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Abstract The effects of mixed convection on the classical Falkner–Skan similarity solutions are considered, now

involving a mixed convection parameter λ as well as the exponent m associated with the outer flow. The forced

convection solutions indicate a singularity in the temperature field as m → 0.070722. Numerical solutions for

m > 0 show the existence of a critical value λc with λc < 0 and solutions only for λ ≥ λc. The nature of the

solution for λ ≫ 1 is investigated. For m = 0, there are solutions for all λ < 0, opposing flow, and only for a finite

range of λ in aiding flow with the asymptotic solution as λ → −∞ also being considered. Solutions for m < 0 are

obtained in the cases when there is a solution to the Falkner–Skan system and for a value of m when no solution to

this system exists. In the former case, two completely separate parts to the solution are seen, whereas in the latter

case, a solution exists only in aiding flow for a limited range of λ. The variation of solution with the exponent m

is also treated for both aiding and opposing flows. In both cases, a solution is seen to exist for all m > 0, which,

however, is limited to a relatively small range of m when m < 0.

Keywords Boundary-layer flow · Falkner–Skan system · Mixed convection

Mathematics Subject Classification 76D10

1 Introduction

The original work by Falkner and Skan [1] presented a classical boundary-layer similarity solution, their results

being extended by Hartree [2], see also Rosenhead [3]. In this, a free stream U∞(x) ∝ xm flows over a fixed

impermeable surface, where x measures distance along the bounding surface. This form for the outer flow allows

the problem to be reduced to a similarity system, more usually characterized by the parameter β = 2m/(m + 1).

The problem was later considered in more detail by Stewartson [4] who showed that there was a lower bound βc of

β for the existence of a solution, with βc ≃ −0.19884, and dual solutions in βc < β < 0. The singular nature of the

lower branch solutions as β → 0 from below was derived by Brown and Stewartson [5]. Further solutions to this

basic problem have been obtained by Craven and Peletier [6] for β > 1 (in the present notation) some exhibiting

several regions of reversed flow. There can also be branching solutions when β < βc as exhibited by Oskham
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168 J. H. Merkin

and Veldman [7], building on the previous work of Libby and Lui [8], with the possibility of periodic solutions

for β < −1 being reported. More recently Fang et al. [9] have derived an algebraic solution to the Falkner–Skan

problem for the particular case m = − 1
3

, or β = −1.

An alternative formulation of the problem is to allow the bounding surface to be moving in a direction along its

length with a velocity Us(x) ∝ xm to preserve the similarity form though now without an outer flow. This situation

was originally discussed by Crane [10] and Banks [11] and has subsequently been extended in many different ways,

for example, to include wall transpiration [12,13], wall slip velocities [14] and the effects of magnetic fields [15].

Many of these solutions as well as some further exact solutions are presented in the recent papers by Wang [16],

Al-Housseiny and Stone [17] and Magyari [18]. The situation when there are in effect both a moving wall and an

outer flow of the forms described above has arisen in several different contexts, particularly the case when m = 0

(or β = 0) and has been much discussed, see, for example, Klemp and Acrivos [19], Merrill et al. [20], Hussaini

et al. [21] and Riley and Weidman [22]. Here there is a further parameter ǫ (say) which gives the ratio of the wall

velocity to that of the outer flow. Critical values ǫc of ǫ are found, dependent on m, which limit the solution to

ǫ ≥ ǫc with the saddle–node bifurcation at ǫ = ǫc giving a range of ǫ where there are dual solutions.

Mixed convection arises when there is an interaction between the flow and a temperature field within the boundary

layer. This temperature variation, which usually arises from some applied temperature or heat flux distribution on

the boundary, sets up buoyancy forces which can either aid or oppose the development of the boundary-layer flow

and can have significant effects on both the flow and heat transfer, see [23–26], for example. Here we consider

a modification to the Falkner–Skan problem to include the mixed convection arising from the application of a

prescribed temperature distribution on the surface. If we choose a surface temperature Tw ∝ x2m−1, then the

similarity nature of the problem is maintained. This introduces a further (dimensionless) mixed convection parameter

λ, defined below, into the equation for the flow with the solution now depending on both m and λ. Here we keep

the exponent m directly in our equations, rather than using β mentioned above, so as to give a more direct relation

between the outer flow and the functional form of the prescribed wall temperature. Our aim is to examine how the

solution to this modified Falkner–Skan system behaves over the m − λ parameter plane, paying particular attention

to those ranges of the mixed convection parameter λ where a solution can exist, finding that these depend to a large

extent on the exponent m. We start by deriving the similarity equations.

2 Equations

The Falkner–Skan similarity solutions for the boundary-layer equations are based on an outer flow of the form

U (x) ∝ xm for some exponent m, where x measures distance along the bounding surface [1,3,4]. Consequent on

this form of outer flow, to obtain a similarity solution for mixed convection on a planar vertical surface, we require

a prescribed wall temperature Tw of the form Tw − T∞ ∝ x2m−1, where T∞ is the (constant) ambient temperature.

This leads to the boundary conditions:

ψ =
∂ψ

∂y
= 0, T − T∞ = T0

( x

ℓ

)2m−1

on y = 0,
∂ψ

∂y
→ U0

( x

ℓ

)m

, T → T∞ as y → ∞, (1)

where ψ is the streamfunction defined in the usual way, and y measures the distance normal to the surface. In (1),

ℓ is a length scale, U0 > 0 is a velocity scale and T0 a temperature scale which can be either positive (aiding flow)

or negative (opposing flow).

To make the steady, two-dimensional boundary-layer equations for mixed convection flow on a vertical surface,

see [27], for example, subject to boundary conditions (1) dimensionless, we introduce the variables

ψ = ℓ Re−1/2 U0 ψ, T − T∞ = T0 T , x =
x

ℓ
, y = Re1/2 y

ℓ
, (2)

where Re = (U0 ℓ)/ν with ν is the kinematic viscosity. Then, to reduce the problem to similarity form, we make

the further transformation, on dropping the overbars,

ψ = x (m+1)/2 f, T = x2m−1 θ, η = y x (m−1)/2. (3)
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Mixed convection in a Falkner–Skan system 169

This gives the similarity system

f ′′′ +
(m + 1)

2
f f ′′ + m (1 − f ′2) + λ θ = 0, (4)

1

σ
θ ′′ +

(m + 1)

2
f θ ′ − (2m − 1) f ′ θ = 0, (5)

subject to

f (0) = f ′(0) = 0, θ(0) = 1, f ′ → 1, θ → 0 as η → ∞, (6)

where primes denote differentiation with respect to η and where the mixed convection parameter λ = (gβℓT0)/U 2
0 .

