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This article presents a numerical solution for the steady two-dimensional mixed convection MHD flow

of an electrically conducting viscous fluid over a vertical stretching sheet, in its own plane. The

stretching velocity and the transverse magnetic field are assumed to vary as a power function of the

distance from the origin. The temperature dependent fluid properties, namely, the fluid viscosity and

the thermal conductivity are assumed to vary, respectively, as an inverse function of the temperature

and a linear function of the temperature. A generalized similarity transformation is introduced to study

the influence of temperature dependent fluid properties. The transformed boundary layer equations are

solved numerically, using a finite difference scheme known as Keller Box method, for several sets of

values of the physical parameters, namely, the stretching parameter, the temperature dependent

viscosity parameter, the magnetic parameter, the mixed convection parameter, the temperature

dependent thermal conductivity parameter and the Prandtl number. The numerical results thus

obtained for the flow and heat transfer characteristics reveal many interesting behaviors. These

behaviors warrant further study of the effects of the physical parameters on the flow and heat transfer

characteristics. Here it may be noted that, in the case of the classical Navier–Stokes fluid flowing past a

horizontal stretching sheet, McLeod and Rajagopal (1987) [42] showed that there exist an unique

solution to the problem. This may not be true in the present case. Hence we would like to explore the

non-uniqueness of the solution and present the findings in the subsequent paper.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The study of the hydromagnetic flow of an electrically

conducting fluid past a heated vertical surface has attracted the

interest of many researchers due to its extensive applications to

many engineering and industrial problems such as hot rolling,

wire drawing, spinning of filaments, metal extrusion, plasma

studies, petroleum industries, MHD power generator, cooling of

nuclear reactors, the boundary layer control in aerodynamics and

crystal growth [1–3]. Until recently, this study has been largely

concerned with the flow and heat transfer characteristics in

various physical situations [4–9]. Watanabe and Pop [4] investi-

gated the heat transfer in thermal boundary layers of magneto-

hydodynamic Newtonian/non-Newtonian flows over a flat plate.

Andersson [5] presented an exact analytical solution of the

MHD flow of a Walters liquid B past a stretching sheet. Abel et al.

[6] extended to study the effects of magnetic field on viscoelastic

fluid flow and heat transfer over a stretching sheet with internal

heat generation/absorption. Datti et al. [7] further extended the

work of Abel et al. [6] to flow and heat transfer with thermal

radiation in the presence of variable thermal conductivity over a

non-isothermal stretching sheet. Abo-Eldahab and Salem [8]

studied the influence of transverse magnetic field on the flow

and heat transfer of an electrically conducting fluid over a

stretching sheet with a uniform free stream. Prasad et al. [9]

studied the effect of variable thermal conductivity on MHD flow

and heat transfer of a power-law fluid over a non-isothermal

stretching sheet with internal heat generation/absorption. Prasad

and Vajravelu [10] examined the MHD flow and heat transfer

phenomena in a power law fluid over a porous stretching surface,

taking into account the internal heat generation/absorption,

viscous dissipation, work done by stress, variable thermal

conductivity, and thermal radiation. In Ref. [10], the solutions

presented in some figures do not seem to satisfy the asymptotic

conditions at infinity: This happened due to the magnification of

the figures. In the present paper, the attention has been paid to

avoid it.

In many practical situations, the material moves in a quiescent

fluid with the fluid flow being induced by the motion of the solid
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material and by the thermal buoyancy. Therefore, the resulting

flow and thermal fields are determined by the two mechanisms,

namely, the surface motion and the buoyancy force. It is well

known that the buoyancy forces stemming from the heating or

cooling of the continuous stretching sheets alter the flow and

thermal fields and thereby the heat transfer characteristics of the

manufacturing process. However, the buoyancy force effects were

not considered in the aforementioned studies. Effects of thermal

buoyancy force on Newtonian flow and heat transfer over a

stretching sheet have been reported by several investigators.

