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ABSTRACT

Functional forms for mixed convective heat transfer and evaporation from an air-water

interface were obtained. To obtain these functions, heat transfer and evaporation rates

from the air-water interface of an evaporating body of water were quantified in a wind/water

tunnel in the presence of an oleyl alcohol monolayer on the water surface. The Nusselt (Nu)

and Sherwood (Sh) numbers, parameterizing the dimensionless heat and mass transfer

respectively, for transport from the water bulk to air were expressed as functions of the

air side Rayleigh (Ra) and Reynolds (Re) numbers. The Nu and Sh were calculated

for a range of Ra from 1.1 × 107 to 4.1 × 107 and a range of Re from 0 to 3.5 × 105.

Power law Nu(Ra) and Nu(Re) relationships parameterizing natural and forced convective

heat transfer respectively were then obtained as were Sh(Ra) and Sh(Re) relationships

parameterizing natural and forced convective evaporation.

Mixed convective Nu(Ra, Re) and Sh(Ra, Re) functions were formulated using a vec-

torial additive model having an exponent of four. These functions predicted the exper-

imentally obtained Nu(Ra), Nu(Re), Sh(Ra) and Sh(Re) relationships with reasonable

accuracy. From the Nu(Ra), Nu(Re), Sh(Ra) and Sh(Re) results as also from the results

of the mixed convective equations, it was concluded that the mixed convective regime lay

between 1 - 3 m/s i.e. 0.6 × 105 < Re < 2.1 × 105 for both heat and mass transfer.

To obtain repeatable results and for these results to be applicable to field conditions,

a monolayer of oleyl alcohol was applied to the water surface to maintain spatially and

temporally consistent surface conditions. An IR camera was used to visualize the surface

flow and to judge the homogeneity of the surfactant film. It was found that the oleyl alcohol

monolayer applied to the water surface formed a homogenous surfactant film thus ensuring

consistent conditions for all experiments.
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1 INTRODUCTION

Convection can be classified into three categories depending on the mechanism of heat

transfer, the three categories being natural, forced and mixed convection. Irrespective

of the category, the heat transfer during convection is described using Eq. (1), which

is also known as Newton’s law of cooling:

q′′1 =
ht

∆T
(1)

where q′′1 is the convective heat flux from the system, ∆T the characteristic tempera-

ture difference between the heat exchanging media and ht the heat transfer coefficient.

Newton’s law of cooling is used to model the temperature change of an object of some

temperature placed in an environment of a different temperature. Research on heat

transfer often involves the measurement of the heat transfer coefficient, which is af-

fected by particular boundary conditions and a number of thermodynamic and trans-

port properties of the fluid. A discussion of each of the above mentioned categories

of convection is given below.

1.1 Natural convection

Consider a fluid layer which is confined between two isothermal plates maintained

at different temperatures as shown in Fig. 1. This is a typical setup for studying

Rayleigh-Bénard convection, where the fluid layer is heated from below and cooled

from above to produce a fixed temperature difference. This results in heating and

consequent expansion of the bottom fluid layer and cooling and contraction of the top

fluid layer thus producing an unstable density gradient in the fluid layer. If the density

gradient is sufficiently strong, the hot fluid will rise and the cooler fluid at the top will

sink, causing a buoyancy driven convective flow which results in enhanced transport



Figure 1: Typical experimental setup for Rayleigh-Bénard convection: 1) Cold plate, 2) hot
plate, 3) walls, 4) fluid layer.

of heat between the two plates. This form of convection, where a fluid is confined

between a bottom hot plate and a top cold plate to induce buoyancy driven convection

is known as Rayleigh-Bénard convection. A measure of the thermal instability causing

a buoyant flow within a fluid is given by the Rayleigh number defined as:

Ra =
βg∆TL3

να
(2)

where ∆T is the characteristic temperature difference, which in the case of Rayleigh-

Bénard convection is the temperature difference between the two plates, L is the

characteristic length scale, which is the distance between the two plates, α the thermal

diffusivity of the fluid, β the thermal expansion coefficient, ν the kinematic viscosity

of the fluid and g is the acceleration due to gravity. The Rayleigh number can

also be defined as the product of the Grashof number, which approximates the ratio

of the buoyancy to viscous forces acting on a fluid, and the Prandtl number, which

2



approximates the ratio of momentum diffusivity and thermal diffusivity. The Grashof

and Prandtl numbers are defined as:

Gr =
βg∆TL3

ν2
(3)

Pr =
ν

α
(4)

where Gr is the Grashof number and Pr is the Prandtl number. The onset of buoy-

ancy driven convection occurs when the Rayleigh number is greater than a critical

value which in the case of Rayleigh-Bénard convection is approximately 1700.1

While the thermal instability in the fluid during buoyancy driven convection is

quantified using the Rayleigh number, the dimensionless heat transfer during this

process is quantified using the Nusselt number. The Nusselt number is a dimensionless

heat transfer coefficient and quantifies the enhancement of heat transfer in comparison

to that of just conduction. The Nusselt number is defined as:

Nu =
htL

k
(5)

where k is the thermal conductivity of the fluid.

