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Abstract Steady, two-dimensional mixed convection

boundary layer flow of an incompressible Al2O3–water

nanofluid along an inclined permeable plate in the presence

of transverse magnetic field has been examined numeri-

cally. The governing equations (Boussinesq approxima-

tion) with associated boundary condition are solved using

FEM for nanofluid containing spherical-shaped nanoparti-

cles having volume fraction ranging from 1 to 4 %. Static-

based model for calculating the effective thermal conduc-

tivity at 300 K, proposed by Leong et al. (J Nanopart Res

8:245–254, 2006) and Murshed et al. (Int J Therm Sci

47:560–568, 2008) has been implemented. Effect of vari-

ous pertinent parameters with different classical and

experimental models for effective dynamic viscosity is

discussed.

Keywords Nanofluid � Inclined plate �Mixed convection �
Static mechanism � FEM

Introduction

Nowadays, the heat transfer enhancement is one of the

most challenging problems in different industrial applica-

tions and engineering systems. Choi (1995) was the first

person to introduce fluids composed of nanometer-sized

particles dispersed in a base fluid which are called as

nanofluids and disclosed the various advantages of the

application of nanofluids, such as improved heat transfer,

minimal clogging, size reduction of the heat transfer sys-

tem, microchannel cooling, and miniaturization of systems

in that study.

The classical theoretical approach for the conductivity

measurement solid–fluid suspensions (Maxwell 1873;

Hamilton and Crosser 1962) could not justify the experi-

mental results in which the large enhancement of the

thermal conductivity in case of low concentrations of

nanoparticles. To overcome this limitations of classical

theory, the new mechanisms have been first proposed by

Wang et al. (2003) for the enhanced thermal transport in

case of nanofluids, such as particle motion, surface action,

and electro-kinetic effects. They suggested that nanoparti-

cle size and nanolayer thermal conductivity are important

parameters for enhancing the thermal conductivity of

nanofluids. Later on, Xuan and Li (2000) recommended

several possible mechanisms for enhanced thermal con-

ductivity of nanofluids, such as the increased surface area

of nanoparticles, particle–particle collisions and the dis-

persion of nanoparticles. Based on static mechanics, sev-

eral attempts have been made to formulate appropriate

effective thermal conductivity (Xue and Xu 2005; Leong

et al. 2006; Tillman and Hill 2007; Murshed et al. 2008).

Koo and Kleinstreuer (2004) stated that the effective

thermal conductivity is composed of the particle’s con-

ventional static part and a Brownian motion part. More-

over, the Brownian motion effect was found to become

more effective at higher temperature as observed

experimentally.

The electrically conducting fluid flow past a heated

surface under magnetic effects has attracted lot of

researchers due to its many engineering applications such

as in cooling of nuclear reactors, petroleum industries,
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MHD power generators, plasma studies etc. Abdelkhalek

(2006) investigated the effects of mass transfer on steady

two-dimensional laminar MHD mixed convection. Aydin

and Kaya (2009a) discussed the magnetic field effect on

about a permeable vertical flat plate. The combined effect

of inclination and magnetic field in mixed convection flow

has been discussed by Aydin and Kaya (2009b).

In case of nanofluid, Hamad (2011) investigated the

effect of magnetic field effect on natural convection flow of

a nanofluid over stretching sheet analytically. Later on,

many researchers discussed the effect of magnetic field on

different geometries with classical assumptions in the years

2011–2012. Recently, effect of nanofluid properties on

magnetohydrodynamic pump (MHD) has been investigated

by Shahidian et al. (2012). In their study, effect of thermal

conductivity based on nanolayer concept has been taken

into consideration for the case of Al2O3 nanofluid.

In the present chapter, we have simulated mixed con-

vection flow of nanofluid along an inclined plate, using the

static model introduced by Leong et al. (2006) and Mur-

shed et al. (2008) for thermal conductivity of nanofluids at

300 K. The effect of Brownian motion is assumed to be

neglected at this moderate temperature. Both classical and

experimental correlations for the viscosity of Al2O3–water

nanofluid are implemented. The objective of the present

chapter is to study the effect of magnetic field, nanoparticle

diameter, nanolayer conductivity to base fluid conductivity

ratio, inclination angle and nanoparticle volume fraction on

the steady boundary layer nanofluid flow and heat transfer

characteristics.