Combined forced and free convection in boundary layers adjacent

to a continuous horizontal sheet maintained at a constant

temperature and moving with a constant velocity was investi-

gated numerically by Chen and Stobel [11]. A similar analysis was

carried out by Moutsoglou and Chen [12] for an inclined

continuous sheet with uniform wall temperature or uniform

surface heat flux. Numerical studies including the effects of

buoyancy force conjugate conduction and thermal radiation have

been reported by Karwe and Jaluria [13] for a continuous flat plate

moving at a uniform speed. Malarvizi et al. [14] studied the free

and mixed convection about a vertical plate with prescribed

temperature or heat flux. Vajravelu [15] analyzed the combined

free and forced convection heat transfer at a stretching sheet with

variable surface temperature and suction or blowing. Chen [16]

explored the effect of thermal buoyancy on flow past a vertical,

continuous stretching sheet on which the velocity and tempera-

ture are assumed to vary in a power law form. Ali and Al-Yousef

[17] considered the effects of mixed convection on boundary layer

adjacent to a continuously moving upward vertical surface with

suction or injection at the surface for general boundary conditions

of power law velocity and temperature distributions. Recently

several researchers have focused their attention to the problem of

free and forced convection in MHD flow due to the fact that

convection induced by the simultaneous action of buoyancy

forces resulting from the thermal diffusion is of considerable

interest in nature and in any industrial applications. Vajravelu and

Hadjinicolaou [18] carried out an analysis of the flow and heat

transfer characteristics in an electrically conducting fluid near an

isothermal stretching sheet. El-Hakim et al. [19] presented an

analysis of MHD free convection heat transfer of an electrically

conducting micropolar fluid past a semi infinite plate including

the effects of viscosity and joule heating. Chamkha [20] and Abo-

Eldahab [21] considered the problems related to hydromagnetic

three-dimensional flow on a stretching surface. Ishak et al. [22]

studied the effects of a uniform magnetic filed on the stagnation

point towards a vertical sheet.

In all the above mentioned works, the thermo-physical

properties of the ambient fluid were assumed to be constant.

However, it is well known that (Herwig and Wickern [23], Lai and

Kulacki [24], Takhar [25], Pop et al. [26], Hassanien et al. [27],

Subhas Abel et al. [28], Seedbeck [29], Ali [30], Andersson and

Aarseth [31] Chaim [32]) these physical properties may vary with

temperature, especially the fluid viscosity and the thermal

conductivity. For lubricating fluids heat generated by internal

friction and the corresponding rise in the temperature affects the

physical properties of the fluid and the properties of the fluid may

no longer be assumed as constant. Increase in temperature leads

to an increase in the transport phenomena: There by reducing the

physical properties across the thermal boundary layer and hence

the heat transfer at the wall is also affected. Therefore to predict

the flow and heat transfer rates, it is necessary to account for the

variable fluid properties. In view of this, the problem studied here

extends the work of Vajravelu [33], by considering the tempera-

ture dependent variable fluid properties over a vertical non-linear

stretching sheet. The coupled non-linear partial differential

equations governing the problem are reduced to a system of

coupled highly non-linear ordinary differential equations by

applying a suitable similarity transformation. The resultant

boundary value problem is then converted into the system of

six simultaneous equations of first-order for six unknowns. The

system of equations is then solved by Keller Box method.

Numerical computation has been carried out for temperature

Nomenclature

a constant

b stretching rate, positive constant

B(x) magnetic field

Cf skin friction

Cp specific heat at constant pressure

f dimensionless velocity variable

Grx Grashof number

h(x) heat transfer coefficient

k(T) thermal conductivity

k
N

thermal conductivity far away from the sheet

m index of power law velocity

Mn magnetic parameter

Nux Nusselt number

Pr Prandtl number

qw local heat flux at the sheet

Rex local Reynolds number

S dummy parameter

T temperature variable

Tr transformed reference temperature

Tw given temperature at the sheet

T
N

constant temperature of the fluid far away from the

sheet

x horizontal distance

y vertical distance

u velocity in x-direction

uw velocity of the sheet

v velocity in y-direction

Greek symbols

DT sheet temperature

e small parameter

Z similarity variable

g kinematic viscosity

b0 the coefficient of thermal expansion

b stretching parameter

m dynamic viscosity

m
N

constant value of dynamic viscosity

c stream function

r density

r
N

constant fluid density

s electric conductivity

txy shear stress

y dimensionless temperature variable

yr transformed dimensionless reference temperature

l mixed convection parameter
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and horizontal velocity profiles, Nusselt number and skin friction

coefficient. The effects of variable viscosity, variable thermal

conductivity, stretching parameter, magnetic parameter, mixed

convection parameter, and the Prandtl number on the flow

behavior and heat transfer process are presented and discussed.