In Eq. (5), σ is the Prandtl number and, for simplicity, we take σ = 1 throughout. At this stage, we put no restriction

on the exponent m.

3 Results

3.1 Forced convection, λ = 0, limit

We start by considering the solution to Eqs. (4–6) for the case when λ = 0. Then Eq. (4) is the standard Falkner–

Skan problem, usually written in terms of β = 2m/(m + 1) rather than m, the exponent of the outer flow [3]. In

Fig. 1a (for completeness), we plot the values of f ′′(0) against m obtained from the numerical solution of (4, 6).

The graph indicates a saddle–node bifurcation at m = mc ≃ −0.09043, corresponding the value β ≃ −0.19884

given previously [4], leading to two solution branches in mc < m < 0. We note that, at the saddle–node bifurcation,

f ′′(0) = 0, changing from positive to negative. The upper branch solution can be continued to become large m

(noting that we obtained numerical results for much larger values of m than are used to plot Fig. 1a). To determine

the nature of the solution for m large, we put f = m−1/2 f , η = m1/2 η. The leading-order problem is then

f
′′′

+
1

2
f f

′′
+ 1 − f

′2
= 0, f (0) = f

′
(0) = 0, f

′
→ 1 as η → ∞, (7)

where primes now denote differentiation with respect to η. Eq. (7) has the solution f
′′
(0) = 1.19304, giving

f ′′(0) ∼ 1.19304 m1/2 + · · · as m → ∞. The lower branch solutions terminate in a singularity as m → 0 from

below [5].

We now consider Eq. (5) for the temperature θ . We start by noting that, when m = 1
5
, Eq. (5) can be integrated

to, on satisfying the outer boundary conditions,

θ ′ +
3

5
σ f θ = 0, (8)

so that, in this case, θ ′(0) = 0, a result that also applies in the general, λ 
= 0, case. In Fig. 1b, we plot θ ′(0) against

m. The occurrence of dual solutions arising from the saddle–node bifurcation at m = mc is not clear in the figure but

is seen in our numerical solutions, noting that θ ′(0) = 0 at this bifurcation. For m large, we again put η = m1/2 η

with the leading-order problem becoming

1

σ
θ ′′ +

1

2
f θ ′ − 2 f

′
θ = 0, θ(0) = 1, θ → 0 as η → ∞. (9)

Equation (9) has the solution θ ′(η = 0) = −0.91925, giving θ ′(0) ∼ −0.91925 m1/2 + · · · as m → ∞. These

asymptotic results for large m are shown in Fig. 1 by broken lines and appear to give good agreement with the

numerical values even at quite moderate values of m.

However, the most significant feature of these results is that the solution becomes singular at m = m0 with

our numerical results suggesting that m0 ≃ 0.07 (indicated in Fig. 1b by a broken line), with |θ ′(0)| becoming

infinite, even though f ′′(0) remains finite and passes smoothly through m0. To describe how the solution behaves

as m → m0, we put m = m0 + ǫ, θ = ǫ−1 h and then look a solution valid for small ǫ by expanding

f (η; ǫ) = f0(η) + ǫ f1(η) + · · · , h(η; ǫ) = h0(η) + ǫ h1(η) + · · · . (10)
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Fig. 1 Forced convection: plots of a f ′′(0) and b θ ′(0) against

m for λ = 0 and σ = 1.0 obtained from the numerical solution of

Eqs. (4–6) with the singularity in θ at m = m0 ≃ 0.070722 being

indicated by a broken line. The asymptotic results for m large are

also shown by broken lines

Fig. 2 Plots of a f ′′(0) and b θ ′(0) against λ for m =

1.0, 0.5, 0.2 and σ = 1.0 obtained from the numerical solution

of Eqs. (4–6)

The leading-order problem is

f ′′′
0 +

(m0 + 1)

2
f0 f ′′

0 + m0 (1 − f ′2
0 ) = 0, (11)

1

σ
h′′

0 +
(m0 + 1)

2
f0 h′

0 − (2m0 − 1) f ′
0 h0 = 0, (12)

subject to

f0(0) = 0, f ′
0(0) = 0, h0(0) = 0, f ′

0 → 1, h0 → 0 as η → ∞, (13)

where primes again denote differentiation with respect to η. Equation (11) is simply the Falkner–Skan problem for

m0 and this, together with Eq. (12) and the homogeneous boundary conditions on h0, is an eigenvalue problem for

m0. To fix this, we add in the additional constraint that h′
0(0) = −1 to obtain the specific solution h0. We solved this

problem using the program D02AGF in the NAG library [28]. This gave m0 = 0.070722 and f ′′
0 (0) = 0.454072.

In general, h′
0(0) = −a0 for some constant a0 
= 0 so that h0 = a0 h0.

At O(ǫ), we have

f ′′′
1 +

(m0 + 1)

2

(

f0 f ′′
1 + f1 f ′′

0

)

− 2m0 f ′
0 f ′

1 = −
1

2
f0 f ′′

0 −
(

1 − f ′2
0

)

, (14)
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1

σ
h′′

1 +
(m0 + 1)

2
f0 h′

1 − (2m0 − 1) f ′
0 h1

= −a0

(

1

2
f0 h

′

0 + 2 f ′
0h0

)

− a0
m0 + 1

2
f1 h

′

0 + a0(2m0 − 1) f ′
1 h0, (15)

subject to

f1(0) = 0, f ′
1(0) = 0, h1(0) = 1, f ′

1 → 0, h1 → 0 as η → ∞. (16)

Equation (14) is simply a perturbation to the Falkner–Skan solution at m0, and our numerical integration gives

f ′′
1 (0) = 1.509195. The left-hand side of Eq. (15) is essentially Eq. (12) and hence (15) has a complementary

function h0 which satisfies homogeneous boundary conditions. Thus, we can specify h′
1(0) arbitrarily leading to a

problem to determine a0. We again used D02AGF in the NAG library to carry out this, finding a0 = 0.125381, so

that near the singularity at m0 seen in Fig. 1b

θ ′(0) ∼ 0.125381 (m − m0)
−1 + · · · , (17)

consistent with the plots shown in the figure.