Mathematical model

In the present analysis, the steady, two-dimensional,

incompressible laminar boundary layer flow of a Al2O3–

water nanofluid past an inclined semi-infinite permeable

flat plate with an angle d has been taken. The flow is

considered in the direction of x axis along the inclined

flat plate whereas the y axis is taken normal to the plate.

The surface of the flat plate is maintained at a constant

temperature (Tw) higher than the constant temperature

(T1) of the ambient nanofluid. A magnetic field having

uniform strength B0 is applied in the y direction, per-

pendicular to the plate and viscous dissipation term is

ignored. Under the assumption of small magnetic Rey-

nolds number, the induced magnetic field is considered

to be zero. The thermal equilibrium and no slip have

also been assumed between nanoparticles and base fluid.

The geometry of the flow configuration is shown in

Fig. 1. The boundary layer and Boussinesq approxima-

tions are assumed to be valid. The basic equations for

nanofluids can be written as:

ou

ox
þ ov

oy
¼ 0; ð1Þ

u
ou

ox
þ v

ou

oy
¼ 1

qnf

�
lnf

o
2u

oy2
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�rnfB
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; ð3Þ

subject to the boundary conditions

x[ 0 y ¼ 0 T ¼ Tw u ¼ 0 v ¼ �Vw;

x ¼ 0 y[ 0 T ¼ T1 u ¼ u1;

y ! 1 T ¼ T1 u ¼ u1:

ð4Þ

Effective viscosity models

The three different viscosity models for nanofluids con-

taining alumina particles (Al2O3) are given below:

Model I (classical)

Model (I) attributed to Brinkman (1952) is as follows:

lnf

lf
¼ 1

ð1� /Þ2:5
: ð5Þ

Wang et al. (2003) experimentally observed that the

Al2O3–water mixture shows an increase of viscosity

between 20 and 30 % for 3 %vol. Al2O3 solutions as

compared to water alone.

Fig. 1 Physical model and coordinate system
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Model II

The experimental correlation for Al2O3–water (Model II) is

as follows (Wang et al. 2003):

lnf

lf
¼ 1þ 7:3/þ 123/2: ð6Þ

The Al2O3–water viscosity observed by Pak and Cho

(1998) was higher than that of water as compared to Wang

et al. (2003).

Model III

Pak and Cho (1998) correlation for the viscosity of Al2O3–

water nanofluid is as follows:

lnf

lf
¼ 1þ 39:11/þ 533:9/2: ð7Þ

The physical properties of the nanofluid are as Oztop and

Abu-Nada (2008) and Tiwari and Das (2007):

qnf ¼ ð1� /Þqf þ /qp;

ðqbÞnf ¼ ð1� /ÞðqbÞf þ /ðqbÞp;
ðqCpÞnf ¼ ð1� /ÞðqCpÞf þ /ðqCpÞp:

ð8Þ

Effective thermal conductivity model

The existing classical models (Maxwell 1873; Hamilton and

Crosser 1962) are found to be incapable to anticipate the

anomalously high thermal conductivity of nanofluids. This is

due to reason that classical models do not incorporate the

effects of particle size, the particle/liquid interfacial layer and

distribution which are considered as significant mechanisms

for enhanced thermal conductivity of nanofluids.

Effective thermal conductivity for spherical-shaped

nanoparticles can be incorporated from the following

expression (Leong et al. 2006; Murshed et al. 2008):

knf ¼
klr/ðkp � klrÞ½2c32 � c31 þ 1� þ ðkp þ 2klrÞc32½/c31ðklr � kf Þ þ kf �

c32ðkp þ 2klrÞ � ðkp � klrÞ/ðc32 þ c31 � 1Þ ;

ð9Þ

where, c1 ¼ 1þ ð2 � bh=dpÞ, c2 ¼ 1þ ðbh=dpÞ, bh is the

interfacial thickness at the surface. The interfacial layer

thermal conductivity can be represented as klr ¼ xkf ,

where x[ 1 is an empirical parameter (Leong et al. 2006;

Murshed et al. 2008). Thus, we get,

knf

kf
¼

x/ðkp � xkf Þ½2c32 � c31 þ 1� þ ðkp þ 2xkf Þc32½/c31ðx� 1Þ þ 1�
c32ðkp þ 2xkf Þ � ðkp � xkf Þ/ðc32 þ c31 � 1Þ ;

ð10Þ

Hashimoto et al. (1980) demonstrated the interfacial layer

thickness on the basis of electron density at interface,

which is given as bh ¼
ffiffiffiffiffiffi
2p

p
br, where br is a parameter

which quantifies interfacial boundary diffusioness and for

spherical particle its value is 1 nm.