2. Mathematical formulation of the problem

The mathematical model considered here, is a viscous, incom-

pressible, steady, two-dimensional mixed convection boundary

layer flow due to a vertical heated sheet with variable fluid

properties in a quiescent and electrically conducting fluid in the

presence of a transverse magnetic field B(x) as shown in Fig. 1. The

origin is located at the slit through which the sheet is drawn. The x-

axis is taken in the direction of the flow (that is, along the sheet) and

the y-axis is normal to it. Two equal and opposite forces are applied

along the x-axis so that the wall is stretched, keeping the origin fixed

in the fluid with ambient temperature T1. The continuous stretching

surface is assumed to have power law velocity u=uw=bx
m, where b

is a constant, x denotes the distance from the slit and m is an

exponent. Here, we assume that the induced magnetic field

produced by the motion of an electrically conducting fluid is

negligible. This assumption is valid for small magnetic Reynolds

number. Further, since there is no external electric field, the electric

field due to polarization of charges is negligible. The viscous

dissipation and the Ohmic heating terms are not included in the

energy equation since they are generally small. Under these

assumptions and invoking the usual boundary layer approximation

along with the Boussinesq approximations, the basic equations

governing the convective flow and heat transfer in the presence of

variable fluid properties (i.e., fluid viscosity and thermal

conductivity) are

@u

@x
þ @v

@y
¼ 0; ð1Þ

u
@u

@x
þv

@u

@y
¼ 1

r1

@

@y
m
@u

@y

� �

�sB2ðxÞ
r1

u7gb0ðT�T1Þ; ð2Þ

r1cp u
@T

@x
þv

@T

@y

� �

¼ @

@y
kðTÞ @T

@y

� �

; ð3Þ

where u and v are the velocity components in the stream wise x and

cross-stream y directions, respectively. Here r1 is the constant fluid

density and m is the coefficient of viscosity which is considered to

vary as an inverse function of temperature (Lai and Kulacki [24]) as

1

m
¼ 1

m1
½1þdðT�T1Þ�;

i:e:;
1

m
¼ aðT�TrÞ; ð4Þ

where

a¼ d

m1
and Tr ¼ T1�1

d
: ð5Þ

Here, both a and Tr are constants, and their values depend on the

reference state and d, a small parameter reflecting a thermal

property of the fluid. In general, a40 corresponds to liquids and

ao0 to gases when the temperature at the sheet (Tw) is larger than

that of temperature at far away from the sheet (T
N
). T is the

temperature, m
N

is the coefficient of viscosity far away from the

sheet. To demonstrate further, the appropriateness of the Eq. (4) and

the correlations between the viscosity and temperature for air and

water are given below:

For air :

1

m
¼�123:2ðT�742:6Þ; based on T1 ¼ 293K ð20 3CÞ;

and

For water :

1

m
¼�29:83ðT�258:6Þ; based on T1 ¼ 288K ð15 3CÞ:

The reference temperatures thus selected for the co-relations are

very practical in most applications. The viscosity of a liquid usually

decreases with increasing temperature while it increases for gases,

when ðTw�T1Þ is positive. T is the temperature; T
N

and m
N

are the

temperature and coefficient of viscosity far away from the sheet,

respectively; s is the electrical conductivity; B(x) is the strength of

the variable magnetic field. The special form of magnetic field

BðxÞ ¼ B0x
ðm�1Þ=2 is chosen to obtain a similarity solution. This form

of B(x) has also been considered by Anjali Devi and Thiyagarajan [35]

and Chiam [34] in their MHD flows past a moving or fixed flat plate.

The last term on the right hand side of the Eq. (2) represents the

influence of thermal buoyancy force on the flow field. The ‘‘+’’ and

‘‘� ’’ signs refer to the buoyancy assisting and buoyancy opposing

flows, respectively. Fig. 1 provides the necessary information of such

a flow field for a stretching vertical heated sheet with upper half of

the flow field being assisted and the lower half of the flow field

being opposed by the buoyancy force. For the assisting flow, the

x-axis points upward in the direction of the stretching hot surface
Fig. 1. (a) Schematic of mixed convection heat transfer from a stretching surface.

(b) Schematic of the physical problem of a moving surface from a slot.
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such that the stretching induced flow and the thermal buoyant flow

assist each other. For the opposing flow, the x-axis points vertically

downward in the direction of the stretching hot surface, but in this

case the stretching induced flow and the thermal buoyant flow

oppose each other. The reverse trend occurs if the sheet is cooled

below the ambient temperature. T is the temperature of the fluid, Cp
is the specific heat at constant pressure and k(T) is the temperature-

dependent thermal conductivity. We consider the temperature-

dependent thermal conductivity relationship of the form (Chiam

[32]):

kðTÞ ¼ k1 1þ e

DT
ðT�T1Þ

� �

; ð6Þ

where DT ¼ Tw�T1, Tw is the sheet temperature, e is a small

parameter and k1 is thermal conductivity of the fluid far away from

the sheet. Substituting Eqs. (4), (5), and (6) into Eqs. (2) and (3), we

obtain

u
@u

@x
þv

@u

@y
¼ 1

r1

@

@y

m1
1þdðT�T1Þ

@u

@y

� �

�sB2ðxÞ
r

u7gb0ðT�T1Þ;

ð7Þ

rcpu
@T

@x
þ rcpv�

k1e

DT

@T

@y

� �

¼ k1 1þ e

DT
ðT�T1Þ

� �� � @2T

@y2
: ð8Þ

From the above equation we see that the effect of the small

parameter e is to enhance the thermal conductivity.