3.2 General case, λ 
= 0

3.2.1 m > 0

We start by considering the case when m > 0, where there is only a single solution to the Falkner–Skan (forced

convection) problem, Fig. 1a. In Fig. 2, we plot f ′′(0) and θ ′(0) against λ for m = 1.0, 0.5 and 0.2, noting that,

for m = 0.2, θ ′(0) = 0 for all λ. For these values of m, we see behaviour similar to that seen previously in mixed

convection similarity solutions, see [19,20,24,29,30], for example. There is a critical value λc of λ, with λc < 0,

solutions only for λ ≥ λc, and a range of λ where there are dual solutions. The values of λc depend on m, with

|λc| decreasing as m is decreased. The first solution branch (defined as the branch that contains the Falkner–Skan,

λ = 0 solution, as in Fig. 1a) continue to become large λ, not obvious from the plots in Fig. 2 but clearly seen in

our numerical solutions.

We have already seen in the forced convection case that, at m = 0.2, the sign of θ ′(0) changes from negative

(m > 0.2) to positive (m < 0.2). In Fig. 3, we plot f ′′(0) and θ ′(0) against λ for m = 0.1. The picture for f ′′(0)

is similar to that seen in Fig. 2a, with a critical value λc ≃ −0.0347, although being smaller than for m = 0.2 (for

which λc ≃ −0.31133), with the first solution branch continuing to become large λ. However, now θ ′(0) > 0 gives

rise to a temperature ‘overshoot’ for the first branch solutions and to large, positive values of θ ′(0) on the second

solution branch, becoming increasingly larger as λ → 0 from below.

Fig. 3 Plots of f ′′(0) and

θ ′(0) against λ for m = 0.1

and σ = 1.0 obtained from

the numerical solution of

Eqs. (4–6)
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Fig. 4 Plots of a f ′′(0) and

b θ ′(0) against λ for

m = 0.02 and σ = 1.0

obtained from the numerical

solutions of Eqs. (4–6). The

first solution branch,

defined as the branch that

contains the Falkner–Skan,

λ = 0, solution, is shown by

a broken line
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We have already identified a value m0 ≃ 0.070722 where the solution for forced convection becomes singular,

Fig. 1b. This leads us to expect a similar situation in the general case and, to this end, we next consider a value of

m in the 0 < m < m0 range. We choose m = 0.02 as our example, and in Fig. 4, we again plot f ′′(0) (Fig. 4a)

and θ ′(0) (Fig. 4b) against λ. In these figures, the first solution branch (again defined as the branch that contains

the Falkner–Skan solution) is shown by a broken line. This branch continues in a small way into the aiding-flow

regime, i.e. λ > 0, terminating at λ = λ0 ≃ 0.1411 in an apparently smooth fashion as appears from our numerical

solution. There is a critical value λc ≃ −0.6410, somewhat larger than that seen for m = 0.2 and m = 0.1, giving

another (second) solution branch (full line). There is a range of λ > λc with dual solutions, and it is now the second

solution branch that continues to become large λ. However, the behaviour of θ ′(0) is more like that seen in Fig. 1b

in that the second solution branch for θ becomes singular, now as λ → 0 with |θ ′(0)| → ∞ although the solution

for f ′′(0)) on this branch appears to pass smoothly through λ = 0.

To determine the nature of this singularity on the second solution branch as λ → 0, we put θ = λ−1 h and leave

f and η unscaled. At leading order, we now have

f ′′′ + h +
(m + 1)

2
f f ′′ + m

(

1 − f ′2
)

= 0,
1

σ
h′′ +

(m + 1)

2
f h′ − (2m − 1) f ′ h = 0, (18)

subject to

f (0) = f ′(0) = 0, h(0) = 0, f ′ → 1, h → 0 as η → ∞. (19)

In Fig. 5, we plot the values of f ′′(0) and h′(0) obtained from the numerical solution of Eqs. (18, 19), then with

θ ′(0) = λ−1 h′(0), noting that this gives θ ′(0) > 0 as λ → 0 from above and θ ′(0) < 0 as λ → 0 from below,

consistent with Fig. 4.

We see that a nontrivial solution to (18, 19) exists, i.e. a solution which does not have h ≡ 0, only for m < m0,

with f ′′(0) approaching the corresponding Falkner–Skan solution and h′(0) approaching zero as m → m0. The
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Fig. 5 The limit as λ → 0:

plots of f ′′(0) and h′(0)

against m obtained from the

numerical solution of Eqs.

(18, 19). The value of ms is

shown by a broken line
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solution becomes singular, i.e. f ′′(0) and h′(0) become large, as m → ms where 0 < ms < m0. To see how the

solution behaves as m → ms, we put m = ms + δ and then

f = δ−1/2 f̃ , h = δ−2 h̃, η̃ = δ−1/2 η. (20)

When transformation (20) is applied to Eqs. (18, 19), we obtain an expansion of the form:

f̃ (η̃; δ) = f̃0(η̃) + δ f̃1(η̃) + · · · h̃(η̃; δ) = h̃0(η̃) + δ h̃1(η̃) + · · · , (21)

subject to the homogeneous boundary conditions in (19) and that now h̃(0) = δ2, f̃ ′ → δ as η̃ → ∞ with primes

denoting differentiation with respect to η̃. The leading-order problem is given by

f̃ ′′′
0 + h̃0 +

1

2
(ms + 1) f̃0 f̃ ′′

0 − ms f̃ ′2
0 = 0, (22)

1

σ
h̃′′

0 +
1

2
(ms + 1) f̃0 h̃′

0 − (2ms − 1) f̃ ′
0 h̃0 = 0.

Since this is a homogeneous problem, we solve it subject to the extra condition f̃ ′′(0) = 1. It is the solution to

this homogeneous problem, which determines ms with our numerical integration again using D02AGF in the NAG

library [28] gives ms = 0.010498. In general, f̃ ′′
0 (0) = a1 with the constant a1 is determined by a consideration of

the equations arising at O(δ). The details are not included here but are described below for the general problem.