Introducing the following non-dimensional variables:

n ¼ x
L
; wðx; yÞ ¼ ðmf u1xÞ1=2f ðn; gÞ;

g ¼ y u1
mf x

� �1=2
; hðgÞ ¼ T�T1

Tw�T1
;

ð11Þ

where wðx; yÞ represents free stream function that satisfies

the Cauchy–Riemann Equation with u ¼ ow
oy

and v ¼ � ow
ox
,

the velocity components can be reduced as:

u ¼ u1f 0; v ¼ � mf u1
x

� �1=2 1
2
f þ n of

on
� g

2
f 0

n o
: ð12Þ

The transformed momentum and energy equations (2) and

(3) can be written as:

1
ð1�/þ/qp=qf Þ
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lf
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1
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h00
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� �
;
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The transformed boundary conditions are:

f ðn; 0Þ þ 2n of

on
¼ fwn

1=2; f 0ðn; 0Þ ¼ 0; hðn; 0Þ ¼ 1;

f 0ðn;1Þ ¼ 1; hðn;1Þ ¼ 0:

ð15Þ

where prime denotes the differentiation w.r.t. g.

The important parameters, dictating the flow dynamics

are defined by:

Pr¼ lCp

k
¼ mf

a
; Ri¼ Gr

Re
2 ; Gr¼ gebðTw�T1ÞL3

m2
f

;

Re¼ u1L
mf

; Ha¼ rB2
0
L2

l
; M ¼Ha=Re; fw ¼�2 L

mf
VwRe

�1=2:

ð16Þ

The local skin friction coefficient and the local Nusselt

number are given as:

Cfx ¼ lnf
ou

oy

	 


y¼0

=qf u
2
1 ¼ ðRexÞ�1=2lnf

lf
f 00ð0Þ;

Cf ¼ ðRexÞ1=2Cfx ¼
lnf
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ð17Þ
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ð18Þ
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where Cf and Nu are modified skin friction and Nusselt

number, respectively.

Finally, the average Nusselt number is determined from:

Nuavg ¼
1

L

	 
ZL

0

NuðnÞdn; ð19Þ

where, L = characteristic length of plate. Simpson’s 1/3

rule of integration is implemented.

Finite element solution

Finite element method (FEM) was basically developed in

reference to structural problems, but now it has been used

as a mathematical tool for solving the linear and non-linear

ordinary or partial differential equations as well as integral

equations. The finite element method not only overcomes

the shortcoming of the traditional variational methods, it is

also endowed with the features of an effective computa-

tional technique. This method is so general that it can be

applied to a wide variety of engineering problems,

including heat transfer (Bhargava and Rana 2011; Rana

et al. 2012), fluid mechanics (Rana and Bhargava 2011;

Rana et al. 2013), rigid body dynamics (Dettmer 2006),

solid mechanics (Hansbo and Hansbo 2004) and many

other fields.

Finite element formulation

Let the domain be divided into quadratic rectangular

elements Xe. The finite element model may be obtained

by substituting finite element approximations of the

form:

f ¼
X9

j¼1

fjNjðn;gÞ; h ¼
X9

j¼1

hjNjðn;gÞ; h ¼
X9

j¼1

hjNjðn;gÞ

ð20Þ

with w1 ¼ w2 ¼ w3 ¼ Nj ðj ¼ 1;2;3Þ where Njðn;gÞ are

the quadratic interpolation functions for a rectangular

element Xe as follows: The finite element model of the

equations thus formed is given by

½K11� ½K12� ½K13�
½K21� ½K22� ½K23�
½K31� ½K32� ½K33�

2
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75 ð21Þ

where ½Kmn� and½bm� ðm; n ¼ 1; 2; 3Þ are the matrices of

order 3� 3 and 3� 1, respectively, and therefore each

element matrix is of the order 9� 9. All the matrices are

defined as follows:
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where

h ¼
P9

i¼1

hi Ni; f ¼
P9

i¼1

fi Ni; h ¼
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i¼1

hi Ni;