The appropriate boundary conditions on the velocity and the

temperature fields are

u¼ uw ¼ bxm; v¼ 0; T ¼ Tw at y¼ 0;

u-0; T-T1 as y-1; ð9Þ

where b is a constant known as stretching rate . It should be noted

that the positive and negative m indicate that the surface is

accelerated or decelerated from the extruded slit, respectively.

Now we transform the system of Eqs. (1)–(3) into a dimensionless

form. To this end, let the dimensionless similarity variable be

Z¼ y

x

ffiffiffiffiffiffiffiffiffiffiffiffi

mþ1

2

r

ffiffiffiffiffiffiffiffi

Rex
p

where Rex ¼
uwðxÞ
g1

x: ð10Þ

And the dimensionless stream function f ðZÞ and dimensionless

temperature yðZÞ be

f ðZÞ ¼cðx; yÞ=½uwxðRexÞ�1=2�; ð11Þ

Fig. 2. (a–c) Horizontal velocity profiles for different values of Magnetic parameter and mixed convection parameter and (d) horizontal velocity profiles for different values

of mixed convection and stretching parameter.
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yðZÞ ¼ ðT�T1Þ=ðTw�T1Þ; ð12Þ

where the dimensionless stream function cðx; yÞ identically

satisfies the continuity Eq. (1) with

u¼ @c

@y
and v¼� @c

@x
: ð13Þ

By using the relations in (10)–(12), the momentum Eq. (7) and

energy Eq. (8) can be written as

bf 2Z ðZÞ�f ðZÞfZZðZÞ ¼
1

1� yðZÞ
yr

fZZðZÞþ
fZZðZÞyZðZÞ
yr�yðZÞ

� �

�Mn fZðZÞþlyðZÞ;

ð14Þ

½1þeyðZÞ�yZZðZÞ ¼�ey2ZðZÞ�Pr f ðZÞyZðZÞ; ð15Þ

and they are subjected to the boundary conditions

fZðZÞ ¼ 1; f ðZÞ ¼ 0; yðZÞ ¼ 1 at Z¼ 0; ð16Þ

fZðZÞ ¼ 0; yðZÞ ¼ 0 as Z-1: ð17Þ

Here, the subscript Z denotes the differentiation with respect to Z.
The parameters b, yr, Mn, l and Pr are, respectively, the stretching

parameter, fluid viscosity parameter, magnetic parameter,

buoyancy or mixed convection parameter and the Prandtl

number. They are defined as follows:

b¼ 2m

mþ1
; yr ¼

Tr�T1
Tw�T1

¼� 1

dðTw�T1Þ
2

1þm
;

Mn¼ 2sB2
0

r1bðmþ1Þ ; Pr¼ m1Cp

k1
; l¼ SGrx

Rex
;

S¼ 71; Grx ¼
gbðTw�T1Þ

g21
:

Here, Grx is the local Grashof number. It is worth mentioning that

l40 assists the flow and lo0 opposes the flow; while l=0

ðTw ¼ T1Þ represent the case when the buoyancy forces are absent

(pure forced convective flow). On the other hand, if l is of a

significantly greater order of magnitude than one, the buoyancy

forces will be predominant and the flow will essentially be free

convective. Hence, combined convective flow exists when

l¼Oð1Þ. Eq. (14) shows that l is a function of x. The value of yr
is determined by the viscosity of the fluid under consideration

and the operating temperature difference. If yr is large, in other

words, if ðT1�TwÞ is small, the effects of variable viscosity on the

flow can be neglected. On other hand, for smaller values of yr,

either the fluid viscosity changes markedly with temperature or

Fig. 3. (a–c) Horizontal velocity profiles for different values of fluid viscosity parameter.
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the operating temperature difference is high. In either case, the

variable fluid viscosity effect is expected to become very

important. Also let us keep in mind that the liquid viscosity

varies differently with temperature than in that of gas. Therefore

it is important to note that yr is negative for liquids and positive

for gases. It should be also noted that the velocity u¼ uwðxÞ used
to define the dimensionless stream function f ðZÞ in the Eq. (11)

and the local Reynolds number in (10) is the one that drives the

fluid. This choice contrasts with conventional boundary layer

analysis, in which the free stream velocity is taken as the velocity

scale. Although the transformation defined in Eqs. (10) and (11)

can be used for arbitrary variations of uwðxÞ, the transformation

results in a similarity problem in which uw varies as bxm. Herem is

an arbitrary constant, not necessarily an integer. Such surface

velocity variations are therefore required for the ODE (14) to be

valid. Non-similar stretching sheet problems, which require the

solutions to partial differential equations rather than ODEs, were

considered by Jeng et al. [39] for Newtonian fluids.