Natural convective heat transfer is a function of the thermal instability driving

heat transfer and the Prandtl number. The Nusselt number for natural convection is

thus parameterized according to the form:

3



Nun = function(Ra, Pr) (6)

where Nun is the Nusselt number for natural convection. The nature of this functional

relationship for natural convective heat transfer has been the subject of many studies

in the past. These studies have established that a power law relationship exists

between the Nusselt, Rayleigh and Prandtl numbers having the form:

Nun = A(Ra)b(Pr)x (7)

where A, b and x are constants. Various authors, having conducted research on

natural convective heat transfer, have obtained different values for these constants.2–29

These researchers have found that the value of the exponent b lies between 0.25 and

0.34 with most of these studies showing effectively a 1
3

power law relationship between

Nu and Ra. The value of A varies considerably from 0.06 to 0.12–29 depending on the

geometry of the setup whereas the exponent of the Prandtl number has been found

to vary between 0.05 and 0.1.2–29 The power law is often used to model transport

relationships because it is a result obtained from theoretical studies on the subject

of natural convective heat transfer. Though the heat transfer and consequently the

Nusselt number will also depend on the aspect ratio of the container in which natural

convection is studied, this is not the focus of the research done for this thesis. As

most of the past research on natural convective heat transfer has focused on Rayleigh-

Bénard convection, presented below are two classic studies on the subject. A reason

for presenting these particular studies is that the power law relationship between Nu

and Ra demonstrated by these researchers falls close to the limits of the range of

exponents which have been obtained by various researchers.

4



Globe and Dropkin3 studied Rayleigh-Bénard convection for different fluids. They

aimed to obtain the Nu(Ra, Pr) relationship over a range of 1.51 × 105 < Ra <

6.76 × 108 and 0.02 < Pr < 8750. Their results indicate that the heat transfer rate

for their entire range of Ra and Pr may be determined by the relationship:

Nun = 0.069(Ra)0.33(Pr)0.074 (8)

This Rayleigh number exponent of approximately 0.33 or 1
3

is a classic result seen by

many researchers studying Rayleigh-Bénard convection.3–6,9–18,21–23

In a similar study, Chu and Goldstein2 studied Rayleigh-Bénard convection in a

water layer. Their study focused on obtaining a relationship between Nu and Ra

and explaining the mechanism governing heat transfer in natural convection. For the

range of Rayleigh numbers explored by them (2.76 ×105 < Ra < 1.05 × 108), their

results showed the exponent of the Rayleigh number to be equal to 0.28. Though this

result is close to the classic 1
3

power law relationship between Nu and Ra, it is one of

the small number of studies2,24–29 demonstrating a Rayleigh number exponent smaller

than 0.3. They also showed that natural convective heat transfer in their setup was

driven by the formation of thermal plumes which originated from the bottom plate.

Most of the studies cited above address natural convection between solid bound-

aries and few have addressed natural convection when the upper boundary is a free

surface. Several researchers have studied natural convective heat transfer and evap-

oration and provided empirical relations governing this process.30–37 However most

these studies focus on obtaining the evaporation rate and completely neglect the heat

transfer accompanying evaporation. Notable exceptions to this are the studies by

Sparrow38 and by Katsaros et al.4 Katsaros et al. investigates natural convective

heat transfer from an evaporating water surface. This study is thus closely aligned

5



with the work done for this thesis as it addresses the transport process at the air-

water interface. The authors chose the form shown in Eq. (7) to describe their results

for natural convective heat transfer from hot water to air. The equation provided by

them is:

Nun = 0.156(Ra)0.33 (9)

This equation agrees well with the classical 1
3

power law relationship for natural

convection.

1.2 Forced convection

Forced convection is heat transfer due to an externally imposed flow, where the flow

can be imposed by a pressure gradient or an external shear on the fluid. A measure

of the forced flow is given by the Reynolds number:

Re =
UL

ν
(10)

where U is the characteristic velocity and L is the characteristic length, which, for

forced convection is typically the length of the fluid medium along the flow direction.