oh
og
¼
P9

i¼1
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oNi
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Since the interpolation functions are easily derivable for a

rectangular elements. Thus, we transform the finite element

integral statements defined over quadrilaterals to a

rectangle. Similar procedure has been followed for the

rectangular element. For example, a nine-node quadratic

elements with each element mapped using isoparametric

mapping (Reddy 1985; Rana et al. 2013) from n� g

domain (Xe) to a unit square n0 � g0 domain (X0) is shown

in Fig. 2. Thus, the integral is transferred from problem

coordinate system (n; g) to specific coordinate system

(n0; g0) (master element).

n ¼
X9

i¼1

ni Niðn0; g0Þ; g ¼
X9

i¼1

gi Niðn0; g0Þ
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where Niðn0; g0Þ are the local biquadratic basis functions on
the (n0; g0) domain. The integrals can be evaluated in (n0; g0)
domain using following relationships:

oNi

on0

oNi

og0

( )

¼ ½J�
owi

on

owi

og

8
<

:

9
=

; where

J ¼
on
on0

og

on0

on
og0

og
og0

2

4

3

5 is theJacobianmatrix

oNi

on

oNi

og

( )

¼ ½J��1

oNi

on0

oNi

og0

( )

; dA ¼ Jdndg

The necessary condition for ½J��1
is that the determinant J ,

called Jacobian J should be non-zero at every point (n0; g0).

Results and discussion

Comprehensive numerical computations are conducted for

various values of the parameters that describe the flow

characteristics and the results are illustrated graphically. A

numerical study is made to see the effect of different

controlling parameter on Al2O3–water nanofluid with

thermophysical properties shown in Table 1. Moreover,

e

Mapping

(1,1)

(1,-1)

(-1,1)

(-1,-1)

e

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

Fig. 2 Mapping of master rectangular element to a rectangular

element of a finite element mesh

Table 1 Thermophysical properties of water and nanoparticles

q

(kg/m3)

Cp

(J/kg K)

k

(W/m K)
b� 10�5

(/K)

Pure water 997.1 4,179 0.613 21

Alumina (Al2O3) 3,970 765 40 0.85

Table 2 Grid independence study for different models of viscosity

keeping Ri = 1, M ¼ 1, dp ¼ 5 nm, Pr = 6.2, x ¼ 10, / ¼ 0:04

Biquadratic elements Nuavg

Pure water Model I Model II Model III

10 � 10 0.7910 1.3820 1.3314 1.2115

10 � 20 0.8066 1.4096 1.3581 1.2355

20 � 20 0.8379 1.4653 1.4117 1.2837

20 � 40 0.8442 1.4765 1.4225 1.2934

30 � 40 0.8487 1.4839 1.4297 1.2999

40 � 50 0.8533 1.4933 1.4407 1.3109

40 � 80 0.8569 1.4989 1.4442 1.3128

50 � 80 0.8574 1.4993 1.4449 1.3135

Table 3 Comparison of results for Nusselt number (�h0ð0; 0Þ) for

various Pr keeping Ri = 0 and / ¼ 0

Pr Nield and

Kuznetsov (2003)

Chamkha

et al. (2003)

Aydin and

Kaya (2009a)

Present

results

0.01 – 0.051830 0.051437 0.051301

0.1 0.1580 0.142003 0.148123 0.147901

1 0.3320 0.332173 0.332000 0.331980

10 0.7300 0.728310 0.727801 0.727800

100 1.5700 1.572180 1.573141 1.573140

Table 4 Comparison of results for reduced Nusselt number �h0ð0; 0Þ
for various Pr at Ri = 0, / ¼ 0

Pr n Yih

(1999)

Chamkha

et al.