The limit ms on the solution is indicated in Fig. 5 by a broken line. These results suggest that the solution for θ

becomes singular as λ → 0 in the way described above only for m in the range ms < m < m0.

Critical values, λc A significant feature of the results shown in Figs. 2, 3 and 4 is the existence of a critical value

λc with dual solutions arising from the saddle–node bifurcation at λ = λc. We now discuss these critical values

in more detail. We can calculate λc numerically following the approach given in [25,31], for example, whereby

we make a linear perturbation to Eqs. (4–6) resulting in a linear homogeneous problem for this perturbation. To

obtain this, we put f = fc + φ, θ = θc + g, where ( fc, θc) is the solution at the critical value and φ, g are small

perturbations, which satisfy, on linearizing

φ′′′ +
(m + 1)

2

(

fc φ′′ + f ′′
c φ

)

− 2m f ′
c φ′ + λc g = 0, (23)

1

σ
g′′ +

(m + 1)

2

(

fc g′ + φ θ ′
c

)

− (2m − 1)
(

f ′
c g + φ′ θc) = 0, (24)

φ(0) = φ′(0) = g(0) = 0, φ′ → 0, g → 0 as η → ∞ and φ′′(0) = 1, (25)

with the final condition in (25) being applied to force a nontrivial solution. When λc = 0, Eqs. (23, 24) have

the solution φ = −m f ′
c, g = −m θ ′

c. This satisfies all the required boundary conditions in (25) apart from

φ′(0) = 0, g(0) = 0, and satisfying this gives f ′′
c (0) = 0, θ ′

c(0) = 0 as noted above for forced convection.
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Fig. 6 Plots of a the

critical values λc for m > 0

and b f ′′
c (0), c θ ′

c(0), their

values at the critical point

λc, against m for σ = 1.0.

The singularity at m = m0

is shown by a broken line
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By obtaining a nontrivial solution to the eigenvalue problem (23 – 25), the values of λc are determined. In Fig. 6a,

we plot λc against m, for m > 0, obtained by this method. We see that λc decreases almost linearly for the larger

values of m, and increases to zero at m = m0 before decreasing again, becoming large as λ → 0. In Fig. 6b, c, we

plot f ′′
c (0) and θ ′

c(0), respectively, the values of f ′′(0) and θ ′(0) at λ = λc. We see that f ′′
c (0) is negative for the

larger values of m, changes sign at m = 0.2, becoming large as m → 0. To see why f ′′
c (0) = 0 at m = 1

5
, we have

(φ, g) = −
(

1
5

+ λc

) (

f ′
c, θ

′
c

)

on noting that θ ′
c(0) = 0 for this value of m. This satisfies all the boundary conditions

in (25) provided f ′′
c (0) = 0.

There is a singularity in the solution for θc at m = m0 (shown in Fig. 6c by a broken line), as perhaps might be

expected from the forced convection solution, with θ ′
c(0) > 0 becoming large as m approaches m0 from above. For

0 < m < m0, θ ′
c(0) < 0 also becoming large as m → m0 from below, compare Fig. 6c with Fig. 1b. The values of

θ ′
c(0) also become large and negative as m → 0, in line with the results plotted in Fig. 4.
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Solution for large λ: the free convection limit We have observed that a feature of the solutions described above is

that, for m > m0, the first solution branch and, for 0 < m < m0, the second solution branch continue to large

values of λ, and we now derive a solution valid in this limit. To do so, we put, following [32,33], for example,

f = λ1/4 F, ζ = λ1/4 η, thus leaving θ unscaled. When we apply this transformation to Eqs. (4–6) and then let

λ → ∞, we obtain, for the leading-order problem (F0, θ0), with

F ′′′
0 + θ0 +

m + 1

2
F0 F ′′

0 − m F ′2
0 = 0,

1

σ
θ ′′

0 +
m + 1

2
F0 θ ′

0 − (2m − 1) F ′
0 θ0 = 0, (26)

subject to

F0(0) = F ′
0(0) = 0, θ0(0) = 1, F ′

0 → 0, θ0 → 0 as ζ → ∞, (27)

where primes now denote differentiation with respect to ζ .

In Fig. 7, we plot F ′′
0 (0) and θ ′

0(0) against m obtained from the numerical solutions of (26, 27). We see that F ′′
0 (0) >

0 initially increases relatively slowly as m is decreased from m = 1 (the upper limit on m used for the figure), then

becoming large relatively quickly as m is decreased further. Solutions were obtained for larger values of m used in the

figure. Also θ ′
0(0) is negative for larger m, changes sign at m = 0.2, as expected, again becoming large and positive

as m becomes smaller. We note that our numerical solution of Eqs. (26, 27) did not appear to encounter any problem

in passing through m = m0. For m large, we put F0 = m−3/4 F0, θ0 = θ0, ζ = m1/4 ζ . The leading-order problem,

obtained by substituting this transformation into Eqs. (26, 27) and letting m → ∞, has the solution, for σ = 1.0,

F
′′

0(0) = 0.71600, θ
′

0(0) = −0.69251, giving F ′′
0 (0) ∼ 0.71600 m−1/4, θ ′

0(0) ∼ −0.69251 m1/4 as m → ∞.

We then have

f ′′(0) ∼ λ3/4 F ′′
0 (0) + · · · , θ ′(0) ∼ λ1/4 θ ′

0(0) + · · · as λ → ∞. (28)

These results are consistent with our numerical solutions, giving positive values for f ′′(0) throughout, as seen in

Figs. 2a, 3 and 4a, whereas (28) gives θ ′(0) < 0 for m > 0.2 (first solution branch), Fig. 2b and θ ′(0) > 0 for

0 < m < 0.2, Figs. 3 and 4b (second solution branch).