It is worth mentioning here that in the absence of variable fluid

properties, i.e., variable fluid viscosity parameter and the variable

thermal conductivity parameter, Eqs. (14) and (15) reduce to

those of Ishak et al. [36]; while for continuous moving surface in

the absence of mixed convection parameter l, for yr very large and

constant magnetic field, Eqs. (14) and (15) reduces to those of

Chakrabarthi and Gupta [37]; and Vajravelu [33] when m=0. In

the presence of variable magnetic field and when there is no heat

transfer, Eq. (14) reduces to that of Chiam [16]. Further when the

variable thermal conductivity parameter and the magnetic

parameter are absent, Eqs. (14) and (15) are similar to the ones

studied by Grubka and Bobba [38].

The physical quantities of interest include the velocity

components u and v, the temperature distribution, the local

surface heat flux qwðxÞ ¼�k1ð@T=@yÞat y ¼ 0 or the Nusselt number

Nux=hx/kN where h=qw(x)/(Tw�T
N
), and the local friction

coefficient Cfx ¼ twðxÞ=r1u2
w=2 with twðxÞ ¼ m1ð@u=@yÞat y ¼ 0 de-

noting the local wall shear stress. In terms of the transformation

variables, the flow field, and the flow and heat transfer

characteristics can be written as

u¼ uwfZðZÞ; v¼�

ffiffiffiffiffiffiffiffiffiffiffiffi

2g1b

1þm

s

xm�1=2 mþ1

2
f ðZÞþ m�1

2
ZfZðZÞ

� �

;

cf
ffiffiffiffiffiffiffiffi

Rex
p

¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðmþ1Þ
p

yr
ðyr�1Þ fZZð0; yrÞ;

Nu
ffiffiffiffiffiffiffiffi

Rex
p ¼�

ffiffiffiffiffiffiffiffiffiffiffiffi

mþ1

2

r

yZð0; yrÞ

Fig. 4. (a–c) Temperature profiles for different values of magnetic parameter and mixed convection parameter.
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3. Numerical procedure

The coupled non-linear ordinary differential equations (14)

and (15) together with the boundary conditions (16) and (17) are

solved numerically by an efficient and accurate finite difference

scheme known as Keller Box method (for details see Prasad et al.

[9], Ishak et al. [36] and Cebeci and Bradshaw [40] and Keller

[41]). This method is unconditionally stable and has a second

order accuracy. For brevity, the details of the procedure are not

presented here. It is worth mentioning that a uniform grid size of

DZ¼ 0:01 was found to be satisfactory in obtaining an accuracy

up to six decimal places, for all the cases considered. To assess the

accuracy of the present method, comparison of the skin friction

and wall temperature gradient between the present results and

the previously published results are made, for several special

cases in which the mixed convection parameter and temperature

dependent fluid properties are neglected.

4. Results and discussion

The influence of the temperature dependent fluid properties

on laminar mixed convection, MHD boundary layer flow and heat

transfer in an electrically conducting fluid over a non-linear

stretching sheet is investigated numerically. Analytical solutions

are obtained for the special case when yr-1, m¼ 1 and l¼ 0. A

numerical solution is warranted for the general case which is

achieved by using a finite difference scheme known as Keller Box

method. In order to have an understanding of the mathematical

model, we present the numerical results graphically for the

horizontal velocity and the temperature field, respectively, in

Figs. 2 and 3 and Figs. 4–7; the surface velocity gradient and the

wall temperature gradient are tabulated in Table 1.

