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Abstract An analysis is made for the steady
mixed convection boundary layer flow near the
two-dimensional stagnation-point flow of an incom-
pressible viscous fluid over a stretching vertical
sheet in its own plane. The stretching velocity and
the surface temperature are assumed to vary lin-
early with the distance from the stagnation-point.
Two equal and opposite forces are impulsively
applied along the x-axis so that the wall is stretched,
keeping the origin fixed in a viscous fluid of con-
stant ambient temperature. The transformed ordi-
nary differential equations are solved numerically
for some values of the parameters involved using
a very efficient numerical scheme known as the
Keller-box method. The features of the flow and
heat transfer characteristics are analyzed and dis-
cussed in detail. Both cases of assisting and oppos-
ing flows are considered. It is observed that, for
assisting flow, both the skin friction coefficient and
the local Nusselt number increase as the buoyancy
parameter increases, while only the local Nusselt
number increases but the skin friction coefficient
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decreases as the Prandtl number increases. For
opposing flow, both the skin friction coefficient and
the local Nusselt number decrease as the buoy-
ancy parameter increases, but both increase as Pr
increases. Comparison with known results is
excellent.
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Fluid mechanics

Nomenclature
a, b, c constants
Cf skin friction coefficient
f dimensionless stream function
g acceleration due to gravity

(ms−2)

Grx local Grashof number
k thermal conductivity (Wm−1K)
Nux local Nusselt number
Pr Prandtl number
qw heat transfer from the stretching

surface (Wm−2)

Rex local Reynolds number
T fluid temperature (K)
Tw(x) temperature of the stretching

surface (K)
T∞ ambient temperature (K)
u, v velocity components along x and

y directions, respectively (m s−1)

ue (x) velocity of external flow (ms−1)
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uw(x) velocity of the stretching surface
(ms−1)

x, y Cartesian coordinates along the
surface and normal to it, respec-
tively (m)

Greek letters
α thermal diffusivity (m2s−1)

β thermal expansion coefficient
(K−1)

η pseudo-similarity variable
θ dimensionless temperature
λ buoyancy parameter
μ dynamic viscosity (kgm−1s−1)

ν kinematic viscosity (m2s−1)

ρ fluid density (kgm−3)

τw skin friction from the surface of
the sheet (Pa)

ψ stream function (m2s−1)

Superscript
′ differentiation with respect to η

Subscripts
w condition at the stretching sheet
∞ condition at infinity

1. Introduction

Flow and heat transfer of a viscous and incom-
pressible fluid over a continuously moving surface
through a quiescent fluid has attracted many inves-
tigations during the past several decades. This is
because of its wide applications in many practical
applications in manufacturing processes, such as
extrusion of polymers, continuous casting, cooling
of metallic plates, glass fiber production, hot roll-
ing, paper production, wire drawing, aerodynamic
extrusion of plastic sheets, crystal growing, etc. The
study of heat transfer and flow field is necessary
for determining the quality of the final products of
such processes as explained by Karwe and Jaluria
[1]. The flow induced by a semi-infinite horizontally
moving wall in an ambient fluid was first investi-
gated by Sakiadis [2]. Later, Crane [3] studied the
flow over a linearly stretching sheet in an ambient
fluid and gave a similarity solution in closed analyt-
ical form for the steady two-dimensional problem.

Many authors such as Carragher and Crane [4],
Elbashbeshy and Bazid [5], Gupta and Gupta [6],
Magyari and Keller [7, 8], Magyari et al. [9], Liao
and Pop [10], and Nazar et al. [11] investigated this
problem by taking into account different aspects,
such as uniform heat flux, permeability of the sur-
face, flow and heat transfer unsteadiness, etc. Other
physical features such as magnetic field, viscoelas-
ticity of the fluid, suction and three-dimensional
flow have been considered by Pop [12], Andersson
[13], Takhar and Nath [14], and Nazar et al. [15].
However, for a stretching vertical plate there are
much less work published. We mention to this class
of problems those by Chen [16, 17], Lin and Chen
[18], Ali and Al-Yousef [19, 20], Ali [21, 22], and
Abo-Eldahab [23]. It is worth mentioning that the
unsteady boundary layer flow and heat transfer
over a stretching vertical sheet has been studied
only by Ishak et al. [24] in a very recent paper.

