Heat and Mass Transfer 37 (2001) 139-146 © Springer-Verlag 2001

Mixed convection flow over a vertical wedge embedded

in a highly porous medium

M. Kumari, H. S. Takhar, G. Nath

Abstract The steady mixed convection flow over a vertical
wedge with a magnetic field embedded in a porous
medium has been investigated. The effects of the perme-
ability of the medium, surface mass transfer and viscous
dissipation on the flow and temperature fields have been
included in the analysis. The coupled nonlinear partial
differential equations governing the flow field have been
solved numerically using the Keller box method. The skin
friction and heat transfer are found to increase with the
parameters characterizing the permeability of the medium,
buoyancy force, magnetic field and pressure gradient.
However the effect of the permeability and magnetic field
on the heat transfer is very small. The heat transfer
increases with the Prandtl number, but the skin friction
decreases. The buoyancy force which assists the forced
convection flow causes an overshoot in the velocity

profiles. Both the skin friction and heat transfer increase

with suction and the effect of injection is just the reverse.

List of symbols

B magnetic field

p specific heat at a constant pressure

Ct skin friction coefficient

E Eckert number

f dimensionless stream function

g acceleration due to gravity

G dimensionless temperature

Gry Grashof number

Ha Hartmann number

K, K, dimensionless permeability parameters

K, dimensional permeability parameter

L, M characteristic length and magnetic parameter,
respectively

m index in the power-law variation of the

velocity at the edge of the boundary layer
Ni, Nz, N3 defined in Eq. (9)
Ny, N5, Ng defined in Eq. (13)
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Nu, Pr Nusselt number and Prandtl number,
respectively

Rer, Re,  Reynolds numbers defined with respect
to L and x, respectively

s constant

T dimensional temperature

u, v velocity components along x and y directions,
respectively

Xy distances along and perpendicular to the
surface

Greek symbols

o ratio of Grashof number and Reynolds number
squared

p pressure gradient parameter

b1 coefficient of thermal expansion

&n transformed coordinates

v kinematic viscosity

0,0 density and electrical conductivity,
respectively

W dimensional stream function

Superscript

! derivative with respect to n

Subscripts

e,w conditions at the edge of the boundary
layer and on the wall, respectively

X, ¥, & derivatives with respect to x, y and ¢,
respectively

00 free stream conditions

1

Introduction

Convective heat transfer from surfaces embedded in po-
rous media has been the topic of several studies in recent
years. The interest for such studies is motivated by a wide
range of thermal engineering applications, such as geo-
thermal systems, oil extraction, ground water pollution,
thermal insulation, solid matrix heat exchangers and the
storage of nuclear wastes. Comprehensive reviews of the
above studies were published by Chang (1978, 1985). The
transport of momentum and thermal energy in fluid sat-
urated porous media with low porosities, such as rocks,
soil, sand etc., is described by Darcy’s model. For low-
porosity media the entry region as well as the boundary
layer effect are generally small, hence the convective and
viscous terms in the momentum equations can be ne-
glected (Vafai and Tien, 1981). However, for highly porous
media such as foam, metals and fibrous media, this is not
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the case. Hence the convective and viscous terms have to
be retained in the momentum equations. The steady free
convection flow over a vertical flat plate in the fluid sat-
urated porous media with low porosities using Darcy’s
model has been studied by Cheng and Minkowycz (1977),
Bejan and Khair (1985), Ingham and Pop (1987), Merkin
and Pop (1987), Ram (1988), and Chen and Chen (1988).
Also Bejan (1987) has presented an excellent review of the
free convection flow in saturated porous media. The steady
free convection flow over a vertical plate in highly porous
media taking into account the convective and viscous
terms in the momentum equation has been investigated by
Raptis and Kofousias (1982) and Raptis (1986). However,
there have been only a few studies dealing with the mixed
convection flow over a vertical plate in porous media. The
mixed convection over inclined surfaces in a saturated
porous medium with low porosity using Darcy’s model has
been studied by Cheng (1977). Takhar and Perdikis (1986)
and Raptis and Perdikis (1988) have considered the mixed
convection flow over a vertical plate in a highly porous
medium.

The present analysis deals with the mixed convection
flow over a vertical wedge with a magnetic field embedded
in a highly porous medium. The effects of mass transfer,
viscous dissipation and Joule heating have been included
in the analysis. The partial differential equations have been
solved numerically using the Keller box method (Cebeci
and Bradshaw, 1984). The particular cases of the present
results have been compared with those available in the
literature. The reason for studying the effect of the
magnetic field on the flow through porous media is that
the fluids are electrically conducting in geothermic regions
and hence these can be significantly influenced by the
magnetic field (Cheng, 1978).