Although no problem was encountered at m = m0, our numerical results did break down at a positive value mi

of m, with 0 < mi < m0. To determine the value of mi and to describe how the solution to (26, 27) behaves as

m → mi, we put m = mi + δ, where 0 < δ ≪ 1 and then make the transformation:

F0 = δ−1/4 G, θ0 = δ−1 H, ξ = δ−1/4 ζ. (29)

Applying transformation (29) in (26, 27) gives

G ′′′ + H +
1

2
(mi + 1 + δ) G G ′′ − (mi + δ) G ′2 = 0, (30)

1

σ
H ′′ +

1

2
(mi + 1 + δ) G H ′ − (2mi − 1 + 2δ) G ′ H = 0, (31)

now subject to

G(0) = G ′(0) = 0, H(0) = δ, G ′ → 0, H → 0 as ξ → ∞, (32)

primes now denoting differentiation with respect to ξ .

Equations (30–32) suggest looking for a solution valid for δ small by expanding

G(ξ) = G0(ξ) + δ G1(ξ) + · · · , H(ξ) = H0(ξ) + δ H1(ξ) + · · · . (33)

The leading-order problem is

G ′′′
0 + H0 +

1

2
(mi + 1) G0 G ′′

0 − mi G ′2
0 = 0,

1

σ
H ′′

0 +
1

2
(mi + 1) G0 H ′

0 − (2mi − 1) H0 G ′
0 = 0, (34)
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subject to homogeneous boundary conditions arising from (32). As in the forced convection case, this is an eigenvalue

problem for mi and to determine mi, we construct the particular solution: (G0, H 0, ξ) which has G
′′

0(0) = 1. We

note that (34) is essentially the same problem given by (22) and our numerical integration for σ = 1, again using

D02AGF in the NAG library [28], gives mi = 0.010498 and H
′

0(0) = 0.77292 as before. In general, G ′′
0(0) = b0,

with b0 > 0, and putting G0 = b
1/3
0 G0, H0 = b

4/3
0 H0, ξ = b

1/3
0 ξ leaves the leading-order problem unchanged.

To determine the constant b0, we need to consider the terms of O(δ), and at this order,ifvujyh we have, on writing

G1 = b−1
0 G1,

G
′′′

1 + H1 +
1

2
(mi + 1)

(

G1 G
′′

0 + G0G
′′

1

)

− 2mi G
′

0 G
′

1 = b
4/3
0

(

G
′2

0 −
1

2
G0 G

′′

0

)

, (35)

1

σ
H ′′

1 +
1

2
(mi + 1)

(

G0 H ′
1 + G1 H

′

0

)

− (2mi − 1)
(

G
′

0 H1 + G
′

1 H0

)

= b
4/3
0

(

2G
′

0 H0 −
1

2
G0 H

′

0

)

, (36)

subject to H1(0) = 1, with primes denoting differentiation with respect to ξ . Since the problem given by (35,

36) has a complementary function, namely G1 = ξ G
′

0 + G0, H1 = ξ H
′

0 + 4H0, which satisfies homogeneous

boundary conditions, this problem then leads us to determine b0. Our numerical integration, again for σ = 1, gives

b0 = 0.18994. Using this value in transformation (29) then gives

F ′′
0 (0) ∼ 0.18994 (m − mi)

−3/4 + · · · , θ ′
0(0) ∼ 0.04851 (m − mi)

−5/4 + · · · as m → mi. (37)

Asymptotic expressions (37) are shown in Fig. 7 by broken lines and are in good agreement with the numerically

determined values for m close to mi.

The discussion given above and the results shown in Figs. 5c, 6 and 7 suggest that the solution becomes singular

as m → 0 which leads us to consider the case when m = 0.

3.2.2 m = 0

The solution for λ = 0 is the Blasius problem, see [3] for example. In Fig. 8, we plot f ′′(0) and θ ′(0) against λ for

this case. We now find that the first solution branch can proceed only a small way into the aiding-flow regime, i.e.

λ > 0. There is a critical value at λ = λc ≃ 0.4947 giving a range of λ < λc where there are dual solutions. The

second solution branch terminates as λ → 0, with f ′′(0) appearing to approach a finite value and θ ′(0) becoming

large. Here, as opposed to the previous cases for m > 0, the first solution branch continues to large negative values

of λ, i.e. there is a solution existing for the whole opposing-flow regime, i.e. λ < 0.

To obtain the asymptotic solution as λ → −∞, we proceed as above, now putting f = |λ|1/4 F, ζ = |λ|1/4 η

and again leaving θ unscaled. This leads to, for a general value of m, the leading-order problem (F0, θ0) satisfying

F ′′′
0 − θ0 +

m + 1

2
F0 F ′′

0 − m F ′2
0 = 0,

1

σ
θ ′′

0 +
m + 1

2
F0 θ ′

0 − (2m − 1) F ′
0 θ0 = 0, (38)

subject to

F0(0) = F ′
0(0) = 0, θ0(0) = 1, F ′

0 → 0, θ0 → 0 as ζ → ∞, (39)

where primes still denote differentiation with respect to ζ .

In Fig. 9, we plot F ′′
0 (0) and θ ′

0(0) against m obtained from the numerical solution of Eqs. (38, 39). The numerical

solution shows the existence of a critical value ma ≃ −0.074 of m, with dual solutions for a range of values m > ma.

The upper solution branch (as seen in Fig. 9a) becomes singular as m → mi, indicated by broken lines, where

mi ≃ 0.010498 is the same value given above. To see why this is the case, we can still apply transformation (29) to

Eq. (38) with the only difference being that the sign of H is changed in Eq. (30). The leading-order problem, which

satisfies homogeneous boundary conditions, is essentially the same as (34), and hence leads to the same value for

mi. Again, at O(δ), the only difference is a change in sign of H1 in (35) leading to expressions (37) with the sign of

θ ′(0) being negative. The lower solution branch terminates at m ≃ 0.1744 with both F ′′
0 (0) and θ ′

0(0) approaching

the finite values of approximately −1.0734 and −0.4960, respectively. The numerical solution indicates a weak

123



Mixed convection in a Falkner–Skan system 177

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  0.2  0.4  0.6  0.8  1

F
0
(0

)

-2

 0

 2

 4

 6

 8

 0  0.2  0.4  0.6  0.8  1
m

m

θ
0
(0

)

(a)

(b)

 0

 2

 4

 6

 8

 10

-5 -4 -3 -2 -1  0

λ

f
(0

)

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

-5 -4 -3 -2 -1  0

λ

θ
(0

)

(a)

(b)

Fig. 7 The free convection limit, λ ≫ 1, plots of a F ′′
0 (0) and

b θ ′
0(0) against m for σ = 1.0, obtained from the numerical

solution of Eqs. (26, 27). Asymptotic expressions (37) are shown

by broken lines

Fig. 8 Plots of a f ′′(0) and b θ ′(0) against λ for m = 0.0 and

σ = 1.0 obtained from the numerical solution of Eqs. (4–6)

singularity as m approaches this value, with the boundary-layer thickness increasing rapidly and the changes in

F ′′
0 (0) and θ ′

0(0) increasing.