Recently, Mahapatra and Gupta [25, 26] studied
the heat transfer in the steady two-dimensional
stagnation-point flow of a viscous and incompress-
ible Newtonian and viscoelastic fluids over a hor-
izontal stretching sheet considering the case of
constant surface temperature.

In this paper, the steady two-dimensional stag-
nation-point flow of a viscous and incompressible
fluid over a stretching vertical sheet in its own plane
is investigated theoretically. It is assumed that the
velocity and temperature of the stretching sheet is
proportional to the distance from the stagnation-
point. To our best knowledge this problem has not
been studied before.

2. Mathematical model

Consider the steady, two-dimensional flow of a vis-
cous and incompressible fluid near the stagnation
point on a stretching vertical surface placed in the
plane y = 0 of a Cartesian system of coordinates
Oxy (y=0)with the x-axis along the sheet as shown
in Fig. 1. The fluid occupies the half plane (y > 0).
It is assumed that the velocity uw(x) and the tem-
perature Tw(x) of the stretching sheet is propor-
tional to the distance x from the stagnation-point,
where Tw(x) > T∞ with T∞ being the uniform
temperature of the ambient fluid. The velocity of
the flow external to the boundary layer is ue(x).
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(a) (b)

Fig. 1 Physical model and coordinate system

Under these assumptions along with the Bous-
sinesq and boundary layer approximations, the sys-
tem of equations, which model the boundary layer
flow are given by

∂u
∂x

+ ∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

= ue
due

dx
+ ν

∂2u
∂y2 ± gβ(T − T∞) , (2)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 , (3)

where u and v are the velocity components along
x and y axes, respectively, T is the fluid temper-
ature, g is the gravity acceleration, α, ν and β

are the thermal diffusivity, kinematic viscosity and
thermal expansion coefficient, respectively, and the
“+” and “−” signs in Eq. 2 correspond to assist-
ing buoyant flow and to opposing buoyant flow,
respectively. We shall assume that the boundary
conditions of Eqs. 1–3 are

v = 0, u = uw(x) = cx,
T = Tw(x) = T∞ + bx at y = 0,
u = ue(x) = ax, T = T∞ as y → ∞,

(4)

where a, b, and c are positive constants.
We look for a similarity solution of Eqs. 1–3 of

the form

ψ = (cν)1/2 xf (η) ,

θ (η) = (T − T∞) / (Tw − T∞) ,

η = (c/ν)1/2 y, (5)

where ψ is the stream function which is defined in
the usual form as u = ∂ψ/∂y and v = −∂ψ/∂x.

Substituting variables (5) into Eqs. 2 and 3, we get
the following ordinary differential equations

f ′′′ + ff ′′ − f ′2 + a2

c2 ± λθ = 0, (6)

1
Pr
θ ′′ + fθ ′ − f ′θ = 0, (7)

subject to the boundary conditions (4) which
become
f (0) = 0, f ′(0) = 1, θ(0) = 1,

f ′(∞) = a
c

, θ(∞) = 0.
(8)

Here primes denote differentiation with respect to
η, Pr is the Prandtl number and the constant λ(� 0)
is the buoyancy parameter defined as

λ = Grx

Re2
x

, (9)

with Grx = gβ (Tw−T∞) x3/ν2 is the local Grashof
number and Rex = uw x/ν is the local Reynolds
number. When λ = 0 and a/c = 1, the solution of
Eq. 6 subject to boundary condition (8) is given by

f (η) = η. (10)

The physical quantities of interest are the skin
friction coefficient and the local Nusselt number,
which are defined as

Cf = τw

ρ u2
w

, Nux = x qw

k (Tw − T∞)
, (11)

where the skin frictionτw and the heat transfer from
the plate qw are given by

τw = μ

(
∂u
∂y

)
y=0

, qw = −k
(
∂T
∂y

)
y=0

, (12)

with μ and k being the dynamic viscosity and
thermal conductivity, respectively. Using the
non-dimensional variables (5), we get

Cf Re1/2
x = f ′′(0), Nux/Re1/2

x = −θ ′(0). (13)
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Fig. 2 Variation with λ of the skin friction coefficient for some values of a/c when Pr=1

