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)is paper analyzes the collective effects of buoyancy force, thermal radiation, convective heating, and magnetic field on
stagnation point flow of an electrically conducting nanofluid past a permeable stretching/shrinking sheet in a porous medium.
Similarity transformations are used on the resulting nonlinear partial differential equations to transfer into a system of coupled
nonlinear ordinary differential equations. )e fourth-fifth-order Runge–Kutta–Fehlberg method with shooting technique is
applied to solve numerically. Results are obtained for dimensionless velocity, temperature, and nanoparticle volume fraction as
well as the skin friction and local Nusselt and Sherwood numbers. )e results indicate the existence of two real solutions for the
shrinking sheet in the range of λc < λ< 0. )e fluid flow stability is maintained by increasing the magnetic field effect, whereas the
porous medium parameter inflates the flow stability. It is also noted that both the skin friction coefficient and the local Sherwood
number approximately decline with the intensification of thermal radiation within the range from 9.83% to 14% and the range
from 48.86% to 78.66%, respectively. It is also evident in the present work that the local Nusselt number upsurges with the porous
and suction/injection parameters.

1. Introduction

Problems of fluid flow and heat transfer in a porous medium
have a wide range of applications in various engineering
systems. )ese problems occur in the storage of radioactive
nuclear waste, transpiration cooling, separation processes in
chemical industries, filtration processes, transport processes
in aquifers, groundwater pollution, geothermal extraction,
and fiber insulation as reported by [1]. Using nanofluid is a
potential technique to improve the problem of heat transfer
in high-technology industries as mentioned by [2]. )e
author of [3] is the leading person to specify engineered
colloids consisting of nanoparticles dispersed in a base fluid
like water, ethylene glycol, engine oil, or others as a
nanofluid. On the other hand, using porous media is an
effective method for heat transfer enhancement in industrial

systems as described by [4]. Following these facts, a lot of
work has been done on fluid flow and heat transfer problems
in a porous medium with nanofluid. Accordingly, [5]
pointed out that an alternative method for improving heat
transfer characteristics in various thermal devices is using
porous medium and nanofluid together. Reference [6]
conducted a wide-ranging review of the simultaneous ap-
plication of nanofluids and porous media for heat transfer
enhancement cases in thermal systems with diverse con-
ditions. Different aspects of this problem have been explored
by many investigators such as those in [7–11].

Fluid flow caused by a stretching/shrinking sheet has
many practical applications in the fields of metallurgy,
polymer technology, chemical engineering, and so forth as
explained by [12, 13]. )e study of magnetohydrodynamic
(MHD) stagnation point flow past a stretching/shrinking
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sheet has been carried out by many researchers in various
ways due to its practical applications. A few examples are
[14–23]. Furthermore, [24] numerically studied magneto-
hydrodynamic (MHD) flow of an electrically conducting
fluid past a stretching sheet in a porous medium with a
buoyancy force effect. It was reported that the solute
buoyancy effect and electric field override the fluctuations in
inertia and viscous forces to enhance the velocity field.
Reference [25] theoretically examined unsteady mixed
convection boundary-layer flow of a heated vertical surface
in a nanofluid-saturated porous medium. )e result therein
indicated that as the values of the thermophoresis and
Brownian motion parameters increase, the local skin friction
coefficient increases, whereas the Nusselt number decreases.
Moreover, the Sherwood number increases as the thermo-
phoresis parameter increases and decreases as the Brownian
motion parameter increases.

Mixed convection of heat and mass transfer has different
applications in heat exchanges, solar collectors, nuclear
reactors, atmospheric boundary layer flow, nanotechnology,
and electronic apparatus as reported by [26]. Besides being
used as a convective heat transfer mechanism, thermal ra-
diation plays a key role in managing heat transfer processes.
Controlling the effects of radiation in fluid flow and heat
transfer problems has vigorous significance in engineering
processes, nuclear plants, space vehicles, gas turbines, and
satellites involving high temperatures needed in designing
specific equipment as reported by [27, 28]. Taking this fact
into account, various researchers have investigated radiation
effects on mixed convection flow problems in view of dif-
ferent aspects of the problem. Reference [29] numerically
investigated hydromagnetic mixed convection stagnation
point flow past a vertical plate embedded in a highly porous
medium with the effects of radiation and internal heat
generation. )e result therein revealed that the local skin
friction, local Nusselt number, and local Sherwood number
intensify as magnetic field strength and radiation parameters
increase. Reference [30] investigated steady two-dimen-
sional magnetohydrodynamic (MHD) flow past a permeable
stretching or shrinking sheet with radiation effects.
According to the result therein, dual solutions exist for
shrinking surfaces, and the solution is unique for the
stretching case. Reference [31] analyzed the heat and mass
transfer characteristics in a two-dimensional stagnation
point flow over a stretching vertical sheet under effects of
buoyancy force and thermal radiation using the implicit
finite-difference method. Extending the idea, [32] numeri-
cally investigated buoyancy and thermal radiation effect on
heat transfer of water-based nanofluid flow over a stretching
sheet. )e result therein showed that the skin friction co-
efficient upturns with the intensification of the magnetic
field and the radiation effect and declines with buoyancy
parameter and nanoparticle volume fraction parameter.

Even though several works have been testified on fluid
flow and heat transfer problems with nanofluid, there seem
to be no efforts in the literature to consider the collective
effects of buoyancy force, thermal radiation, viscous and
porous dissipation, and porous medium on hydromagnetic
stagnation point flow of nanofluid flow past a permeable

stretching/shrinking sheet with convective boundary
conditions.