For m = 0, we find that F ′′
0 (0) ≃ 5.3791, θ ′

0(0) ≃ −14.6243, giving

f ′′(0) ∼ 5.3791 |λ|3/4 + · · · , θ ′(0) ∼ −14.6243 |λ|1/4 + · · · as λ → −∞ (m = 0). (40)

The values for f ′′(0) and θ ′(0) given in (40) are relatively poor approximation to the results plotted in Fig. 8 and

require much larger values of |λ| to get better agreement (which is confirmed in our numerical integrations). This

might be expected as the next order terms are only of O(|λ|−1).

3.2.3 mc < m < 0

In this case, for 0 > m > mc ≃ −0.09043, there are two solutions for the Falkner–Skan, λ = 0, problem, see Fig. 1.

In Fig. 10, we plot f ′′(0) and θ ′(0) against λ for m = −0.05 representative of this case. We see that there are now

three solution branches, two arising from the saddle–node bifurcation at λc ≃ −0.1520 contain the Falkner–Skan,

λ = 0, solution. The lower branch, which has f ′′(0) < 0 at λ = 0, terminates at a positive value of λ with f ′′(0)

approaching zero and θ ′(0) approaching a finite negative value. There is a further saddle–node bifurcation on the

middle solution branch, which has f ′′(0) > 0 at λ = 0, in the aiding-flow regime, i.e. at λc ≃ 0.5633, giving a
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Fig. 9 The solution for |λ| ≫ 1, λ < 0, plots of a F ′′
0 (0) and b

θ ′
0(0) against m for σ = 1.0, obtained from the numerical solution

of Eqs. (38, 39)

Fig. 10 Plots of a f ′′(0) and b θ ′(0) against λ for m = −0.05

and σ = 1.0 obtained from the numerical solution of Eqs. (4–6)

third solution branch. This upper solution arising from this saddle–node bifurcation terminates in a singularity as

λ → 0 from above, with f ′′(0) approaching a finite positive value of approximately 1.2 and θ ′(0) becoming large.

The results shown in Fig. 10 do not proceed to large negative values of λ. However, we have already seen

in Fig. 9 that solutions do exist in the limit as λ → −∞ for this value of m. In Fig. 11, we plot additional

solutions for m = −0.05, with these solutions being disjoint from the solutions shown in Fig. 10. These solutions

have a saddle–node bifurcation at λc ≃ −9.066 with both solution branches proceeding to large negative values

of λ. We can see why this is the case in Fig. 9. Here, for m = −0.05, there are are two solutions, one having

F ′′
0 (0) = 0.7695, θ ′(0) = −1.5534 and the other having F ′′

0 (0) = −0.3920, θ ′(0) = −0.5541, giving

f ′′(0) ∼ 0.7695 |λ|3/4 + · · · , θ ′(0) ∼ −1.5534 |λ|1/4 + · · · , (41)

for the upper solution branch and

f ′′(0) ∼ −0.3920 |λ|3/4 + · · · , θ ′(0) ∼ −0.5541 |λ|1/4 + · · · , (42)

for the lower solution branch as λ → ∞, consistent with the plots shown in Fig. 11.

Critical values We have seen the existence of critical values λc in the results for m = 0 (Fig. 8) and for m = −0.05

(Fig. 10), and so the picture shown in Fig. 6 does not reveal the full story. To complete the picture, we now concentrate

on values of m ≤ 0 and in Fig. 12a, we plot further values of λc against m. Our numerical calculations, using Eqs.

(23–25), give two disjoint branches. The upper branch terminates at m ≃ 0.0229 and at m ≃ −0.1875 and has

λc > 0 with λc changing only relatively slowly in this range. The lower branch changes sign from negative to
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Fig. 11 Further plots of a

f ′′(0) and b θ ′(0) against λ

for m = −0.05 and σ = 1.0

obtained from the numerical

solution of Eqs. (4–6)

-20

-10

 0

 10

 20

 30

 40

-200 -150 -100 -50  0

λ

f
(0

)

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-200 -150 -100 -50  0

λ

θ
(0

)

(a)

(b)

positive at m ≃ −0.0904 = mc, approaches the large |λ| limit of m ≃ −0.074 and terminates at m ≃ −0.1875. In

Fig. 12b, c, we plot, respectively, f ′′
c (0) and θ ′

c(0). The values of f ′′
c (0) on the upper branch have only relatively

small variation across the whole range of m and become singular at both ends of this range, more obvious in the

figure at the upper end. The values of f ′′
c (0) on the lower branch show a slightly greater variation and again become

singular at both ends of the range, now more obvious at the lower end. The values of θ ′
c(0) on the upper branch, shown

in Fig. 12c, become large and positive at the lower end of the range and approach zero at the upper end. The values

of θ ′
c(0) on the lower branch show a relatively small variation and do not appear to become singular at either end.

3.2.4 m < mc

One feature to emerge from Fig. 12 is the existence of solutions for m < mc, i.e. where there are no solutions in

the Falkner–Skan, λ = 0, problem. To consider this situation, we took a value of m = −0.15 < mc, where we see

a critical value λc, Fig. 12a, and in Fig. 13 we plot f ′′(0) and θ ′(0) against λ. We find a critical value λc ≃ 0.3119,

consistent with Fig. 12 (upper branch), with dual solutions in 0 < λ < λc and with both solution branches becoming

singular as λ → 0 in which f ′′(0) appears to be approaching constant values and θ ′(0) becoming large. (We note

that θ ′(0) achieved much larger values on both solution branches as λ became small than those that are used to plot

Fig. 13). We were unable to find any solutions in the opposing-flow regime, i.e. λ < 0.