3. Results and discussion

Equations (6) and (7) subject to boundary condi-
tions (8) have been solved numerically using the
Keller-box method, which is described in the book
by Cebeci and Bradshaw [27]. The results are given
to carry out a parametric study showing influences
of several of these non-dimensional parameters.
For the validation of the numerical method used in
this study, the case when the buoyancy term λ θ in
Eq. 6 is absent has been also considered and com-
pared with the results reported by Mahapatra and
Gupta [25] and Nazar et al. [11]. This comparison is
shown in Table 1. It is seen that the present values
of Cf Re1/2

x are in very good agreement with those
obtained by Mahapatra and Gupta [25] and Nazar
et al. [11]. Therefore, it can be concluded that the
present numerical method can be used with great

Table 1 Values of Cf Re1/2
x for different values of a/c when

the buoyancy force term λ θ in Eq. 6 is absent

a/c Mahapatra and Nazar Present
Gupta [25] et al. [11]

0.1 −0.9694 −0.9694 −0.9694
0.2 −0.9181 −0.9181 −0.9181
0.5 −0.6673 −0.6673 −0.6673
2 2.0175 2.0176 2.0175
3 4.7293 4.7296 4.7294

confidence to study the problem discussed in this
paper.

The skin friction coefficient, local Nusselt num-
ber, velocity and temperature fields are shown in
Figs. 2–11. Figures 2 and 4 suggest that an assist-
ing buoyancy flow produces an increase in the skin
friction coefficient, while an opposing buoyant flow
gives rise to a decrease in the skin friction coeffi-
cient. This is because, the fluid velocity increases
when the buoyancy force increases, and hence
increases the wall shear stress, which increases the
skin friction coefficient. The values of the skin
friction coefficient and the local Nusselt number
for various Pr when a/c = 1 and λ = 1 are tab-
ulated in Table 2, for both cases of assisting and
opposing flows. It is worth mentioning that the

Table 2 Values of Cf Re1/2
x and Nux/Re1/2

x for a/c = 1, λ =
1 and various Pr

Pr Buoyancy assisting flow Buoyancy opposing flow

Cf Re1/2
x Nux/Re1/2

x Cf Re1/2
x Nux/Re1/2

x

0.72 0.3645 1.0931 −0.3852 1.0293
6.8 0.1804 3.2902 −0.1832 3.2466

20 0.1175 5.6230 −0.1183 5.5923
40 0.0873 7.9463 −0.0876 7.9227
60 0.0729 9.7327 −0.0731 9.7126
80 0.0640 11.2413 −0.0642 11.2235

100 0.0578 12.5726 −0.0579 12.5564
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Fig. 3 Variation with λ of the local Nusselt number for some values of a/c when Pr = 1

Fig. 4 Variation with λ of the skin friction coefficient for some values of Pr when a/c = 1

values of Nux/Re1/2
x = −θ ′(0) are positive in all

cases discussed in this study. This follows from the
integral relationship Nux/Re1/2

x = −θ ′ (0) = 2Pr∫ ∞
0 f ′ (η)θ (η)dη, which is obtained from

Eqs. 7 and 8. Also, the effects of λ on the skin fric-
tion coefficient are found to be more significant for
fluids having smaller Pr since the viscosity is less
than the fluids with larger Pr. Figure 4 shows that all
curves intersect at a point where λ = 0; that is when

the buoyancy force is zero. This is because, Eqs. 6
and 7 are uncoupled when λ=0, in other words, the
solutions to the flow field are not affected by the
thermal field in which the buoyancy force is lack-
ing. Also in this case, the value of Cf Re1/2

x remains
constant, namely zero. This value agreed with the
exact solution (10), which implies f ′′ (η) = 0, for
all η. Moreover, for assisting flow, it can be seen
that Cf Re1/2

x decreases when Pr increases for a
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Fig. 5 Variation with λ of the local Nusselt number for some values of Pr when a/c = 1

Fig. 6 Velocity profiles for some values of a/c when Pr = 1 and λ = 1

fixed value of λ. This is because, when Pr increases,
the viscosity increases and slows down the flow,
hence reduces the surface shear stress, thus reduces
the skin friction coefficient Cf Re1/2

x . The opposite
trends can be observed for opposing flow.