)us, our main objective is to analyze the mixed con-
vection stagnation point flow of a radiating magnetic
nanofluid over a permeable stretching/shrinking sheet in a
porous medium with convective conditions. Moreover, the
inclusion of viscous and porous dissipation terms in the
energy equation enables us to examine their effect on fluid
flow and heat transfer. Such magnetohydrodynamic (MHD)
boundary layer fluid flows of an electrically conducting fluid
past a stretching/shrinking sheet have various applications
in modern metallurgical and metal-working processes such
as drawing of continuous filaments through quiescent fluids
and annealing and tinning of copper wires as mentioned in
[33, 34]. )e present work is an extension from [15] to
include the collective effects of thermal radiation, the per-
meability of the stretching/shrinking sheet, and porous
medium. )e similarity transformation technique is applied
to transform the resulting system of partial differential
equations into a system of nonlinear ordinary differential
equations. )e resulting system of nonlinear ordinary dif-
ferential equations is solved using the fourth-fifth-order
Runge–Kutta–Fehlberg method with shooting technique.
)e effects of various parameters on the velocity, temper-
ature, and nanoparticle concentration are presented
graphically, and skin friction coefficient, heat, and mass
transfer rates are discussed quantitatively.

2. Mathematical Formulation and Analysis

We consider a steady, laminar, viscous, and incompressible
two-dimensional stagnation point flow of a magnetic
nanofluid past a heated permeable stretching/shrinking
sheet which is embedded in a porous medium along
x-direction. It is assumed that a constant magnetic field of
strength B0 is applied in the positive y-direction normal to
the surface. )e induced magnetic field is assumed to be
small compared to the applied magnetic field. )e ambient
temperature of the fluid and the ambient concentration are
taken as T∞ and ϕ∞, respectively, while the surface below
the stretching/shrinking sheet is heated by convection from
a hot fluid having initial temperature Tf with nanoparticles
concentration ϕf, which provides a heat transfer coefficient
h1 and mass transfer coefficient h2. It is assumed that the
porous medium is homogeneous and isotropic and saturated
with a nanofluid which is in local thermal equilibrium with
the solid matrix. Further, the flow is assumed to be slow so
that a Forchheimer quadratic drag term does not appear in
the momentum equation. )e effects of thermal radiation
are incorporated through energy equation. )e fluid is
considered to be a gray, absorbing emitting radiation but
nonscattering medium and the Rosseland approximation is
used to describe the radiative heat flux in the energy
equation. We choose the coordinate system so that x-axis is
along the stretching/shrinking sheet and y-axis is normal to
the sheet surface. A sketch of the physical model and the
coordinates are given in Figure 1.Using Buongiorno con-
vective transport equations with the above stated physical
situations, Oberbeck–Boussinesq, and the boundary layer

2 Mathematical Problems in Engineering



approximation, the governing equations of the conservation
of total mass, momentum, energy, and nanoparticles volume
fraction in the presence of magnetic field past a permeable

stretching/shrinking sheet take the following forms
([35–37]):
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where the velocity components along the x-direction and
y-direction are given by u and v, respectively. )e nano-
particle density, the density of base fluid, the absolute vis-
cosity of the base fluid, the thermal diffusivity of the base
fluid, the Stefan–Boltzmann constant, and the mean ab-
sorption coefficient are dented by ρp, ρf, μf, αf, σ

∗, and k∗,

respectively. Furthermore, τ � (ρc)p/(ρc)f is the ratio of

nanoparticle heat capacity and the base fluid heat capacity,K

is the porous medium permeability, T is the local temper-
ature, ϕ is the local solid volume fraction of the nanofluid, β
is volumetric thermal expansion coefficient of the base fluid,
DB is the Brownian diffusion coefficient, DT is the ther-
mophoretic diffusion coefficient, and g is the acceleration
due to gravity. )e subscript ∞ denotes the values at large
values of y where the fluid is quiescent. )e boundary
conditions are written as

y

x g

u = Uw(x)

u = U∞(x)

T = T∞

v = V0

T = Tf

B0

B0

Figure 1: Flow diagram of the model.
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y � 0: u � ax, v � V0, − k
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where U∞(x) � (αf/x)Ra

1/2
x is the external velocity, Rax �

(1 − ϕ)gβ(Tf − T∞)x
3/]αf is the local Rayleigh number,

Uw(x) � ax is the stretching/shrinking velocity of the sheet,
a is a constant, and V0 is the wall mass transfer velocity.

We introduce the following nondimensional similarity
variables in order to transfer the governing equations
(A.1)–(A.4) and boundary equations (A.5)–(A.6):
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)e equation of continuity is satisfied for the chosen
stream function ψ(x, y) such that
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(4)

Now using the transformation quantities, we obtained
transformed nonlinear ordinary differential equations as
follows:
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Here, primes denote differentiation with respect to η and
s′, θ, f, and η are the dimensionless velocity, temperature,
particle concentration, and similarity variable, respectively.
)e variables Nr, Pr, Le,Nb,Nt, R,M,Ec,Da, δ, and λ de-
note the nanofluid buoyancy ratio parameter, Prandtl
number, the Lewis number, the Brownian motion

parameter, the thermophoresis diffusion parameter, the
radiation parameter, magnetic field parameter, Eckert
number, the porous media parameter, suction/injection
parameter, and stretching/shrinking parameter, respectively.
)e parameters and dimensionless numbers are defined as
follows:
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(8)

)e boundary conditions in terms of the new variables
become

η � 0: s(0) � δ, s′(0) � λ, θ′(0) � − Nc[1 − θ(0)],

f′(0) � − Nc∗[1 − f(0)],

(9)

η⟶∞: s′(∞) � 1, θ(∞) � 0, f(∞) � 0. (10)

where Nc andNc∗ are the heat transfer convective parameter
and the mass transfer convective parameter, respectively.
When Nc⟶∞ and Nc∗⟶∞, the convective boundary
conditions reduce to a uniform surface temperature and
nanoparticle concentration.