2

Governing equations

Let us consider the steady mixed convection flow of an
electrically conducting fluid with an applied magnetic field
B (fixed relative to the fluid) in the y direction over the
surface of a vertical wedge with included angle =8
immersed in porous medium (Fig. 1). The effects of the
permeability of the medium, magnetic field, buoyancy
parameter, mass transfer and viscous and ohmic dissipa-
tion on the flow and temperature fields have been con-
sidered. The magnetic Reynolds number is assumed to be
small (for most problems, this assumption is true) which
implies that the induced magnetic field can be neglected in
comparison to the applied magnetic field. However, the
Hall effect has been neglected. The wall temperature and
the free stream temperature are taken as constants. In a
body fixed coordinate system with x measured along the
surface of the wedge from the apex, the velocity at the edge
of the boundary layer is given by u. = u..(x/L)" where
the constant m is related to the included angle of the wedge
nf, by m = /(2 — f). The porous medium is considered
to be isotropic and homogeneous and it causes the flow
resistance which is taken to be proportional to the velocity.
Here we assume that all the flow properties are constant
except the density which gives rise to the buoyancy force.
Under the foregoing assumptions, the boundary layer
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Fig. 1. Physical model and coordinate system

equations governing the nonsimilar flow over a wedge
embedded in a highly porous medium can be expressed as
(Bejan, 1987; Cheng, 1978; Vafai and Tein, 1981);

Uy +v, =0, (1)
Uty + vy, = ue(ue), + vityy + gf (T — Too) cos(nfs/2)
— (0B*/p) (1 — ue)
— (9/K)(u — ue) cos(np/2) (2)
uTy +vT, = (v/Pr)Tyy + (v/¢p)uy + (0B*/pey) u?
(3)

Equations (1)-(3) are subjected to the following boundary
conditions:
u=0,v=w,T=T, aty=0,x>0,
as y — 00, x >0, (4)

atx<0,y>0.

U—Ue, T — Ty
u=1u,, I =Ty

Equations (1)-(4) are transformed from (x, y) coordinates
to the pseudo-similarity variable # and x-dependent
dimensionless variable x by using the following transfor-
mations;

n = yl(m+1/2)(ue/vx)]"?,
Y =[(2/m+ V)vxu] *f (%)
U=y, v=—,, the=uxx", x=x/L,
u= ”ef/(’_cv 1)
—v=[2/m+1)(vue/x)]* x [f/2
+(1/2)(x/ue) (due/dx)f + x(fe + fn)] (5)
G=(T—Ts)/(Ty— Ts) -

We find that Eq. (1) is satisfied identically and Eqgs. (2)
and (3) reduce to

f" T+ @m/m 4 1)(1 - f7)

+ (2/m + 1)aN; cos(nf/2)G

+(2/m+ 1)N,[M + K cos(nf8/2)](1 —f)

= @/m+Vx(ff - £f") , (6)
Pr'G" + fG + E[Nsf"” + (2/m + 1)N,Mf "]

= (2/m+ 1)x(Gzf" — fzG) . (7)



The boundary conditions (4) can be re-written as
f=fu,f/=0, G=1 atyn=0,x>0,
ff—1,G—0 asn—o00,x>0, (8)
ff=1,G=0 forx<0,n>0,
where
m= (X/ue)(duc/dX), Nj=x(ttoo/the)’,
Ny = %(tioo/tle), N3 = (ue/ o),
o= Gry/Re?, M =Ha’/Rey,
E= ”io/[CP(Tw —Tx)l,
K=K,/Re;, K, =gL*/(vKy), Rer=usL/v,
Gry = gpy(Ty — Too)L? /v, Ha®> = aB’L*/pu,
Re, = uex/v,
—vul{(m+1)/2} (<L /vue)] 2
= [fw/2+ (1/2)(%/ue) (due/dx)fyy + X(dfw/dX)] . (9)

The local skin friction and heat transfer (Nusselt number)
coefficients can be expressed as

Cr = 2u(uy),,/pu2 = [2(m +1)]*(Re) " ("),,,
Nu = —x(Ty),,/(Tw = Tx)

= —[(m+1)/2]*(Ren)"X(@),,
If we put & = x(1=m)/2 then Egs. (6) and (7) reduce to
"+ + @em/m+1)(1—f?)

