 1 
and various values of λ.
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Fig. 7. Variation of the local heat transfer coefficient wQ  for 1K , Pr = 1 

and various values of λ.
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Table 4. Values of the local heat transfer coefficient Cf  for K = 1, Pr = 1 and various values of λ.

λ
x

-1.5 -1.2 -1 -0.5 0 1 5.08 5.09 6 8 10

0º 0.403657 0.435250 0.450362 0.478927 0.500411 0.533005 0.611397 0.611539 0.623797 0.647291 0.667322

10º 0.398706 0.432235 0.447818 0.477076 0.498772 0.531797 0.610347 0.610566 0.622811 0.646396 0.666414

20º 0.379615 0.423299 0.440389 0.471472 0.494198 0.527670 0.607568 0.607647 0.620005 0.643694 0.663890

30º 0.406303 0.427511 0.461985 0.486116 0.521390 0.602534 0.602808 0.615401 0.643694 0.659477

40º 0.379684 0.407854 0.449397 0.475361 0.512723 0.595474 0.596092 0.609036 0.643694 0.653694

50º 0.377859 0.431466 0.460556 0.500467 0.587355 0.587558 0.600965 0.625078 0.645909

60º - 0.408077 0.443178 0.486895 0.577682 0.578386 0.590849 0.617239 0.637040

70º 0.422237 0.471064 0.565340 0.566621 0.579524 0.604450 0.626760

80º 0.395685 0.453044 0.552672 0.553304 0.566740 0.594088 0.614413

90º 0.432927 0.537272 0.538557 0.552605 0.577981 0.600648

100º 0.522515 0.537234 0.565413 0.586427

Table 5. Values of )0(''f  and  )0('  for various values of K  when   0, 1 and – 1  for 1Pr  .

λ = 0 λ = 1 λ = –1 
Series Numerical Series Numerical Series NumericalK
)0(''f )0(' )0(''f )0(' )0(''f )0(' )0(''f )0(' )0(''f )0(' )0(''f )0('

0 1.232632
1.232588*

0.570519
0.5700**

1.736738 0.615601 0.651118 0.509534

0.01 1.222693 0.569511 1.221447 0.569130 1.718360 0.614079 1.718552 0.613861 0.649610 0.509081 0.643624 0.505705
0.1 1.135982

1.137088‡
0.556038 1.134172

1.134114‡
0.558175 1.558738 0.591337 1.580229 0.600089 0.621103 0.503818 0.601190 0.497588

0.2 1.045412
1.078392‡

0.531793 1.058180
1.058131‡

0.548077 1.393405 0.546974 1.464141 0.587800 0.589979 0.495482 0.562568 0.489810

0.3 0.960922 0.497784 0.996886 0.539500 1.240729 0.482513 1.372892 0.577594 0.559437 0.484524 0.530390 0.483012
0.4 0.882512 0.454010 0.945907 0.532036 1.100711 0.397954 1.298364 0.568851 0.529474 0.470946 0.502993 0.476970
0.5 0.810182 0.400472 0.902535 0.525424 0.973349 0.293296 1.235808 0.561198 0.500093 0.454747 0.479271 0.471533
0.6 0.743933 0.337171 0.864985 0.519487 0.858645 0.168540 1.182212 0.554389 0.471291 0.435927 0.458452 0.466588
0.7 0.683763 0.264105 0.832019 0.514101 0.756598 0.023685 1.135550 0.548256 0.443071 0.414486 0.439978 0.462056
0.8 0.629673 0.181274 0.802749 0.509171 0.666997 -0.141268 1.094396 0.542677 0.415431 0.390425 0.423434 0.457872
0.9 0.581664 0.088680 0.776511 0.504626 0.590210 -0.326320 1.057711 0.537559 0.388372 0.363743 0.408500 0.453987

1 0.752803
0.752766‡

0.500411 1.024719 0.532833 0.394929 0.450362

2 0.596874
0.596769‡

0.469671 0.810695 0.498821 0.304357 0.423419

3 0.510914
0.510703‡   

0.449922 0.694301   0.477261 0.254015   0.405786

4 0.454295
0.453968‡   

0.435499 0.617991   0.461601 0.221003   0.392827

5 0.413321
0.412885‡   

0.424228 0.562865   0.449394 0.197308   0.382679

8 0.336042
0.335335‡   

0.400685 0.458930   0.423929 0.153389   0.361509

10 0.303669
0.302828‡   

0.389777 0.415342   0.412127 0.135426   0.351747

*Hiemenz [22] ; **Eckert [23] ;  ‡Ariel [14]
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Fig. 8. Variation of the boundary layer separation point xs with   for
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:1Pr   a) 2.0K  and b) 1K .
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Fig. 9.Velocity profiles at the lower stagnation point for Pr = 1 and various value of K;
a) 1  (assisting flow) and b) 1  (opposing flow).
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Fig. 10. Temperature profiles at the lower stagnation point for Pr = 1 and various 
value of K:  a) 1  (assisting flow) and b) 1  (opposing flow).
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