Mixed Convection in a Vertical Porous Channel

J. C. Umavathi • J. P. Kumar • A. J. Chamkha • I. Pop

Published online: 17 April 2008
© Springer Science+Business Media B.V. 2008

Erratum to: Transp Porous Med DOI 10.1007/s11242-005-0260-5

1. Equations (1) and (3) should be replaced by the following equation

$$
g \beta\left(T-T_{0}\right)-\frac{1}{\rho_{0}} \frac{\partial P}{\partial X}+\frac{\mu_{\mathrm{eff}}}{\rho_{0}} \frac{\mathrm{~d}^{2} U}{\mathrm{~d} Y^{2}}-\frac{v}{K} U-\frac{\rho C_{\mathrm{F}}}{\rho_{0}} U^{2}=0
$$

2. Equation (7) should be replaced by the following equation

$$
\frac{\mathrm{d}^{4} U}{\mathrm{~d} Y^{4}}=\frac{\beta g}{\alpha C_{p}}\left(\frac{\mathrm{~d} U}{\mathrm{~d} Y}\right)^{2}+\frac{1}{K} \frac{\mathrm{~d}^{2} U}{\mathrm{~d} Y^{2}}+\frac{\beta g}{\alpha C_{p} k} U^{2}+\frac{C_{\mathrm{F}}}{v} \frac{\mathrm{~d}^{2} U^{2}}{\mathrm{~d} Y^{2}}
$$

3. Equation (10) should be replaced by the following equation

$$
R e=\frac{U_{0} D}{v} ; \quad \operatorname{Pr}=\frac{v}{\alpha} ; \quad B r=\frac{\mu U_{0}^{2}}{k \Delta T}
$$

4. The year publication to be introduced in the following two references

Srinivasan, V. and Vafai, K.: 1994, Analysis of linear encroachment in two-immiscible fluid systems, ASME J. Fluids Eng. 116, 135-139.
Vafai, K. and Kim, S.: 1989, Forced convection in a channel filled with a porous medium: an exact solution, ASME J. Heat Transfer 111, 1103-1106.

The online version of the original article can be found under doi:10.1007/s11242-005-0260-5.
J. C. Umavathi • J. P. Kumar

Department of Mathematics, Gulbarga University, Gulbarga, Karnataka 585 106, India
A. J. Chamkha

Manufacturing Engineering Department, The Public Authority for Applied Education and Training, Shuweikn 70654, Kuwait
I. Pop (\boxtimes)

Faculty of Mathematics, University of Cluj, CP 253, Cluj 3400, Romania
e-mail: popi@math.ubbcluj.ro
5. Figures 2 to 7 should be replaced by the following graphs. Figures 8 to 10 should be removed.

Fig. 2 Plots of u versus y in the case of asymmetric heating for different values of ε

Fig. 3 Plots of velocity profiles versus y in the case of asymmetric heating for different values of σ, I, ε and GR

Fig. 4 Plots of temperature versus y in the case of asymmetric heating for different values of σ, I, and ε

Fig. 5 Temperature profiles for different values of σ for isoflux-isothermal case

Fig. 6 Temperature profiles for different values of σ for isothermal-isoflux case

Fig. 7 Nusselt number for different values of σ