+ (2/m +1)aN, G cos(nf/2)

+(2/m+ 1)[M + K cos(nf/2)]Ns(1 — f)

(10)

= (1= m)/(L+m)E(ff ~£f") (11)
Pr'G" + fG' + ENg[f"* + (2/m + 1)NsMf"*]

=[1=m)/(1+m)e(Gef - f:G) , (12)
where
N, = g21-=2m)/(om) N g2 N pm/(em)

(13)

The boundary conditions are:
f=fu,f=0,G=1atyn=0,¢>0,
ff—=1,G—0 asn— o0, E>0, (14)

ff=1,G=0for(<0,n>0,
where f,, is given by
s = [(1+m)/2lfy + [(1 = m)/2]¢(0f/0C)
and the mass transfer parameter s is expressed as
s = — [(1 + m)Z*l(ReL)]m(vw/uoc)(x/L)(FmV2 .
(15)
If (vy/ux) varies as (x/L)("’_l)/Z, then the mass transfer

parameter s is a constant because u.,, Rer, m and L are
all constants.
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Fig. 2. Skin-friction parameter (f”),, and heat-transfer parameter
—(@), forE=M=0=K=s5=E=0. ___: Present results;

o: Evans (1968)

Table 1. Comparison of heat transfer results (—(G’),,) with
those of Raptis and Perdikis (1988) for the flat plate when
E=M==E=0,Pr=0.72,00=02

K fw _(G,)w
Present Raptis and
results Perdikis (1988)
1 -0.5 0.2672 0.267
1 0.5 0.4955 0.492
2 -0.5 0.2529 0.252
2 0.5 0.4845 0.481

Table 2. Comparison of skin friction ((f”),,) and heat transfer
(=(G")y,) results with those of Watanabe (1990) for the wedge
wheno=M=K=s=E=0, Pr=0.73

m (f”)w _(G,)w
Present Watanabe Present Watanabe
results (1990) results (1990)
0 0.46975 0.46960 0.42079 0.42015
0.0141 0.50472 0.50461 0.42635 0.42578
0.0435 0.56904 0.56898 0.43597 0.43548
0.0909 0.65501 0.65498 0.44770 0.44730
0.1429 0.73202 0.73200 0.45728 0.45693
0.2000 0.80214 0.80213 0.46534 0.46503
0.3333 0.92766 0.92765 0.47840 0.47814

The expressions for skin friction and heat transfer
coefficients become

Ce(Rey)'? = [2(1 + m)]*(f"),,
Nu(Re,) /? = —[(1 + m)/2]"A(G),, .

It may be noted from Eq. (15) that the surface mass
transfer f,,(= s) is a constant. It has been assumed that the
injected fluid possesses the same physical properties as the

(16)
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Fig. 3. Skin-friction parameter (f”), and heat-transfer parameter
(@), forf=1,M=s=0=K=E=0and Pr=07. ___:
Present results; o: Ramachandran et al. (1988)
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Fig. 4. Skin-friction parameter (f”), and heat-transfer parameter
—(@),, for M=K =E=m =0. ___: Present results;
A: Watanabe (1991)

boundary layer fluid and has a static temperature equal to
the wall temperature.

It may be remarked that Egs. (11) and (12) with
boundary conditions (14) govern the steady nonsimilar
mixed convection flow over a vertical wedge. For
{=M=K=ua=0, Eq. (11) reduces to the well known
Falkner-Skan equation which represents the similarity
equation governing the forced convection flow over a
wedge and Eq. (12) represents the temperature field for
constant wall temperature case. Also for
p=m=&=M=E=0,N,=Ns =1, Egs. (11) and (12)
reduce to those of Raptis and Perdikis (1988), who
considered the mixed convection flow over a vertical plate,
if we replace f by (2)_1/2f, n by (2)7*p, K by 2/K,

o by 2Gr,/Re? and G by 6. Furthermore, for
E=M=K=E=0, f=m=1, Egs. (11) and (12) re-
duce to those of Ramachandran et al. (1988) who consid-
ered the mixed convection flow in the stagnation region of
a vertical surface with constant wall temperature (n = 0).
However they have denoted the buoyancy parameter by &
instead of o;. For o = M = K = E = 0, Egs. (6) and (7) or

40
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Fig. 5. Skin-friction coefficient Cf(Rex)l/ % and heat-transfer
coefficient Nu(Re,) /2 for K = s = 0.5, m = 0.0909, M = 1,
E=0and Pr = 0.72



(11) and (12) reduce to those of Watanabe (1990) who
considered the forced convection flow over a wedge and
for M=K=E=m= =0, Egs. (6) and (7) or (11) and
(12) reduce to those of Watanabe (1991) who considered
the mixed convection flow on a vertical flat plate if we
replace f by 271/2f, n by 27/2y.