Our discussion to present has concentrated on determining the behaviour of the solution for specific values of m,

i.e essentially plots of f ′′(0) and θ ′(0) against λ for a given value of m. We can gain further insight into the nature

of problem by fixing a value for λ and considering how the solution varies with m. This is what we propose to do

next.
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Fig. 12 Plots of a the

critical values λc for m < 0

and b f ′′
c (0), c θ ′

c(0), their

values at the critical point

λc, against m for σ = 1.0
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3.3 Variation with m

We consider two cases, λ = 0.5, representative of aiding flow, and λ = −0.5, representative of opposing flow.

3.3.1 Aiding flow

In Fig. 14, we plot results for λ = 0.5. For this case, there is no critical value in m > 0, Fig. 6a, and only one

critical value, at m ≃ −0.1084 in m < 0, Fig. 12a. This is reflected in the results shown in Fig. 14 where we

see two disjoint branches. The upper branch, m > 0, continues to become large m and becomes singular as m

approaches a small, but strictly positive, value ms, with both f ′′(0) and θ ′(0) becoming large and positive and the

boundary-layer thickness decreasing. The other solution branch exists only for a finite range of m with the critical
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Fig. 13 Plots of a f ′′(0) and b θ ′(0) against λ for m = −0.15

and σ = 1.0 obtained from the numerical solution of Eqs. (4–6)

Fig. 14 Plots of a f ′′(0) and b θ ′(0) against m for λ = 0.5,

representative of aiding flow, and σ = 1.0 obtained from the

numerical solution of Eqs. (4–6). The asymptotic expressions for

large m are shown by broken lines

value at m = mc ≃ −0.1084 producing dual solutions in mc < m < 0. Both solution branches terminate as

m → 0 from below with both f ′′(0) and θ ′(0) appearing to approach finite values though in a singular way with

the boundary-layer thickness increasing as m decreases to zero.

The solution for large m follows that given above for forced convection. If we apply the transformation given,

then we find that the buoyancy term enters the problem at leading order only if λ is of O(m). When λ is of O(1),

the leading-order problem for m large is given by Eq. (7) together with

1

σ
θ ′′ +

1

2
f θ ′ − 2 f

′
θ = 0, θ(0) = 1, θ → 0 as η → ∞. (43)

On solving Eq. (43), we find that θ ′(0) ∼ −0.91925 m1/2 + · · · as m → ∞. This asymptotic result is shown in

Fig. 14b by a broken line and is in very good agreement with the numerically determined values even at relatively

small values of m. The corresponding f ′′(0) ∼ 1.19304 m1/2 + · · · is shown in Fig. 14a, again by a broken line,

in agreement with the numerical values being not as good as for θ ′(0).

To determine the value of ms and the nature of the solution as m → ms, we follow an approach similar to that

seen above in the free convection limit. We start by putting m = ms + δ, where 0 < δ ≪ 1 and then put

f = δ−1/2 g, θ = δ−2 h

λ
, Y = δ−1/2 η (λ 
= 0). (44)
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When transformation (44) is substituted into Eqs. (4–6), an expansion of the form

g(Y ; δ) = g0(Y ) + δ g1(Y ) + · · · h(Y ; δ) = h0(Y ) + δ h1(Y ) + · · · (45)

is suggested with the leading-order term being given by

g′′′
0 + h0 +

1

2
(ms + 1) g0 g′′

0 − ms g′2
0 ,

1

σ
h′′

0 +
1

2
(ms + 1) g0 h′

0 − (2ms − 1) g′
0 h0 = 0, (46)

subject to the homogeneous boundary conditions

g0(0) = 0, g′
0(0) = 0, h0(0) = 0, g′

0, h0 → 0 as Y → ∞, (47)

where primes now denote differentiation with respect to Y . Equations (46, 47) represent an eigenvalue problem

for ms and and is the same as that given in (34) in the large λ limit. As before, we determine that particular

solution (g0, h0, Y ) which has g′′
0(0) = 1, and so, for σ = 1, ms = mi = 0.010498 with a corresponding value,

h
′

0(0) = 0.77292. We note that this value for ms is independent of λ. Now g′′
0 (0) = d0, for some d0 > 0, and the

general solution is then given by

g0 = d
1/3
0 g0, h0 = d

4/3
0 h0, Y = d

1/3
0 Y. (48)

When we apply (48) in the next order term in expansion (45) and put g1 = d
−1/3
0 g1, h1 = d

2/3
0 h1 we find that, at

O(δ),

g′′′
1 + h1 +

1

2
(ms + 1)

(

g0 g′′
1 + g′′

0 g1

)

− 2ms g′
0 g′

1 = d
2/3
0

(

g′2
0 −

1

2
g0 g′′

0

)

, (49)

1

σ
h

′′

1 +
1

2
(ms + 1)

(

g0 h
′

1 + g1 h
′

0

)

− (2ms − 1)
(

g0 h
′

1 + g′
1 h0

)

= d
2/3
0

(

2g0 h0 −
1

2
g0 h

′

0

)

, (50)

subject to g′
1 → 1 as Y → ∞. Since Eqs. (49, 50) have a complementary function

(

Y g′
0 + g0, Y h

′

0 + 4h0

)

which

satisfies homogeneous boundary conditions, this becomes a problem to determine d0. Our numerical integration

gives, for σ = 1, d0 = 0.01299. From (44), we then have, for λ = 0.5,

f ′′(0) ∼ 0.01299 (m − ms)
−3/2 + · · · , θ ′(0) ∼ 0.0011 (m − ms)

−5/2 + · · · as m → ms. (51)

The values for f ′′(0) and θ ′(0) given in (51) are in reasonable agreement with the numerical values plotted in

Fig. 14 for m close to ms.

3.3.2 Opposing flow

We plot the results for λ = −0.5 in Fig. 15. Here, from Figs. 6a and 12a, there are three critical values of m.

The saddle–node bifurcation at m ≃ 0.2660 produces dual solutions, one branch of which continues to large m in

the way described above. The other branch terminates at a finite value of m ≃ 0.3494. There is another disjoint

solution branch arising from the critical value at m ≃ −0.0275 giving one solution branch that continues into

m > 0, with another critical value at m ≃ 0.0221 (not obvious in the figure but seen clearly in the numerical results)

and then again becoming singular as m → ms ≃ 0.01050 from above, with f ′′(0) and θ ′(0) becoming large and

positive/negative. The behaviour of the solution close to ms is similar to that given above for aiding flow, the only

difference being a change of sign for θ resulting from (44) and the consequent change of sign for θ ′(0) in (51). The

other other solution branch terminates at m ≃ 0.1814, so that it appears that, in this case, there is a finite range of

m over which there is no solution.