Figs. 2(a–c) present, respectively, the effects of the stretching

parameter ðbo0Þ, ðb¼ 0Þ and ðb40Þ, on the horizontal velocity

profiles fZðZÞ for several sets of values of the magnetic parameter

Mn and the mixed convection parameter l. It is noticed that the

horizontal velocity fZðZÞ decreases asymptotically to zero as the

distance increases from the sheet. Fig. 2(a) illustrates the effects of

the magnetic parameterMn and mixed convection parameter l on

the horizontal velocity profiles fZðZÞ. It is observed that the

horizontal velocity fZðZÞ decreases with increasing values of the

magnetic parameter Mn. It clearly indicates that the transverse

magnetic field opposes the transport phenomena. This is due to

the fact that the variation in Mn leads to the variation of the

Lorentz force, and the Lorentz force produces more resistance to

the transport phenomena. It is clearly seen from the Figs. 2(a–c),

the momentum boundary layer thickness decreases as the

magnetic parameter increases, and hence induces an increase

(in absolute sense) in the surface velocity gradient fZZð0Þ at the

surface (see Table 1). This phenomenon is even true with the

increasing values of the mixed convection parameter l. Physically

l40 means heating of the fluid or cooling of the surface, lo0

means cooling of the fluid or heating of the surface, and l¼ 0

corresponds to the absence of the mixed convection parameter.

From the Fig. 2(a) we also notice that an increase in the value of

the mixed convection parameter l leads to an increase in the

horizontal velocity fZðZÞ. Increase in l means an increase in the

temperature difference ðTw�T1Þ which leads to an enhancement

of the horizontal velocity fZðZÞ due to the enhanced convection,

and thus an increase in the momentum boundary layer thickness.

This observation is holds even for increasing values of the

stretching parameter b. Fig. 2(d) depicts the horizontal velocity

fZðZÞ for several sets of values of the stretching parameter b and

the mixed convection parameter l. From the figure we observe

that the effect of increasing values of the stretching parameter b is

to reduce the momentum boundary layer thickness, which tends

to zero as the space variable Z increases from the boundary.

Physically ðbo0Þ implies that the surface is decelerated from the

extruded slit, ðb¼ 0Þ implies the continuous movement of the flat

Fig. 5. Temperature profiles for different values of fluid viscosity parameter.
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surface, and ðb40Þ implies that the surface is accelerated from

the extruded slit. Horizontal velocity profiles decrease, disclosing

the fact that the effect of stretching parameter b is to decelerate

the velocity and hence reduce the momentum boundary layer

thickness.

Figs. 3(a–c), represent, respectively, the effects of the deceler-

ating surface, the continuously moving surface and the accelerat-

ing surface from the extruded slit for different values of the fluid

viscosity parameter yr and the mixed convection parameter l. The

effect of increasing values of the fluid viscosity parameter yr is to

decrease the momentum boundary layer thickness and it

asymptotically tends to zero in the free stream region. It is clearly

seen that as yr-0 the boundary layer thickness decreases and the

velocity distribution becomes linear in shape for the higher values

of the Prandtl number. This is because, for a given fluid with fixed

g, smaller yr implies higher temperature difference between the

wall and the ambient fluid. The results presented in this paper

demonstrate quite clearly that yr, which is an indicator of the

variable fluid viscosity parameter yr with temperature, has a

substantial effect on the horizontal velocity fZðZÞ with in the

boundary layer over a non-linearly stretching sheet as well as on

the skin friction coefficient. This observation is true even

for different values of the mixed convection parameter

(see Figs. 3(a–c)).

The graphs for the temperature profiles yðZÞ for different

values of the parameters governing the mathematical model, are

presented in Figs. 4–7. The general trend from the temperature

profiles shows that the temperature distribution is unity at the

wall and tends asymptotically to zero as the distance increases

from the boundary. Fig. 4(a) explores the effects of the magnetic

parameter Mn and the mixed convection parameter l on the

temperature profile yðZÞ. It is observed that the effect of the

magnetic parameter Mn is to increase the temperature yðZÞ. As
explained above, the introduction of transverse magnetic filed to

an electrically conducting fluid gives rise to a resistive force

known as Lorentz force. This force forces the fluid to experience a

resistance by increasing the friction between its layers, and due to

this there is an increase in the temperature yðZÞ. This behavior is

true even for the increasing values of the mixed convection

parameter l. Increasing values of the mixed convection parameter

l results in a decrease in the thermal boundary layer thickness;

this is associated with an increase in the magnitude of the wall

Fig. 6. (a) Temperature profiles for different values of Prandtl number (l=�0.5); (b) temperature profiles for different values of Prandtl number (l=0.0) and

(c) temperature profiles for different values of Prandtl number (l=0.5).
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temperature gradient and hence results in an increase in the

surface heat transfer. This observation is true even when the

surface is decelerating (see Fig. 4(a)), continuously moving (see

Fig. 4(b)) and accelerating (see Fig. 4(c)) from the extruded slit.