3
Results and discussion
The partial differential equations (11) and (12) under
boundary conditions (14) have been solved using the
Keller box method. Since the method is described by
Cebeci and Bradshaw (1984), it is not presented here. We
have studied the effect of step size Ay and A¢ and the edge
of the boundary layer #,, on the solution in order to
optimize them. The results presented here are independent
of step size and 7, at least up to the 5th decimal place.
The validity of the present solutions is examined by
comparing the results for the skin friction and heat
transfer ((f"),,, —(G'),,) with those of well known

15
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Fig. 6. Skin-friction coefficient Cf(Rex)l/ ? and heat-transfer
coefficient Nu(Re,()fl/2 for s =0.5,m =0.0909, x =2, E=0
and Pr = 0.72. T M=1——— M=2;------ M =3;
--------- M =4

Falkner-Skan equation when { =M =K=0=E =0
(Evans, 1968). The results are found to be in excellent
agreement for accelerated flows (ff > 0) and for retarded
flows (f < 0), (f"),, and —(G'),, differ by approximately
1-53% and 1-8% respectively as f§ varies from —0.1 to
—0.19 (Fig. 2). Also the results were compared with those
of Raptis and Perdikis (1988) when
p=m=¢&=M=E=0, N, = N5 =1, and with those of
Ramachandran et al. (1988) when { = M =K = E = 0,
p=m=1.For« = M = K = E = 0, the results have been
compared with Watanabe (1990) and for
M =K =E=m= f§=0 a comparison has been made
with the results of Watanabe (1991). The results are found
to be in excellent agreement. The comparison is shown in
Tables 1 and 2 and Figs. 3 and 4. The computations have
been carried out for various values of the parameters m, o,
M, K, s, Pr and E. However the results are presented here
only for some representative values of these parameters.
Figure 5 shows the effect of the buoyancy parameter o
on the skin friction and heat transfer coefficients

1/2

Fig. 7. Skin-friction coefficient C¢(Re,) ' and heat-transfer
coefficient Nu(Re,) /2 for K = 0.5, m = 0.0909, M = 1, o = 2,
E=0and Pr = 0.72
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(Cf(Rex)l/z, Nu(Rex)fl/z). When o > 0 (aiding flow), both
the skin friction and heat transfer coefficients are en-
hanced as « increases. However, for the opposing flow
(o < 0), the trend is just the opposite. The reason for such
a behaviour is that the buoyancy parameter o (o > 0) acts
as a favourable pressure gradient. Consequently, the fluid
within the boundary layer is accelerated and both the
momentum and the thermal boundary layer thicknesses
are reduced. The net result is that both C¢(Re,)'/? and
Nu(Re,)™ 1/2 are increased. It is observed that the effect of
the buoyancy parameter o is more pronounced on the
skin-friction coefficient (C¢(Re,)/? P than on the
heat-transfer coefficient (Nu(Re,)™ /2 ). The skin-friction
and heat-transfer coefficients increase with the streamwise
distance ¢ for aiding flow (x > 0). For opposing flow
(o < 0), the skin-friction coefficient decreases with ¢
whereas the heat-transfer coefficient first decreases and
then increases with the streamwise distance &.

The effects of the magnetic parameter M and the
permeability parameter K on the skin-friction and

Cp Rey)'?

Nu (Rey) ™2

2t 3
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Fig. 8. Skin-friction coefficient Cf(Rex) and heat-transfer
coefficient Nu(Re,)™ Y2 for K = s = 0.5, m = 0.0909, M = 1,
o=2and E=0

heat-transfer coefficients (Cf(Rex)l/ %, Nu(Re, )71/ %) are
displayed in Fig. 6. It is observed that the skin-friction
coefficient C¢(Rey) /2 increases as M or K increases.
However, the heat-transfer coefficient (Nu(Re,) "/?) is
found to be weakly dependent on M and K. Also they
increase with the streamwise distance £. The reason for the
weak dependence of the heat-transfer coefficient
Nu(Re,) /2 on M or K is that these parameters do not
occur explicitly in the equation governing G unlike the
momentum equation.

The effect of the mass transfer f,(s) on the skin-friction
and heat-transfer coefficients (C¢(Rey)"?, Nu(Rey) /%)
is presented in Fig. 7. The skin-friction coefﬁc1ent
(Ce(Rey) 1/2 ) and heat-transfer coefficient (Nu(Re,)™ Y %)
are enhanced by suction (s > 0) and the effect of injection
(s < 0) is just the opposite. Like the buoyancy parameter o
or the magnetic parameter M, suction (s > 0) reduces both
the momentum and thermal boundary layer thicknesses
and the effect of injection Ss < 0) is just the reverse. Hence
Ct(Re,)"/? and Nu(Re,) "/? increase with suction (s > 0).