4 Discussion and conclusions

We have considered the effects of mixed convection on the classical Falkner–Skan system involving the two

parameters, m associated with the form of the outer flow and the mixed convection parameter λ. We have observed
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Fig. 15 Plots of a f ′′(0) and b θ ′(0) against m for λ = −0.5,

representative of opposing flow, and σ = 1.0 obtained from the

numerical solution of Eqs. (4–6). The singularity at m = ms is

indicated by a broken line

Fig. 16 Plots of a f ′′(0) and b θ ′(0) against λ for m = m0 =

0.070722 and σ = 1.0 obtained from the numerical solution of

Eqs. (4–6)

some, perhaps unexpected, results. The first of these is that, for forced convection, the existence of a value m =

m0 ≃ 0.07072 where there is a singularity in the solution for the temperature, Fig. 1b, this being independent of

the flow. We consider this case further in Fig. 16 with plots of f ′′(0) and θ ′(0) against λ for m = 0.070722. The

singular nature of the solution as λ → 0 can clearly be seen in the figure with f ′′(0) approaching its Falkner–Skan

value of approximately 0.4541 as λ approaches zero from above. For λ > 0, θ ′(0) becomes increasingly larger

as λ → 0+, whereas for, λ < 0, both f ′′(0) and θ ′(0) approach finite values, although with the thickness of the

boundary layer increasing, as λ → 0−. As can be seen in Figs. 7 and 9, the solution proceeds to both large positive

and negative values of λ in this case, with

f ′′(0) ∼ 2.143 λ3/4 + · · · , θ ′(0) ∼ 1.425 λ5/4 + · · · as λ → ∞, (52)

f ′′(0) ∼ −0.783 |λ|3/4 + · · · , θ ′(0) ∼ −0.502 |λ|5/4 + · · · as λ → −∞. (53)

We find that asymptotic expressions (52, 53) are not particularly good fit to the numerical values for the values of

λ used to plot Fig. 16.

For the general problem, we started by considering the case when m > m0 finding behaviour similar to that seen

previously in related problems, Figs. 2 and 3, in which there is a critical value λc of λ, dependent on m, limiting the

range of solution to λ ≥ λc with one solution branch continuing to large positive values of λ and the other branch

terminating at a finite value of λ. We then took a value for m in 0 < m < m0, Fig. 4, finding similar behaviour,
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although it was now the first solution branch, i.e. that branch containing the Falkner–Skan, λ = 0, solution, which

terminated at a finite value of λ, whereas the second solution branch was now the one that continued to large λ .

This led us to consider the free convection, λ → ∞, limit, Fig. 7. The main feature of this asymptotic solution

was the existence of a value mi ≃ 0.0105 of m limiting the possibility of having solution continuing to large λ to

only m > mi. This was reflected in the results for m = 0, Fig. 8, which contains the classical Blasius solution for

λ = 0. Here the solution for aiding flow, λ > 0, continued only to a saddle–node bifurcation at λ ≃ 0.4947 which

gave two solution branches, the one containing the Blasius solution continued to become large negative values of λ.

Following on from this, we next considered the solution for |λ| ≫ 1, λ < 0, Fig. 9, again that it it became singular

as m → mi. There was also a saddle–node bifurcation at m = ma ≃ −0.074 putting a lower bound on m for a

solution in this limit.

We then looked at the case when m < 0, starting with a case when m > mc, Figs. 10 and 11, i.e. where there

are two solutions in the original Falkner–Skan system. Here we found two separate parts to the solution, one part

arising from the two solutions to the Falkner–Skan problem in 0 > m > mc Fig. 10, and a completely separate part,

Fig. 11, giving the two solutions that appear in the |λ| limit. This gave three critical values, two in the first part and

one in the second part, leading us to consider the critical values λc further for m < 0 in Fig. 12. This figure reveals

two disjoint branches, as might be expected from the results shown in Figs. 10 and 11. One branch continues the

Falkner–Skan solution with λc = 0 and the other branch arises from the saddle–node bifurcation in the large |λ|

limit. It might appear from Fig. 12a that these two branches could join (although it is less obvious in Fig. 12b).

However, we were unable to do so even when progressing the numerical solution in very small increments of m.

A feature of our calculations of λc was a range of m < mc where a solution is indicated. We examined this

case in Fig. 13 for m = −0.15 < mc for which value λc > 0, and there is no solution in the large |λ| limit. As

a consequence, we found solutions only for aiding flow, λ > 0, with a critical value at λc ≃ 0.3119 limiting the

range of solutions. Both solution branches emerging from the saddle–node bifurcation became singular as λ → 0

from above.

Lastly, we examined how the solution behaved with the exponent m for a fixed value of λ for both aiding flow,

Fig. 14, and opposing flow, Fig. 15. In both cases, we found a solution for all m > 0 approaching the corresponding

asymptotic limit as m → ∞. For aiding flow, there was a solution for only a limited range of m < 0. The same

applied for opposing flow although now this solution did extend slightly into m > 0 with one solution branch

becoming singular as m → mi.

Finally, it is worth thinking about the temporal stability of the similarity solutions. To address this aspect, we can

set up an initial-value problem by adding time-dependent terms to the equations with the similarity solutions then

being possible large time behaviour of this system. By making a linear perturbation about the similarity solutions

proportional to eω t leads to an eigenvalue problem for ω with its sign determining the stability. Previous studies,

though limited, of this and related problems suggest that it is the upper branch solutions, as seen in Fig. 2a, which

are stable, the saddle–node bifurcation at λc leading to a change in the temporal stability with the lower branch

being unstable. From this, we might conjecture that the solution branch that proceeds to large λ is the stable one,

changing stability at a saddle–node bifurcation. What happens when the solution proceeds to large negative λ or

when there are more than two solutions, as in Figs. 10 and 11, is far from clear and needs further treatment, although

this is beyond the scope of the present work.
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