(2003)

Watanabe

and Pop

(1994)

Aydin and

Kaya

(2009a)

Present

results

0.733 0.0 0.297526 0.29760 0.29755 0.29753 0.297506

0.5 0.357022 0.35704 0.35699 0.35709 0.356520

1.0 0.382588 0.38319 0.38336 0.38363 0.389246

1.5 0.398264 0.39998 0.39959 0.40012 0.400020

2.0 0.409168 0.40945 0.41091 0.41134 0.411600

1.0 0.0 0.332057 0.33217 0.33206 0.33206 0.332037

0.5 0.402864 0.40310 0.40280 0.40259 0.402475

1.0 0.433607 0.43390 0.43446 0.43460 0.434221

1.5 0.452634 0.45280 0.45413 0.45302 0.454270

2.0 0.465987 0.46611 0.46798 0.46612 0.466261
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velocity and temperature profiles of nanofluid are com-

pared with pure water.

An extensive mesh testing has been conducted to ensure

a grid- independence solution of given boundary value

problem. The present code has been tested for grid inde-

pendence by calculating the average Nusselt number on the

plate. Different combinations of bi- quadratic elements for

both pure water and Al2O3–water keeping Ri ¼ 1, M ¼ 1,

dp ¼ 5 nm, Pr ¼ 6:2, x ¼ 10, / ¼ 0:04 are also explored

as shown in Table 2. In the case of Al2O3–water, average

Nusselt number (Nuavg) of different models has been also

shown. Further, the validity of the present numerical code

has been assured for a limiting case. Tables 3 and 4 show

that an excellent correlation has been achieved with the

earlier results of Watanabe and Pop (1994), Yih (1999),

Chamkha et al. (2003) and Aydin and Kaya (2007).

For obtaining the numerical solutions, the suitable guess

value of nmax (length of the plate) and gmax (length of the

domain) has been chosen which satisfy all boundary con-

ditions. It has been observed that for the moderate values of

gmax ([5.0), there is no appreciable effect on the results.

Therefore, for computational purpose infinity has been set

as 5.0. However, for nmax, the results are obtained even for

large nmax (up to 8); but for demonstration purpose, the

results are shown only for 0� n� 2:0.
The entire flow domain contains 13,041 grid points. At

each node, three functions are to be evaluated; hence after

assembly of the element equations, we obtain a system of

39,123 equations which are non-linear. Therefore, an iter-

ative scheme has been employed in the solution. After

imposing the boundary conditions, a system of 38,818

equations have been solved with an accuracy of 10�4. The

iterative process is terminated when the following condi-

tion is satisfied:
X

i;j

H
m
i;j �H

m�1
i;j


� 10�4 ð22Þ

where, H stands for either f , h or h, and m denotes the

iterative step.

Gaussian quadrature is implemented for solving the

integrations. Excellent convergence has been achieved.

In Fig. 3, the effective dynamic viscosity of Al2O3–

water nanofluid has been plotted against nanoparticle vol-

ume fraction for different models. It has been noted from

correlation that viscosity measured from experiments

(Wang et al. 1999; Pak and Cho 1998) is far different from

classical predictions (Maxwell 1873; Hamilton and Crosser

1962). Figure 4 shows the characteristic of the effective

thermal conductivity, which is a function of nanolayer to

base fluid conductivity ratio (x ¼ klr=kf ) and nanoparticle

diameter (dp). x has relatively high effect for small

nanoparticle diameters. Consequently, the presence of

nanoparticles has a strong effect on thermal conductivity of

the nanofluid for small nanoparticle diameters and high

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
1

1.5

2

2.5

3

3.5

4

4.5

Volume fraction of nanoparticles (φ)
µ

n
f
/µ

f

Model I ( Classical Brinkman-model)

Model II ( Wang et al. correlation for Al
2
O

3
-water)

Model III (Pak and Cho correlation for Al
2
O

3
-water)

Fig. 3 Comparison of viscosity models

0 0.01 0.02 0.03 0.04 0.05
1

1.5

2

2.5

3

3.5

4

4.5

5

Volume fraction of nanoparticle (φ)

k
n

f
/
k

f

 

 
H-C Model

Present model(d
p
=5nm,ω=25)

Present model(d
p
=5nm,ω=5)

Present model(d
p
=50nm,ω=25)

Present model(d
p
=50nm,ω=5)

Fig. 4 Comparison of thermal conductivity models
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nanolayer to base fluid conductivity ratio. Thus, compared

with the traditional H–C model, the present model (Leong

et al. 2006; Murshed et al. 2008) shows a better flexibility

in predicting the heat transfer characteristic.