)e important physical quantities of interest, in this
problem, are the dimensionless skin friction coefficient, the
local Nusselt number, and the local Sherwood number. Skin
friction coefficient measures the friction that occurs at the
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boundary, Nusselt number helps to determine the wall heat
flux, and Sherwood number is used to determine the wall
mass flux as explained by [38]. )ese important engineering
parameters are defined as
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where τw is the wall shear stress, q}w is the wall heat flux
due to the temperature gradient, and q}m is the wall mass
flux due to the Brownian motion force at y � 0, and they
are given by
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In dimensionless form, the reduced local Nusselt and
Sherwood numbers can be rewritten as
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− 1/4
x � − 1 +

4

3
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− 1/4
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(13)
where Rax, Nux, Shx are local Rayleigh number, local
Nusselt number, and local Sherwood number, respectively.

3. Numerical Procedures

)e fourth-fifth-order Runge–Kutta–Fehlbergmethod along
with the shooting technique is implemented to analyze the
flow model for the above coupled nonlinear ordinary dif-
ferential equations (5)–(7) subject to the boundary condi-
tions, as well as equations (9) and (10) for various values of
the governing parameters. )e solution procedure is an
efficient, adaptive, and accurate method of order 4 with an
error estimator of order 5. )is method has been used by
several researchers for solving problems of convective
boundary layer flows for instance papers by [39]. To solve
numerically using the Runge–Kutta–Fehlberg method, first,
we need to reduce the coupled boundary value problem into
a set of first-order ODEs to obtain a system of seven si-
multaneous equations of the first order.

Defining new variables, we obtain the following system:
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Here, prime denotes the differentiation with respect to η
and the corresponding initial conditions are
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Here, we require that seven initial conditions but one
initial condition in each of s, θ, and f be unknown.)us, the
values of the missing initial conditions u1, u2, and u3 are
approximated by using Newton–Raphson method until the
boundary conditions at η⟶∞ are satisfied.

To estimate the value of η∞, we start with some initial
guess value and solve the problem consisting of equations
(5)–(7). )e process of finding a solution is repeated with
another larger value of η∞ until two consecutive values of
the missing boundary conditions at η � 0 differ only after
desired significant digits. )e last value η∞ is taken as the
finite value of the limit η∞ for the particular set of pa-
rameters. For our case, we choose η∞ � 12 so that the
boundary conditions given by equation (10) become
s′(12) � 1, θ(12) � 0, and f(12) � 0.)e choice of η∞ � 12
ensures that all numerical solutions approached the as-
ymptotic values correctly. MAPLE software is used to
generate the numerical solutions of the transformed equa-
tions and boundary conditions. )e CPU time is
6.15 seconds on average for each computational result.

4. Result and Discussion

)e combined effects of buoyancy force, thermal radiation,
porous medium, convective heating, viscous dissipation,
magnetic field, and nanofluid parameters on the dimen-
sionless velocity, temperature, rescaled nanoparticle volume
fraction, skin friction, and heat and mass transfer rates from
a permeable stretching/shrinking sheet are investigated
numerically and presented as follows.

4.1. Velocity Profiles with Parameter Variations. )e alter-
ation of the dimensionless velocity profile with the magnetic
field and nanofluid buoyancy ratio parameters is depicted in
Figure 2(a). As the magnetic field applied on the stretching
surface increases, the velocity boundary layer thickness
decreases. It is further noted that the parameter ratio of
buoyancy forces due to the thermal expansion of the base
fluid and difference in densities of the nanoparticles and the
base fluid (water) amplifies the dimensionless velocity
profile drops. We thus deduce that the flow in the upward
direction decelerates as the nanofluid buoyancy force due to
the difference in densities of the nanoparticles and the base
fluid (water) toughens. )e role of porous media and mass
suction/injection parameters on the dimensionless velocity
profile is portrayed through Figure 2(b). )e dimensionless

velocity profile drops with an increment in porous media
parameter and the momentum boundary layer gets thick-
ened as the porosity of the media increases. According to the
numerical result obtained in Figure 2(b), an increase in the
mass suction/injection parameter decelerates the dimen-
sionless velocity profile within the momentum boundary
layer. )e reason for the deceleration of the fluid flow is that
suction carries on the distance fluid into the region adjacent
to the sheet, thereby enhancing the viscosity which in turn
opposes the fluid motion.

Figure 3(a) shows the dimensionless velocity profile for
different values of the stretching/shrinking parameter, while
other parameters are assumed to be constant. As shown in
this figure, when the stretching velocity increases, the di-
mensionless velocity profile decreases just after the transi-
tion point η � 0.56 but, very near to the sheet surface, a
reverse phenomenon is observed.)emomentum boundary
layer thickness is also dependent on the stretching/shrinking
parameter. For the stretching sheet, the momentum
boundary layer thickness is larger than the shrinking case for
layers of the fluid far from the sheet surface starting at
η � 0.56. For highly shrinking surfaces, exaggerated change
in dimensionless velocity and boundary layer thickness is
observed, which is contrary to a stretching surface. )ese
kinds of changes in dimensionless velocity and momentum
boundary layer thickness can occur until the shrinking
surface reaches the critical stretching/shrinking parameter
(λc) value. )e convective parameter, Nc, measures the ratio
of conduction resistance to convection resistance within the
body. When Nc� 0, no convection takes place at the surface.
As shown in Figure 3(b), the increment in convective pa-
rameter results in an increment in dimensionless velocity
profile, and, at the same time, the momentum boundary
layer thickness goes in a reverse manner.

4.2. Temperature Profiles with Parameter Variations. )e
variation of the dimensionless temperature profile with
transverse distance is shown in Figures 4 and 5 for different
values of the flow governing parameters. )e effects of
stretching/shrinking and magnetic field parameters on the
dimensionless temperature profile within the thermal
boundary layer are shown in Figure 4(a). In the absence of a
magnetic field parameter, the dimensionless surface tem-
perature is found to be lower and increases with an in-
creasing magnetic field. )is is because of the fact that a
higher magnetic field produces a force called the Lorentz
force which acts in the opposite direction of motion and
hence overwhelms the velocity field. Simultaneously, it
generates some thermal energy in the fluid motion, which
causes a rise in the fluid temperature and its layer thickness.
It is also important to note that the thermal boundary layer
thickness decreases with increasing values of the stretching/
shrinking parameter.