Cy (Rep)'?

0.5

04+

0.2000

0.3333

Fig. 9. Skin-friction coefficient Cf(Rex) and heat-transfer
coefficient Nu(Re,)™ V2 for K=05,5s=—-05M=1,0=2
and E =0 and Pr = 0.72



The effect of the Prandtl number, Pr, on the skin-
friction and heat-transfer coefficients (C¢(Rey) 12,
Nu(Re,) /) is shown in Fig. 8. It is seen that the heat-
transfer coefficient (Nu(Re,) '/?) increases with Pr, but
the skin-friction coefficient Cf(Rex)l/ 2 decreases. The
reason for such a behaviour is that the higher Prandtl
number fluid has a relatively low thermal conductivity
which opposes conduction and thereby increases the
variation. This results in the reduction of the thermal
boundary layer thickness and an increase in the conduc-
tive heat transfer. On the other hand, the momentum
boundary layer thickness increase with Pr, because higher
Prandtl number implies more viscous fluid. Consequently,
the skin friction is reduced as Pr increases.

Figure 9 shows the effect of the pressure gradient
parameter (m) on the skin-friction coefficient (Cg(Rey)/?)
and heat-transfer coefficient (Nu(Rex) 1/2 ). It is observed
that the effect of m on C¢(Re,)"/? and Nu(Rex)_l/2

becomes more pronounced as the distance ¢ increases.
increase as ¢ in-

Also both C;(Rey)'/? and Nu(Re,) /2 i

C Rey)"”

&

Fig. 10. Skin-friction coefficient C¢(Re,)"/?

and heat-transfer
coefficient Nu(Re,)™ V2 for K = s = 0.5, m = 0.0909, M = 1,

o =2 and Pr = 0.72

creases. It is also observed that Cf(Rex)l/2 and Nu(Rex)fl/2
increase as m increases till certain &, say &*. For & > &7,
these decrease with the pressure gradient parameter m.

The effect of the viscous dissipation parameter E on the
skin- frlctlon and heat-transfer coefficients (C¢(Rey) 12 R
Nu(Re,) " /%) is shown i in F1g 10. The effect of E on
Ct (Rex)l/ * and Nu(Re,) "/ becomes more pronounced as
¢ increases. It may be noted that for £ = 0, the terms
containing E in Eq. (12) vanishes. The effect of E is more
pronounced on the heat-transfer (Nu(Re,) /?) than on
the skin-friction (C¢(Rey)/?), because E occurs explicitly
in Eq. (12) which represents the equation for dimension-
less temperature G.

The effects of the buoyancy parameter o and streamwise
distance ¢ on the velocity and temperature profiles (', G)
are shown in Fig. 11. We find that there is an overshoot
in the velocity for the aiding flow (« > 0) which increases
as o or ¢ increases. There is no velocity overshoot either
for the forced convection flow (¢ = 0) or for the opposing
flow (¢ < 0). The reason for the overshoot in the velocity
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Fig. 11. Velocity profile f’ and temperature profile G for
K=5=0.5m=0.099, M=1,E=0and Pr=10.72. ___
(=05———¢=15-----1 =2
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is that the buoyancy force (o > 0) gives rise to a favour-
able pressure gradient resulting in velocity which adds to
the forced convection velocity. The buoyancy opposed
flow (« < 0) gives rise to adverse pressure gradient which
reduces the forced convection velocity. Hence no velocity
overshoot is observed for the opposing flow (o < 0). The
temperature profiles (G) show that for the case of aiding
flow (« > 0), an increase in the buoyancy parameter «
results in an increase in the temperature gradient at the
wall due to the reduction in the thermal boundary layer
thickness. For the buoyancy opposed flow (« < 0), the
effect is just the reverse. It is also observed that the ther-
mal boundary layer thickness decreases with the stream-
wise distance &.

4

Conclusions

The permeability, buoyancy, pressure gradient and mag-
netic parameters strongly affect the skin friction, but their
effects on the heat transfer is comparatively less. The mass
transfer strongly affects both the skin friction and the
heat transfer. Also the heat transfer strongly depends on
the dissipation parameter. The heat transfer is found to
increase with the Prandtl number but the skin friction
decreases. The buoyancy force which assists the forced
convection flow causes an overshoot in the velocity profile.
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