Selected computations are presented in Figs. 5, 6, 7, 8,

9, 10, 11 and 12. The following ranges of the main

parameters are considered: 0:01�Ri� 10:0 , 1:0�
M� 10:0, 1� dpðnmÞ� 50, 5:0�xðklr=kf Þ� 50:0, Mod-

els I–III, 0�/� 0:04, Pr = 6.2, Al2O3–water. In all

cases, default values of the governing parameters are:

Ri ¼ 1:0, Pr ¼ 6:2, M ¼ 1:0, dp ¼ 5 nm, x ¼ 10, Al2O3–

water with Model I, unless otherwise stated. The thermo-

physical properties of the nanofluid at 300 K are given in

Table 2 (Hamad 2011).

Effect of magnetic field parameter

The effect of magnetic field parameter (M) on velocity

profile f 0ðn; g) and temperature profile hðn; g) is shown

in Fig. 5a, b, respectively. The effect of the magnetic

field parameter (M) has been explained from Eq. (2), the

sign of the last term in the right hand side of Eq. (2).

For the forced convection regime, this term
rB2

0

q
ðu� u1Þ

will always be negative since u1[ u. Thus, a force will

aid in the direction of main flow. On the other hand, in

case of free convection regime, when Ri ! 1, buoy-

ancy-driven flow will dominate the external flow

regime, hence the above term will be positive because

u1\u, which will diminish the main flow regime. This

term has been resolved into two components: The first

component,
rB2

0

q
u1, represents the imposed pressure

force, whereas the second component,
rB2

0

q
u, represents

the Lorentz force which slows down the fluid motion in

the boundary layer region. When the imposed pressure

force overcomes the Lorentz force (u1\u), the effect

of the magnetic parameter increases the velocity. Sim-

ilarly, when the Lorentz force which slows the fluid

motion dominates the imposed pressure force (u1\u),

the effect of the magnetic parameter (M) decreases

velocity flow and hence it decreases both momentum

and thermal boundary layer thickness (i.e., increases the

velocity and temperature gradient at the wall). Similar

results have been observed by Aydin and Kaya (2009a).

Moreover, further addition of nanoparticles (increase in

volume fraction) increases both velocity and tempera-

ture gradient. As magnetic parameter (M) is multiplied

by n, which leads to increase in velocity and tempera-

ture in the boundary layer, as we go away from the

leading edge.

The effect of the magnetic parameter (M) on the mod-

ified skin friction and Nusselt number is shown in Fig. 5c,

d, respectively. Both the skin friction and the Nusselt

number increase with an increase in the magnetic param-

eter (M). This is associated with an increase in the mag-

nitude of wall velocity and temperature gradients.

Effect of nanoparticle diameter

The effect of the nanoparticle diameter on velocity

profile f 0ððn; gÞÞ and temperature profile ðhðn; gÞÞ is

shown in Fig. 6a, b, respectively. The addition of

nanoparticles decreases the momentum boundary layer

and increases the thermal boundary layer, however, this

behavior is more pronouncing for small size nanoparti-

cles. The small size nanoparticle (dp ¼ 1 nm) increases

the temperature which is simply due to the increase of

thermal conductivity. Figure 6c, d depicts the effect of

the nanoparticle diameter (dp) on the skin friction and

the Nusselt number, respectively. Both the skin friction

and the Nusselt number decrease with the increase in

nanoparticle diameter. This is due to potential instability

of nanofluid with larger nanoparticles. The settling

velocity of nanoparticles (Vg) can be calculated from

Stokes law (only accounts for gravitational and buoyant

forces) is as follows:

Vg ¼
2

9

qp � qnf

lnf

 !

ðdp=2Þ2g; ð23Þ

where g is the acceleration due to gravity. It can be noticed

that from Eq. (23), that the stability of a suspension

(defined by lower settling rates) improves if: (a) the vis-

cosity of the suspension (lnf ) is high (b) the density of the

solid material (qp) is close to that of the fluid (qnf ), and (c)

the particle diameter (dp) is small.