Figure 4(b) illustrates the influence of the mass transfer
and porous media parameters on the dimensionless tem-
perature profiles. For a stretching problem, solutions exist
for both mass suction and injection. For specified values of
other parameters, the dimensionless surface temperature
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reduces with increasing mass suction/injection parameter.
)e thermal boundary layer thickness becomes thicker into
the fluid. )e dimensionless surface temperature decreases
as the porous media parameter increases. It is also noted that
the thermal boundary layer thickness formed through

injection exceeds thermal boundary layer thickness formed
through suction for any porous medium.

As per the illustration in Figure 5(a), the dimensionless
temperature profile increases as the nanofluid buoyancy
ratio parameter increases. )is is from the reality that
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higher values of nanofluid buoyancy ratio parameter en-
hance the temperature of the fluid so that the thermal
boundary layer thickness is increased. )e effects of viscous
dissipation on the dimensionless temperature profile for
different values of thermal radiation parameters are

depicted in Figure 5(b). In Figure 5(b), the intensification
of viscous dissipation increases the temperature of the
fluid. In viscous fluid flow, the viscosity of the fluid takes
kinetic energy from the motion of the fluid and transforms
it into internal energy that heats the fluid. Furthermore, it
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Figure 4: (a) Influence of λ and M on the temperature profile. (b) Influence of Da and δ on the temperature profile.
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can be observed that radiation enhances the dimensionless
temperature leading to the development of an ascending
thermal boundary layer. Higher fluid temperature con-
tributes to a reduction in heat transfer from the plate.
Hence, it is expected that thermal radiation must be kept
low to attain more cooling from the plate.

4.3. Nanoparticle Volume Fraction Profiles with Parameter
Variations. )e effects on nanoparticle volume fraction
with emerging parameters are presented in Figure 6. From
Figure 6(a), one can see that as the stretching/shrinking
parameter increases, the nanoparticle volume fraction en-
hances up to the region of fluid η � 2, followed by transition
there, and it gets diminution with the same condition of λ,
whereas an increase in magnetic field parameter resulted in
decreasing nanoparticle volume fraction within a few layers
of the fluid from the plate which is up to η � 2 and just after
the transition the effect is negligible.

)e combined effects of the nanofluid parameters
(Brownian and thermophoresis parameters) are shown in
Figure 6(b). We can see that an increase in Nt shows de-
creasing effects on nanoparticle volume fraction within a few
layers of the fluid from the plate, which is up to η � 1.6.
Afterwards, that is, in the region η � 1.6 to η � 10, the
nanoparticle volume fraction undergoes the reverse impact
due to increase in Nt followed by transition at η � 1.6. )is
is because an increase in Nt indicates a strong thermo-
phoretic force, leading to larger diffusion of nanoparticles
from the hot plate to the ambient fluid. Furthermore, an
increase in Nb shows increasing effects on nanoparticle
volume fraction within a few layers of the fluid from the plate
which is up to η � 1.6 and follows a reverse trend just after
the transition.

4.4. Skin Friction, Reduced Nusselt Number, and Reduced
Sherwood Number Profiles. )e skin friction variation with
different parameters is shown in Figure 7. As presented in
Figure 7(a), the skin friction is less for higher values of the
radiation parameter. )e effect of the magnetic field pa-
rameter is to increase skin friction due to viscous effects.
Furthermore, the increase in the nanofluid buoyancy ratio
parameter helps in decreasing skin friction. Figure 7(b)
characterizes the skin friction for increasing values of the
convective parameter and Brownian motion parameters for
the cases of permeable and impermeable sheets. As we can
see from the graph, with an intensification in the convective
parameter, the skin friction increases for the Brownian
motion parameter and decreases for the suction/injection
parameter.

Combined effects of nanofluid buoyancy parameter,
magnetic field parameter, and stretching/shrinking pa-
rameter on reduced Nusselt number (a measure of heat
transfer rate from the plate) is plotted in Figure 8(a). We can
see that, with an increased magnetic field parameter, the
reduced Nusselt number decreases, and, with an increase in
nanofluid buoyancy parameter, the reduced Nusselt number
increases. Also, the reduced Nusselt number is larger for the
stretching sheet than for the shrinking sheet.

It is found in Figure 8(b) that a difference is appearing in
the reduced Nusselt number for the convective parameter
and the Brownian motion parameter for permeable and
impermeable sheets. An increase in convective parameter
increases the reduced Nusselt number, while opposite be-
havior is obtained on reduced Nusselt number for increasing
values of the Brownian motion parameter for both per-
meable and impermeable sheets. As illustrated in this figure,
suction assists the movement of heated fluid particles to-
wards the wall and, subsequently, increases heat transfer
rates compared to injection.

)e effects of the magnetic field parameter and nanofluid
buoyancy parameter in the presence of thermal radiation are
depicted in Figure 9(a). )e Sherwood number (mass
transfer rate) increases with the magnetic field parameter
and decreases with the nanofluid buoyancy parameter for
the case of both occurrence and nonoccurrence of the
thermal radiation parameter. Moreover, the Sherwood
number has an inverse relationship with the thermal radi-
ation parameter. Figure 9(b) shows the influence of the
change of nanofluid parameters on the Sherwood number
for different values of the buoyancy parameter. )e Sher-
wood number upsurges with the thermophoresis parameter
and falls with the Brownian motion parameter for all values
of nanofluid buoyancy parameters.

)e combined effects of buoyancy force, convective
heating, viscous dissipation, and magnetic field parameters
on skin friction and heat andmass transfer from a permeable
stretching/shrinking sheet in a porous medium are inves-
tigated numerically, and obtained results are presented in
Tables 1 and 2.