In Fig. 5, it is observed that for a particular value
of Pr, the local Nusselt number is slightly increased
as the buoyancy parameter λ is increased, for the
case of assisting flow. The opposite trend occurs

for opposing flow. This is clear from the fact that
assisting buoyant flow produces a favorable pres-
sure gradient that enhances the momentum trans-
port, which in turn increases the surface heat trans-
fer rate. On the other hand, opposing buoyant flow
leads to an adverse pressure gradient, which slows
down the fluid motion, and hence gives rise to a
decrease in the local Nusselt number. In addition,
the effects of Pr can be examined, that is, increasing
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Fig. 7 Temperature profiles for some values of a/c when Pr = 1 and λ = 1

Fig. 8 Velocity profiles for some values of λ when Pr = 1 and a/c = 1

Pr enhances the rate of heat transfer since increas-
ing of Pr will cause the increasing of viscosity, then
reduces the thermal conductivity, and thus −θ ′(0)
increases.

The resulting profiles of dimensionless veloc-
ity f ′(η) and dimensionless temperature θ(η) are
shown in Figs. 6–11 for various values of a/c, λ,
and Pr. It is evident from Fig. 11 that an increase
in Pr results in a decrease in the thermal bound-

ary layer thickness, associated with an increase in
the wall temperature gradient, and hence produces
an increase in the surface heat transfer rate. For
both dimensionless temperature and velocity pro-
file, the effects of buoyancy force are found to be
more pronounced for a fluid with a small Pr. Thus,
fluid with smaller Pr is more susceptible to the
buoyancy force effects. From Fig. 6, it can be seen
that when a/c > 1, the flow has a boundary layer
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Fig. 9 Temperature profiles for some values of λ when Pr =1 and a/c = 1

Fig. 10 Velocity profiles for some values of Pr when λ = 1 and a/c = 1

structure and the thickness of the boundary layer
decreases with increase in a/c. According to Maha-
patra and Gupta [25], it can be explained as follows:
for a fixed value of c corresponding to the stretch-
ing of the surface, an increase in a in relation to c
(such that a/c > 1) implies an increase in strain-
ing motion near the stagnation region resulting in
increased acceleration of the external stream, and
this leads to thinning of the boundary layer with an

increase in a/c. Further, it is seen from Fig. 6 that
when a/c < 1, the flow has an inverted boundary
layer structure. It results from the fact that when
a/c < 1, the stretching velocity cx of the surface
exceeds the velocity ax of the external stream.

From Figs. 8–10, it is seen that for assisting flow,
the velocity increases at the beginning until it
achieves a certain value, then decreases until the
value becomes constant, that is unity, at the outside
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Fig. 11 Temperature profiles for some values of Pr when λ = 1 and a/c = 1

of the boundary layer. The effects of velocity are
found to be more pronounced for larger λ. This is
because, large value of λ produces large buoyancy
force which produces large kinetic energy. Then
the energy is used to overcome the resistant along
the flow. As a result, it decreases and becomes con-
stant far away from the surface. The opposite trend
occurs for opposing flow. From Figs. 7, 9, and 11,
it is observed that the temperature of the fluid de-
creases as the distance from the surface increases,
for both cases of assisting and opposing flow, for all
values of a/c, λ and Pr until it achieves a constant
value, namely zero. This is not surprising since the
fluid receives the heat from the surface and then
the heat energy is changed into other energy forms
such as kinetic energy.

4. Conclusions

The steady two-dimensional stagnation-point flow
of an incompressible fluid over a stretching verti-
cal sheet in its own plane has been analyzed in de-
tail. The problem is formulated in such a way that
the stretching velocity and the surface temperature
vary linearly with the distance from the stagna-
tion-point. From an analytical investigation of the

governing boundary layer equation, we have been
able to deduce solutions for the non-dimensional
velocity and temperature functions, skin friction
coefficient and local Nusselt number. For the case
of buoyancy force is absent (λ = 0), we have com-
pared our present results with those of Mahapatra
and Gupta [25], and Nazar et al. [11]. The agree-
ment between the results is excellent. We are,
therefore, confident that the present results are
very accurate. Effects of the buoyancy parameter λ
and Prandtl number Pr of the fluid on the flow and
heat transfer characteristics have been examined
and discussed in detail. It can be concluded that, for
assisting flow, both the skin friction coefficient and
the local Nusselt number increase as the parame-
ter λ increases, while only the local Nusselt number
increases but the skin friction coefficient decreases
as Pr increases. For opposing flow, both the skin
friction coefficient and the local Nusselt number
decrease as the buoyancy parameter increases, but
both are increase as Pr increases.
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