Effect of nanolayer thermal conductivity and viscosity

models

The effect of nanolayer to base fluid conductivity ratio (x)

on velocity profile ðf 0ðn; gÞÞ and temperature profile

ðhðn; gÞÞ is shown in Fig. 7a, b, respectively. As we have

already mentioned that x ([ 1) is an empirical parameter

which depends on the orderness of fluid molecules in the

interface, nature and surface chemistry of nanoparticles.

The value of x should lies between 1 and 65.2529

(1\x\kp=kf ) for Al2O3 nanoparticles. It is observed that

both velocity and temperature increase with the increase of

nanolayer to base fluid conductivity ratio (x) for the

default parameters. It is due to the increase in thermal

conductivity of nanofluid with the increase in x.

The effect of the nanolayer to base fluid conductivity

ratio (x) on the modified skin friction and the Nusselt

number is shown in Fig. 7c, d, respectively. Both the
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modified skin friction and the Nusselt number increase

with the increase in this conductivity ratio. Thus, we can

say that the value of nanolayer to base fluid conductivity

ratio plays an important role. The effect of three different

models for viscosity on velocity profile ðf 0ðn; gÞÞ and skin

friction ðhðn; gÞÞ is shown in Fig. 8a, b, respectively. Dif-

ferent models for viscosity have been compared for this

problem because of unavailability of most appropriate

viscosity model. It is clear that for model I, the velocity is

higher among all other models. This is due to lower vis-

cosity in Model I as compared to other which also justifies

the trend of skin friction.

Effect of angle of inclination

The effect of the angle of inclination (d) on the modified

skin friction and the Nusselt number is shown in Fig. 9a,

b, respectively. With an increase in plate inclination, the
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velocity decreases. The case of d ¼ 0 corresponds to the

vertical plate configuration and for this scenario, the

velocity is found to be maximum. For the case d ! p=2,

cosðp=2Þ ! 0, i.e., buoyancy effects vanish (horizontal

plate scenario, where the gravity field is normal to the

plate surface and exerts no effect on the flow). The plate

orientation is simulated via the modified buoyancy term,

rB2
0

q
ðu� u1Þ cosðdÞ, arising in the momentum boundary

layer Eq. (2). As d increases, cosðdÞ decreases. This

causes the buoyancy effect to be depleted with increasing

inclination of the plate. The effects of three lateral mass

flux (transpiration) cases at the plate surface, i.e., of

suction (fw ¼ 0:25), solid wall (fw ¼ 0) and injection
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(fw ¼ �0:25) on Nusselt number (Nu) have been shown in

Fig. 10.

Figure 11 depicts the variation of average Nusselt number

(Nuavg) with dp for different x. Average Nusselt number

decreases exponentially with the decrease of nanoparticle size

for each case. In Fig. 12, the average Nusselt number has

been plotted against the volume fraction (/) ranging from

0�/� 0:04 for different models of viscosity. The graph

shows that the average Nusselt number increases linearly with

the volume fraction. Moreover, average Nusselt number

(Nuavg) increases more sharply with the volume fraction for

model I as compared to other models.
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Conclusions

In this present paper, mixed convection Al2O3–water

nanofluid flows in two-dimensional vertical plate have

been investigated to study heat transfer enhancement due to

application of the nanoparticles to the base fluid. Numeri-

cal results for the local Nusselt number and local skin

friction, temperature profile and velocity profile are
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presented graphically for various governing parameters.

The average Nusselt number has also been compared for

different nanoparticle diameter and volume fraction. The

main conclusions are as follows:

1. At a given Richardson number (Ri) the enhancement in

heat transfer has been noted with the increase in

magnetic field, both for pure water and nanofluids. But

the effect is more pronounced with nanofluids.

2. Increase in nanoparticle diameter (dp) decreases the

surface heat transfer. Moreover, it does not have any

significant change on the heat transfer beyond 25 nm at

a constant Richardson number (Ri) and magnetic field.

3. Higher the value of nanolayer to base fluid conductivity

ratio (x), more will be the heat transfer enhancement. It

has also been shown that the heat transfer increases with

the increase of nanoparticle volume fraction (/).

4. Both the angle of inclination of the plate (d) and

transpiration parameter (fw) have prominent effect in

the case of nanofluids.

5. Average Nusselt number (Nuavg)is higher for classical

viscosity model (model I) assumptions as compared to

other.
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