4.5. Dual Solutions. Two real solutions exist within the valid
range of shrinking parameter λ< 0. )ese dual solutions
exist in the range λc < λ and no solution exists for λ< λc,
where λc is the critical value of shrinking parameter for
which unique solution exists. It is well documented in the
literature that only the upper solution branch for shrinking
sheet is stable and physically realistic ([15–19]), while the
other one diverges when subjected to disturbances. )ere-
fore, only one valid solution exists within the range of
shrinking parameter values.

As shown in Figure 10(a), the value of s″(0) for the
upper branch solution was observed to increase as M in-
creases. )is shows that the increase in magnetic field pa-
rameters caused the wall shear stress to increase. Likewise,
the value of |λc| increased asM increased. Furthermore, the
effects of the porosity parameter on the critical value of the
shrinking parameter (λc) and wall shear stress is depicted in
Figure 10(b). For the upper branch solution, the value of
s″(0) decreased as the porosity parameter (Da) increased
and the value of |λc| decreased as Da increased.

As shown in Figures 10(a) and 10(b), the model exhibits
a critical value for shrinking parameter values below which
no solution exists. )is implies that the sheet will stop
shrinking when the critical value of the shrinking parameter
is attained. )is critical value also varies depending on the
values of other emerging parameters. Moreover, it is
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important to note that, for shrinking sheets, the convergence
of the solution is limited with the critical parameter value
(λc). )e solution only converges for a range of parameter

values λc < λ< 0 and the value of (λc) depends on the values
of other embedded thermophysical parameters in the gov-
erning model. )e effects of those emerging parameters on
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Table 2: Computations showing the effects of Brownian, suction/injection, thermophoresis, convective mass transfer, radiation, and the
porous media parameters on dimensionless temperature, shear stress, and heat and mass transfer rates when
Pr � 6.2, Le � 0.1, Nr � 1, M � 1, Ec � Nc � λ � 0.1.

s″(0) − (1 + (4/3)R)θ′(0) − f′(0) θ(0)

δ Nb � Nt � 0.3, Nc∗ � 0.1, R � 0.1, Da � 0.1
− 0.5 10.21855 − 1.68520 1.23498 15.86937
0 3.98653 − 0.16588 0.23885 2.46365
0.5 3.64907 − 0.08893 0.17686 1.78465
Nb Nt � 0.3, δ � 0.2, Nc∗ � 0.1, R � 0.1, Da � 0.1
0.3 3.82272 − 0.12910 0.20910 2.13908
0.6 3.64867 − 0.12656 0.13818 2.11668
Nt Nb � 0.3, δ � 0.2, Nc∗ � 0.1, R � 0.1, Da � 0.1
0.1 3.56831 − 0.11859 0.11336 2.04642
0.3 3.82272 − 0.12910 0.20910 2.11668
Nc∗ Nb � Nt � 0.3, δ � 0.2, R � 0.1, Da � 0.1
0.1 3.82272 − 0.12910 0.20910 2.13908
1 3.44429 − 0.14380 0.55853 2.26885
10 3.33633 − 0.15366 0.67566 2.35579
R Nb � Nt � 0.3,Nc∗ � 0.1, δ � 0.2, Da � 0.1
0 3.88340 − 0.12863 0.22256 2.28629
1 3.53589 − 0.11228 0.14951 1.48121
2 3.40631 − 0.07428 0.12457 1.20259
Da Nb � Nt � 0.3, Nc∗ � 0.1, R � 0.1, δ � 0.2
0.5 2.22301 − 0.02740 0.13541 1.24178
2 1.62546 0.00655 0.10917 0.94220
5 1.45769 0.01531 0.10201 0.86490

Table 1: Computations showing the effects of buoyancy, magnetic, viscous dissipation, convective heating, and stretching/shrinking
parameters on dimensionless temperature, shear stress, and heat and mass transfer rates when
Pr � 6.2, Le � 3, Nb � Nt � 0.3, Nc∗ � 0.1, R � 0.1, Da � 1, δ � 0.1.

s″(0) − (1 + 4/3R)θ′(0) − f′(0) θ(0)

λ M � 0.1, Ec � 0.1, Nc � 0.1, Nr � 1
− 0.3 3.72216 − 0.24874 0.20268 3.19478
0 1.96888 − 0.02765 0.12925 1.24397
0.5 0.73428 0.07519 0.09572 0.33657
Nr M � 0.1, Ec � 0.1, Nc � 0.1, λ � − 0.1
0 2.20195 − 0.06593 0.14275 1.58172
0.3 2.25119 − 0.06742 0.14326 1.59485
0.5 2.28448 − 0.06847 0.14362 1.60415
1 2.36960 − 0.07134 0.14457 1.62950
M λ � − 0.1, Ec � 0.1, Nc � 0.1, Nr � 1
0 2.31130 − 0.06600 0.14281 1.58237
0.5 2.57923 − 0.09083 0.15090 1.80148
1 2.80403 − 0.11221 0.15768 1.99010
10 5.03698 − 0.35215 0.22592 4.10725
Ec M � 0.1, λ � − 0.1, Nc � 0.1, Nr � 1
0 1.25636 0.09333 0.08686 0.17647
0.5 2.36960 − 0.07134 0.14457 1.62950
Nc M � 0.1, Ec � 0.1, λ � − 0.1, Nr � 1
0.1 2.36960 − 0.07134 0.14457 1.62950
1 2.12912 − 0.21083 0.14229 1.18603
10 2.04461 − 0.26926 0.14203 1.02376
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Table 3: Computation showing critical shrinking parameter (λc) when Pr � 6.2.