Fig. 5 shows the effect of the variable viscosity parameter yr on

the temperature profile yðZÞ. From this figure we see that an

increase in the value of the variable viscosity parameter yr is to

enhance the value of the temperature yðZÞ. This is due to the fact

that an increase in the value of yr results in an increase in the

thermal boundary layer thickness, which results in an increase in

the temperature yðZÞ. This is very much noticeable for the

decelerating surface case compared to the continuously moving

and the accelerating surface cases.

Figs. 6(a–c) and 7(a–c), respectively, represent the tempera-

ture yðZÞ for several sets of values of the Prandtl number Pr and

variable thermal conductivity parameter e for the increasing

values of stretching parameter and the mixed convection

parameter. From the graphical representation we see that the

effect of an increase in Prandtl number Pr is to decrease the

temperature yðZÞ. This is because of the fact that the thermal

boundary layer thickness decreases with an increase in the

Prandtl number. This phenomenon is true even for zero/non-zero

values of the mixed convection parameter. The effect of stretching

parameter is to increase the temperature profile in the presence of

fluid viscosity parameter. The effect of the variable thermal

conductivity parameter on the temperature profile yðZÞ for

increasing values of the mixed convection parameter l is shown

graphically in Figs. 7(a–c) for different values of stretching

parameter b. From these graphs we observe that the temperature

distribution is lower throughout the boundary layer in the

absence of variable thermal conductivity parameter and becomes

higher when we increase the values of the variable thermal

conductivity parameter. In either case the temperature distribu-

tion yðZÞ tends to zero as the space variable increases from the

boundary. This is due to the fact that the assumption of

temperature dependent thermal conductivity implies reduction

in the magnitude of the transverse velocity by a quantity

@=@yðkðTÞÞ which can be seen from Eq. (8). The effects of all the

physical parameters involved, on the surface velocity gradient and

on the wall temperature gradient, respectively at the wall are

recorded in Table 1. It is of interest to note that the effect of

increasing values of the magnetic parameter, the variable

Fig. 7. (a–c) Temperature profiles for different values of variable thermal conductivity parameter.
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viscosity parameter and the stretching parameter is to decrease

the skin friction and to increase the wall temperature gradient.

The effect of increasing values of the mixed convection parameter

and the Prandtl number is to increase the skin friction and to

decrease the wall temperature gradient, respectively.

5. Conclusion

The mathematical model for the problem of variable fluid

properties on the laminar mixed convection adjacent to a vertical

stretching sheet in the presence of variable magnetic field has

been analyzed numerically. The governing equations were

developed and transformed to coupled non-linear ordinary

differential equations by using an appropriate transformations

and then solved numerically by Keller Box method. A systematic

study is made on the effects of the parameters involved in the

laminar mixed convection heat transfer over a non-linear

stretching sheet. The following conclusions can be drawn from

the computed numerical values:

1. The effect of increasing values of the magnetic parameter and

the stretching parameter is to decrease the momentum

boundary layer thickness and to increase the thermal bound-

ary layer thickness.

Table 1

Skin friction and wall temperature gradient for different values of the physical parameters.