M Da δ Nr Nc Nc∗ λc

0.1 10 0.1 0.1 0.1 0.1 − 3.696
0.3 10 0.1 0.1 0.1 0.1 − 6.103
0.5 10 0.1 0.1 0.1 0.1 − 8.546
0.1 5 0.1 0.1 0.1 0.1 − 4.892
0.1 3 0.1 0.1 0.1 0.1 − 6.508
0.1 1 0.1 0.1 0.1 0.1 − 14.705
0.1 1 1.0 0.1 0.1 0.1 − 14.705
0.1 1 0.1 0.5 0.1 0.1 − 14.676
0.1 1 0.1 1.0 0.1 0.1 − 14.640
0.1 1 0.1 0.1 0.5 0.1 − 14.893
0.1 1 0.1 0.1 1.0 0.1 − 15.020
0.1 1 0.1 0.1 1.0 0.5 − 14.686
0.1 1 0.1 0.1 0.1 1.0 − 14.672

Table 4: Comparison of values for skin friction and Nusselt number for different values of λ andNr withM � 1, Ec � 0.1, Nc � 1 for the
case of Da � Nc∗ �∞, R � 0, δ � 0.

λ Nr
S″(0) Nu

Makinde et al. [15] Present result Makinde et al. [15] Present result

-0.5
0 2.35476 2.3547617880 0.13379 0.13379056427
0.3 2.21267 2.2126690902 0.13425 0.13424984870
0.5 2.11589 2.1158915121 0.13409 0.13408574710

0
0 1.73177 1.7317739823 0.25999 0.25999218413
0.3 1.60462 1.6046181450 0.26005 0.26005145639
0.5 1.51848 1.5184779144 0.25979 0.25978597088

0.5
0 1.03430 1.0343034653 0.34415 0.34415369544
0.3 0.92053 0.92053122986 0.34357 0.34356698719
0.5 0.84380 0.84379568546 0.34297 0.34296800192
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critical value of the shrinking parameter (λc) are presented
in Table 3.

)e convergence and validity of the solutions obtained
are displayed in Table 4. )e special case of our numerical
results was validated with the one already in the literature
[15], and excellent agreement is achieved.

5. Conclusion

A problem of two-dimensional MHD stagnation point flow
of an electrically conducting water-based nanofluid towards
a permeable stretching/shrinking in a porous medium is
solved numerically to investigate the combined effects of
buoyancy ratio parameter, thermal radiation, porous me-
dium, convective heating, viscous dissipation, magnetic
field, and nanofluid parameters on the dimensionless ve-
locity, temperature, rescaled nanoparticle volume fraction,
skin friction, and heat and mass transfer rates from a per-
meable stretching/shrinking sheet. Similarity transforma-
tions technique is applied to transform the resulting model
equations into nonlinear ordinary differential equations.)e
MAPLE software is used to generate the numerical solutions
of the transformed equations with the boundary conditions.
)e conclusions are the following:

(i) )e dimensionless velocity and temperature profiles
decrease with porous medium parameter and mass
suction/injection parameter, whereas an increase in
radiation increases the temperature

(ii) )e skin friction increases with both convective
and Brownian motion parameters but decreases

with increasing mass suction/injection, which is
also lower for higher values of radiation parameter
and shows intensification with magnetic field
parameter

(iii) )e reduced Nusselt numbers are higher for
stretching sheets than for shrinking sheets and also
decrease with magnetic field parameter and
Brownian motion parameter but upsurge with
nanofluid buoyancy ratio, heat convective param-
eter, and thermophoresis parameter

(iv) )e Sherwood numbers increase with the magnetic
field and thermophoresis parameter but decrease
with nanofluid buoyancy ratio, thermal radiation
parameter, and Brownian motion parameter

(v) Two real solutions exist within a specific range of
shrinking parameter; however, only one of the two
solutions is physically realistic and the other one
diverges when subjected to disturbances

(vi) )e value of |λc| increases with increasing values of
the magnetic field parameter M, whereas the value
of |λc| decreases with increasing value of the po-
rosity parameter Da

Appendix

A. Derivation of the Problem

)e governing partial differential equations of the problem
are
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with the boundary conditions,

y � 0: u � ax, v � V0, − k
zT

zy
� h1 Tf − T( ),

− DB

zϕ

zy
� h2 ϕf − ϕ( ),

(A.5)

y⟶∞: u⟶ U∞(x), T⟶ T∞, ϕ⟶ ϕ∞, (A.6)

and then the following dimensionless variables are
introduced:
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Now, using the similarity transformation quantities, the

governing equations are transformed to ordinary differential
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� −

y

4x2
ϕw − ϕ∞( )f′(η)Ra1/4x .

(A.15)

A.1. The Continuity Equation

zu

zx
+
zv

zy
�

z

zx

αf

x
Ra1/2x s′(η)( ) + z

zy
− αf

− y

4x2
Ra1/2x s′(η) + 3

4x
Ra1/4x s(η)[ ]( )

� 0 (it shows that continuity equation is satisfied automatically).

(A.16)
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A.2. The Momentum Equation

Deriving each expression separately based on equations
(A.8) and (A.9), we obtain the following.

For the inertial term,

u
zu

zx
+ v

zu

zy

�
− 1

x3
α2fRaxs′(η)

2
+

3

2x3
α2fRaxs′(η)

2
−
y

4x4
α2fRa

5/4
x s′(η)s″(η)

−
3

4x3
α2fRaxs(η)s″(η) +

y

4x4
α2fRa

5/4
x s′(η)s″(η)

�
1

2x3
α2fRax s′(η)( )2 − 3

4x3
α2fRaxs′(η)s″(η).

(A.17)
For the pressure term,

U∞
dU∞
dx

�
1

x
αfRa

1/2
−
αf

x2
Ra1/2x +

3αf

2x2
Ra1/2x( )

�
1

2x3
α2fRax.

(A.18)

For the viscous term,

μf

ρf

z
2u

zy2
�
αfμf

x2ρf
Ra3/4x s″(η) 1

x
Ra1/4x

�
αfμf

x3ρf
s″(η)Rax.

(A.19)

For the magnetic force term,

σfB
2
0

ρf
u − U∞( ) � σfB

2
0

ρf

αf

x
Ra1/2x s′(η) −

αf

x
Ra1/2x( )

�
σfB

2
0

ρfx
αfRa

1/2
x s′(η) − 1( ).

(A.20)
For porous medium term,

μf

ρfK
u − U∞( ) � μf

ρfK

αf

x
Ra1/2x s′(η) −

αf

x
Ra1/2x( )

�
μf

ρfK

αf

x
Ra1/2x s′(η) − 1( ).

(A.21)

Substituting equations (A.17)–(A.21) in equation (A.2),
we get

1

2x3
α2fRax s′(η)( )2 − 3

4x3
α2fRaxs(η)s″(η) �

1

2x3
αfRax −

αfμf

x3ρf
s‴(η)Rax

−
σfB

2
0

ρfx
αfRa

1/2
x s′(η) − 1( ) − μf

ρfK

αf

x
Ra1/2x s′(η) − 1( )

+
1

ρf
1 − ϕ∞( )ρf∞βg T − T∞( ) − ρp − ρ∞( )g ϕ − ϕ∞( )[ ].

(A.22)

Dividing each term by Ra, we get

1

2x3
α2f s′(η)( )2 − 3

4x3
α2fs(η)s″(η) �

α2f

2x3
−
αfμf

x3ρf
s‴(η) −

σfB
2
0

ρfx
αfRa

− 1/2
x s′(η) − 1( )

−
μf

ρfK

αf

x
Ra1/− 2x s′(η) − 1( )

+
1

Raxρf
1 − ϕ∞( )ρf∞βg T − T∞( ) − ρp − ρ∞( )g ϕ − ϕ∞( )[ ].

(A.23)
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Multiplying each term by x3ρf/μfαf, we get

s‴(η) −
αfρf

2μf
s′(η)( )2 + 3αfρf

4μf
s(η)s″(η) +

1

2Pr
−
σfB

2
0x

2

μf
Ra− 1/2x s′(η) − 1( )

−
x2

K
Ra1/− 2x s′(η) − 1( ) + x3

Raxμfαf
1 − ϕ∞( )ρf∞βg T − T∞( ) − ρp − ρ∞( )g ϕ − ϕ∞( )[ ] � 0.

(A.24)

After some simplifications and substitution of the pa-
rameters, we obtain

s‴(η) − M +
1

Da
( ) s′(η) − 1( ) − 1

2Pr
s′(η)( )2 + 3

4Pr
s(η)s″(η) +

1

2Pr
+
T − T∞
Tf − T∞

−
ρp − ρf( ) ϕw − ϕ∞( )

ρfβ 1 − ϕw( ) Tf − T∞( ) ϕ − ϕ∞( )
ϕw − ϕ∞( ) � 0.

(A.25)

Finally, we obtain

s‴(η) − M +
1

Da
( ) s′(η) − 1( ) − 1

2Pr
s′(η)( )2 + 3

4Pr
s(η)s″(η) +

1

2Pr
+ θ − Nrf � 0

s″ − M +
1

Da
( ) s′ − 1( ) + 1

4Pr
3ss′′ − 2s′2 + 2[ ] + θ − Nrf � 0.

(A.26)

A.3. The Energy Equation

Substituting equations (A.8) and (A.10)–(A.13) into the
energy equation (A.3), we obtain

αf

x
Ra1/2x s′(η) −

y

4x2
Tf − T∞( )θ′(η)Ra1/4x( ) + yαf

4x2
s′(η)Ra1/2x −

3αf

4x
s(η)Ra1/4x( )

Tf − T∞( )
x

θ′(η)Ra1/4x

� 1 +
16σ∗T3

∞
3kk∗

( ) αf

x2
Tf − T∞( )θ″(η)Ra1/2x + τ

DT

T∞
( ) Tf − T∞( )

x
θ′(η)Ra1/4x 2

+ τ DB

ϕw − ϕ∞( )
x

f′(η)Ra1/4x
Tf − T∞( )

x
θ′(η)Ra1/4x  αfμf

k

αf

x2
s″(η)Ra3/4x( )2

+
σB2

0α
3
f

kx2
Rax s′(η) − 1( )2 + α3fμf

kKx2
Rax s′(η) − 1( )2,
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−
3αf

4x2
Tf − T∞( )s(η)θ′(η)Ra1/2x � 1 +

4

3
Nr( ) αf

x2
Tf − T∞( )θ″(η)Ra1/2x

+ τ DB

ϕw − ϕ∞( ) Tf − T∞( )
x2

f′(η)θ′(η)Ra1/2x  + τ
DT

T∞
( ) Tf − T∞( )

x
θ′(η)Ra1/4x 2

+
αfμf

k

αf

x2
s″(η)Ra3/4x( )2 + σB2

0α
3
f

kx2
Rax s′(η) − 1( )2 + α3fμf

kKx2
Rax s′(η) − 1( )2.

(A.27)

Multiplying each term by x2/αf(Tf − T∞)Ra
1/2
x , we

obtain

1 +
4

3
Nr( )θ″(η) + 3

4
s(η)θ′(η) +

τDB ϕw − ϕ∞( )
αf

f′(η)θ′(η) +
τDT Tf − T∞( )

T∞αf
θ′(η)2

+
α2fμf

x2k Tf − T∞( )Raxs″(η)2 +
σB2

0(x)α
2
f

k Tf − T∞( )Ra1/2x s′(η) − 1( )2

+
α2fμf

kK Tf − T∞( )Ra1/2x s′(η) − 1( )2 � 0,

(A.28)

and, after some simplification, we obtain

θ″(η) + 3

4
s(η)θ′(η) + Nbf ′(η)θ′(η) + Ntθ′(η)2 + EcPrs″(η)2 + EcPrM s′(η) − 1( )2 � 0,

θ″ + 3

4
sθ′ + EcPr s″2 +M s′ − 1( )2[ ] +Nbf ′θ′ + Ntθ′2 � 0.