Pr hr e b Mn Gr=�0.5 Gr=0.0 Gr=0.5

fZZð0Þ yZð0Þ fZZð0Þ yZð0Þ fZZð0Þ yZð0Þ

1 -0 � �1 �0.56622 �0.62184 �0.02045 �0.70756 �0.42326 �0.7596

0.5 �0.96033 �0.55525 �0.52727 �0.63291 �0.45193 �0.68596

1 �1.21335 �0.51999 �0.85171 �0.58547 �0.51951 �0.63589

1.5 �1.41432 �0.49656 �1.09799 �0.55427 �0.80119 �0.59962

0 0 �1.02406 �0.56213 �0.63004 �0.63004 �0.3094 �0.67823

0.5 �1.27277 �0.52307 �0.92798 �0.57857 �0.63004 �0.63004

1 �1.46802 �0.49848 �1.16337 �0.54139 �0.88578 �0.59235

1.5 �1.63595 �0.48063 �1.35947 �0.51314 �1.10103 �0.56215

1 0 �1.32827 �0.52739 �1.00014 �0.58728 �0.73454 �0.6328

0.5 �1.52018 �0.50045 �1.22491 �0.54855 �0.96913 �0.59648

1 �1.68385 �0.482 �1.41424 �0.51902 �1.1713 �0.56663

1.5 �1.83065 �0.46781 �1.58114 �0.49567 �1.35042 �0.54183

Pr Mn e b hr fZZð0Þ yZð0Þ fZZð0Þ yZð0Þ fZZð0Þ yZð0Þ

1 0 0 �1 �10 �0.63582 �0.60653 �0.00548 �0.70287 0.48594 �0.76057

�5 �0.70857 �0.59014 �0.00601 �0.69862 0.53109 �0.76034

1 �1.41552 �0.39608 �0.00976 �0.66543 0.8985 �0.75826

�0.1 �3.21152 �0.74365 �0.00111 �0.45364 5.48756 �0.73902

0 �10 �1.01061 �0.54625 �0.66899 �0.62337 �0.36209 �0.67502

�5 �1.18814 �0.52934 �0.70565 �0.61698 �0.33059 �0.67204

1 �1.74961 �0.44908 �0.9417 �0.5739 �0.3651 �0.65427

�0.1 �5.48348 �0.39559 �2.14381 �0.39409 �0.12308 �0.61214

1 �10 �1.42171 �0.51038 �1.05943 �0.57985 �0.94146 �0.34425

�5 �1.51586 �0.49097 �1.11405 �0.57284 �0.96844 �0.34396

1 �2.02807 �0.50682 �1.46912 �0.52772 �1.01504 �0.60194

�0.1 �5.06977 �0.72464 �3.50033 �0.29333 �1.90573 �0.54923

Mn hr e Gr Pr b=�1.0 b=0.0 b=1.0

0.0 �10.0 0 1 �0.00548 �0.70287 �0.66899 �0.62337 �1.05943 �0.57985

2 �0.00553 �1.05627 �0.6724 �0.9581 �1.06369 �0.90179

3 �0.00552 �1.32203 �0.67454 �1.21633 �1.06659 �1.15522

4 �0.00551 �1.54338 �0.67605 �1.4331 �1.06876 �1.36913

1 �10 0 �0.5 1 �1.32926 �0.42453 �1.58911 �0.39907 �1.81232 �0.37716

2 �1.22306 �0.75998 �1.50757 �0.71904 �1.74382 �0.6865

3 �1.16659 �1.02383 �1.4635 �0.97866 �1.70702 �0.94319

4 �1.134 �1.2383 �1.43794 �1.1905 �1.68569 �1.15308

1 �10 0 0.5 1 �0.52926 �0.58287 �0.92532 �0.54753 �1.22753 �0.52306

2 �0.62312 �0.87599 �0.99078 �0.83105 �1.27821 �0.79808

3 �0.67275 �1.10962 �1.02905 �1.06075 �1.30998 �1.02408

4 0.704274 �1.30845 �1.05462 �1.2573 �1.33201 �1.21847

Mn hr pr Gr e b=�1.0 b=0.0 b=1.0

0 �10 1 0 0 �0.00548 �0.70287 �0.66899 �0.62337 �1.05943 �0.57985

0.1 �0.00547 �0.65577 �0.66862 �0.58048 �1.05896 �0.5394

0.2 �0.00547 �0.61576 0.66828 �0.54408 �1.05854 �0.50511

0.3 �0.00546 �0.58126 �0.66796 �0.51274 �1.05816 �0.47561

�0.5 0 �1.42171 �1.51038 �1.10608 �0.54625 �0.63582 �0.60653

0.1 �1.43631 �0.46795 �1.12326 �0.50211 �0.66361 �0.5579

0.2 �1.4518 �0.43117 �1.14045 �0.46429 �0.69118 �0.51612

0.3 �1.46874 �0.39852 �1.15764 �0.43145 �0.71838 �0.47974

0.5 0 0.48593 �0.76057 �0.32088 �0.67502 �0.7717 �0.62854

0.1 0.50155 �0.71275 �0.31175 �0.63422 �0.76509 �0.58735

0.2 0.51674 �0.67223 �0.30304 �0.59449 �0.75888 �0.55246

0.3 0.53155 �0.63738 �0.29472 �0.56274 �0.75304 �0.52248
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2. The effect of increasing values of the variable viscosity

parameter and the mixed convection parameter is to increase

the momentum boundary layer as well as the thermal

boundary layer thickness.

3. The effect of the Prandtl number is to decrease the thermal

boundary layer thickness.

4. In the presence of the magnetic field, skin friction increases

with an increase in the stretching rate parameter. But the rate

of heat transfer decreases with an increase in the stretching

rate parameter and it decreases with a decrease in the

stretching parameter.

5. In the presence of the stretching parameter the skin friction

decreases with an increase in the magnetic parameter;

however, the rate of heat transfer increases with an increase

in the magnetic parameter.

6. Of all the parameters considered, the variable viscosity

parameter has the strong effect on the drag, heat transfer

characteristics, the horizontal velocity and the temperature

field in the boundary layer of a non-linearly stretching sheet.
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