(A.29)

A.4. The Concentration Equation

Substituting equations (A.10), (A.11), (A.13), and (14) in
(A.4), we obtain

αf

x
Ra1/2x s′(η) −

y

4x2
ϕw − ϕ∞( )f′(η)Ra1/4x( ) + ϕw − ϕ∞( )

x
f′(η)Ra1/4x ,

y

4x2
αfs′(η)Ra

1/2
x −

3

4x
αfs(η)Ra

1/4
x[ ] � DB

ϕw − ϕ∞( )
x2

f″(η)Ra1/2x

+
DT

T∞
( ) Tf − T∞( )

x2
θ″(η)Ra1/2x ,

−
yαf

4x3
ϕw − ϕ∞( )Ra3/4x s′(η)f′(η) +

yαf

4x3
ϕw − ϕ∞( )Ra3/4x s′(η)f′(η)

−
3

4x2
αff′(η)s(η)Ra

1/2
x � DB

ϕw − ϕ∞( )
x2

f″(η)Ra1/2x +
DT

T∞
( ) Tf − T∞( )

x2
θ′(η)Ra1/2x .

(A.30)
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Now, multiplying each term by x2/DB(ϕw − ϕ∞)Ra
1/2
x ,

we obtain

x2

DB ϕw − ϕ∞( )Ra1/2x( ) − 3

4x2
αff′(η)s(η)Ra

1/2
x

� DB

ϕw − ϕ∞( )
x2

f″(η)Ra1/2x
x2

DB ϕw − ϕ∞( )Ra1/2x( ) + x2

DB ϕw − ϕ∞( )Ra1/2x( )
DT

T∞
( ) Tf − T∞( )

x2
θ″(η)Ra1/2x ,

f″(η) +
DT Tf − T∞( )
T∞DB ϕw − ϕ∞( )θ″(η) + 3

4

αf

DB

f′(η)s(η) � 0,

f″ +
Nt

Nb
θ″ +

3

4
Lef ′s � 0.

(A.31)

)e boundary conditions will be the following. As η⟶ 0,

u(x, 0) � ax �
αf

x
Ra1/2x s′(0)⟹s′(0) �

ax2

αf
����
Rax

√ � λ,

v(x, 0) � 0 � − αf −
y

4x2
Ra1/2x s′(0) +

3

4x
Ra1/4x s(0)[ ]⟹s(0) � 0.

(A.32)

Substituting equation (A.10) in the convective boundary
equation (A.5), we obtain

θ′(0) �
x

− k Tf − T∞( )Ra1/4x hf(x) Tf − T( )⟹θ′(0) � − Nc(1 − θ(0)).

(A.33)

Substituting equation (A.13) in the convective boundary
equation (A.5), we obtain

θ′(0) �
x

− DB ϕf − ϕ∞( )Ra1/4x hf(x) ϕf − ϕ( )⟹f′(0) � − Nc∗(1 − f(0)). (A.34)

As η⟶∞,

u(x,∞) � U∞(x) �
αf

x
Ra1/2x s′(∞)⟹

αf

x
Ra1/2x �

αf

x
Ra1/2x s′(∞)⟹s′(∞) � 1,

θ(∞) � T(x,∞) − T∞
Tf − T∞

�
T∞ − T∞
Tf − T∞

⟹θ(∞) � 0,

f(∞) � ϕ(x,∞) − ϕ∞
ϕw − ϕ∞

�
ϕ∞ − ϕ∞
ϕw − ϕ∞

⟹f(∞) � 0.

(A.35)
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Abbreviations

a: Constant
B0: Magnitude of magnetic field
DB: Brownian diffusion coefficient (m− 2s− 1)
DT: )ermophoresis diffusion coefficient (m− 2s− 1)
f: Dimensionless nanoparticle volume fraction
k: Effective thermal conductivity of nanofluid (Wm− 2K− 1)
hf: Heat transfer coefficient (Wm− 2K− 1)
kp: )ermal conductivity of nanoparticles (Wm− 2K− 1)
kf: )ermal conductivity of base fluid (Wm− 2K− 1)
Nb: Brownian motion parameter
Nr: Reduced Nusselt number
Sh: Reduced local Sherwood number
K: Porous medium permeability (m2)
k∗: Mean absorption coefficient
qw″: Wall heat flux (Wm− 2)
qm″: Mass flux (kgs− 1m− 2).

Greek Symbols

β: Volumetric thermal expansion coefficient (K− 1)
αf: )ermal diffusivity of fluid (m2s− 1)
λ: Stretching/shrinking parameter
ϕ: Nanoparticle volume fraction (kgm− 3)
ϕw: Nanoparticle volume fraction at the wall (kgm− 3)
η: Similarity variable
ϕ∞: Ambient nanoparticle volume fraction (kgm− 3)
μ: Absolute viscosity (kgm− 1s− 1)
υ: Kinematic viscosity of the fluid (m2s− 1)
ρf: Fluid density (kgm− 3)
ρp: Nanoparticle mass density (kgm− 3)
(ρc)f: Heat capacity of the fluid (JK− 1 kg− 1)
Rax: Local Rayleigh number
Pr: Prandtl number
Le: Lewis number
Nc: Convective parameter
T: Temperature (K)
Tf: Local fluid temperature (K)
T∞: Ambient temperature (K)
s: Dimensionless stream function
g: Acceleration due to gravity (ms− 2ms− 2)
U∞: External velocity (ms− 1)
u, v: Velocity components along x-axis and

y-axis (ms− 1)
x, y: Coordinate along the plate and normal to it (m)
(ρc)p: Heat capacity of the nanoparticle (JK− 1g− 1)
θ: Dimensionless temperature
ψ: Stream function
σ: Electrical conductivity (Sm− 1).
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