For forced convection, heat transfer is typically parameterized according to:

Nuf = function(Re, Pr) (11)

where Nuf is the Nusselt number for forced convection. The nature of the functional

relationship between Nu, Pr and Re has been studied by many researchers in the

6



past,39–50 establishing a power law relationship between the Nusselt, Reynolds and

Prandtl numbers such as:

Nuf = C(Re)d(Pr)y (12)

where C, d and y are constants. Most researchers studying forced convective heat

transfer have found the exponent d to have a value between 0.5 and 0.8.40–44,46 This

result is clearly demonstrated by a number of researchers for a variety of surface

geometries. The value of the constant C has been reported to be typically between

0.1 and 0.939–50 whereas the exponent of the Prandtl number is reported to be ap-

proximately 0.3.40–42,47,48

1.3 Mixed convection

Sometimes the mechanisms responsible for natural and forced convection can be si-

multaneously present and exert comparable influence on the transport process. This

phenomenon is known as mixed convection or combined convection.

Because mixed convection consists of both forced and natural convection, the

Nusselt number for mixed convection is a function of Re, Ra and Pr:

Num = function(Re, Ra, Pr) (13)

where Num is the Nusselt number under mixed convective conditions. The Reynolds

number is a measure of the forced flow within a fluid and the Rayleigh number is

a measure of the thermal instability in a fluid, thus another way of presenting the

Nusselt number in a mixed convective flow is:

7



Num = function(Nun, Nuf ) (14)

The functional form adopted by several researchers to model this mixed convective

relationship is:

Num = (Nun
n + Nun

f )
1

n (15)

where n is a constant optimized to best fit the experimental data.51–56 This is a

vectorial addition of the Nusselt numbers for natural and forced convective heat

transfer alone. Proof of the validity of this form for modeling mixed convective

results is given by Jackson and Yen57 who first suggested this form for modeling

mixed convection. A thorough literature search failed to reveal another functional

form to model mixed convective heat transfer.

Some of the earliest known research on mixed convection was done by Sparrow

and co-workers.58,59 Sparrow and Gregg58 studied mixed convection over horizontally

oriented flat plates while Mori59 studied this phenomenon over vertical plates. Later

researchers have focused mainly on horizontally oriented flat plates46,59–62 and cylin-

ders,53,63,64 these setups being most relevant to the study of electronics cooling and

solar and other heat exchangers. However, most of these are numerical studies which

focus on studying mixed convection under varying thermal conditions e.g. isothermal

flat plates, imposed temperature gradient on flat plates, etc. The focus of this thesis

is the study of mixed convective heat transfer and evaporation at an air-water inter-

face. Thus, mixed convection studies in general and those at an air-water interface

in particular will be used to understand the basics of this topic.

An air-water interface geometrically resembles a flat plate, thus mixed convection
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studies over flat plates will also be used to understand this interfacial phenomenon.

The study presented below is most relevant to the work done for this thesis as it

addresses mixed convection over a horizontal flat plate and attempts to obtain a

functional relationship for mixed convective heat transfer of the form described in

Eq. (15).

Oosthuizen and Bassey46 conducted a series of experiments which focussed on flow

over a solid plate for the assisting and opposing flow scenarios. A flow is said to be

assisting, when the direction of the buoyant force is the same as the direction of the

forced velocity, whereas an opposing flow is where the buoyant force opposes the forced

velocity. The assisting or opposing flow was initiated by inclining the plate at various

angles to the forced flow, varying the plate position from being horizontally oriented to

being vertically oriented. The researchers proposed a functional relationship between

the relevant dimensionless groups of the form:

Nu = function(Re,Gr, Pr, α) (16)

α being the angle of inclination of the flat plate to the flow. To obtain this functional

relationship describing mixed convection, the authors had to first get individual rela-

tionships for natural and forced convection similar to Eqs. (7) and (12), respectively

and combine them as shown in Eq. (14). They obtained an equation which best

described the natural convection data by carrying out tests at zero wind speed and

then fitting the experimental data to an equation of the form:

Nun = 0.42Gr0.25 (17)

Experiments were then conducted over a range of wind speeds, with Gr varied at
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each wind speed. Using their experimental data for constant Grashof number forced

velocity runs, which was achieved by maintaining a fixed temperature difference be-

tween the flat plate and the free stream, the authors obtained a relationship between

Nu and Re for forced convection which was:

Nuf = 0.59Re0.5 (18)

Thus, after obtaining separate equations for the forced and natural convection regimes,

a model for the mixed convective regime was obtained as shown in Eq. (15) by vec-

torially adding the results for the above two cases as follows:

Num = (Nun
n + Nun

f )1/n (19)

The value of the exponent n being four. Though Oosthuizen and Bassey46 do not

provide a reason for the use of a fourth order fit, one assumes that it provided the best

fit to the data. By substituting Eqs. (17) and (18) in to Eq. (19), the authors obtain

an equation which describes the Nu(Gr,Re) behavior over the entire experimental

range:

Nu = [(0.42Gr0.25)4 + (0.59Re0.5)4]
1

4 (20)

Oosthuizen and Bassey46 thus obtained a relationship for mixed convective heat trans-

fer and that work will be used to guide efforts towards formulating a Nu(Ra, Re)

model from the experimental data for this thesis, with the exponent n optimized to

give the best fit results.
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1.4 Interfacial transport

All the studies mentioned above focus on mixed convection over vertically and hori-

zontally oriented solid plates or other solid geometries such as ducts, cylinders etc. A

thorough search of past literature revealed very few relevant studies which focused on

mixed convective transport at the air-water interface,32,33 demonstrating that though

widespread, this phenomenon is poorly understood. Understanding mixed convection

at an air-water interface is important for quantifying the heat transfer taking place

in industrial cooling ponds and other inland water bodies such as lakes. These inland

water bodies are used as repositories of waste heat for industries. This waste heat dis-

posal affects aquatic life and can severely disturb the limnological ecological balance.

Another important field where the results from such a study would be applicable is

in the study of global heating and cooling cycles which is relevant to global warming.

Consider a body of water with the surface exposed to the ambient, where the

water temperature is higher than the air temperature as shown in Fig. 2. Energy loss

from water to the ambient in such a setup is due to convection, latent heat loss due

to evaporation, radiation and wall heat loss:

q = q1 + q2 + q3 + q4 (21)

Where q is the total energy loss from the water, q1 is the heat loss due to convection,

q2 is the energy loss due to evaporation, q3 is wall heat loss and q4 is the net heat

loss due to radiation. The mass loss due to evaporation from the water surface to air

is due to the water vapor concentration difference between the water surface and the

air. For air flowing over a water body, the air is saturated at the interface31,65 while

the free stream vapor concentration depends on the psychrometric conditions of air.

For the situation where the air is cooler than the water, as is the case for the research
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Figure 2: Typical experimental setup for studying interfacial transport: 1) q1 is the con-
vective heat loss, 2) q2 is the evaporative loss, 3) q3 is the wall heat loss and 4) q4 is the
radiative heat loss.
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conducted for this thesis, the energy for evaporation is provided by the internal energy

of the water. The mass flux from a free water surface due to evaporation is:

ṁ′′ = hm(ρi − ρa) (22)

where ṁ′′ is rate of evaporation in kg

s·m2 , hm is the mass transfer coefficient for water

in m
s

and ρi and ρa are water vapor densities at the interface and in the free stream

in kg

m3 . Here, the saturated vapor at the interface is assumed to be an ideal gas. The

rate of energy loss due to evaporation from the water surface is:

q2 = ṁ′′A · hfg (23)

where A is the water surface area over which evaporation occurs and hfg is the latent

heat of vaporization of water at the water surface temperature. Once the losses due

to evaporation, radiation and the wall heat loss are deducted from the total energy

loss from the water, the convective heat transfer from water to air can be quantified.

The method for calculating the wall heat loss and the radiation loss will be presented

in Section 3.2.

The Sherwood number, which is a dimensionless mass transfer coefficient is defined

as:

Sh =
hmL

D
(24)

where Sh is the Sherwood number, L the characteristic length and D the diffusion

coefficient of water in air. Just as various studies have established relationships
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between Nu, Ra, Re and Pr for heat transfer under natural and forced convective

conditions, similar relationships have been established between Sh, Ra, Re and Sc

for mass transfer under natural32 and forced convective conditions:66–70

Shn = A1(Ra)b1(Sc)x1 (25)

Shf = C1(Re)d1(Sc)y1 (26)

where A1, b1, x1, C1, d1 and y1 are functional constants of the natural and forced

convective power law relationships for mass transfer. Sc is the Schmidt number

defined as:

Sc =
ν

D
(27)

The Schmidt number, which is a dimensionless number approximating the ratio of mo-

mentum diffusivity and mass diffusivity, is used to characterize transport processes

where there are simultaneous momentum and mass diffusion convection processes.

Equations describing the Sh(Ra, Re) relationships which are similar to the Nu(Ra,Re)

relationships presented in Section 1.3 will be developed for the research presented here

as follows:

Shm = (Shp
n + Shp

f )
1

p (28)
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where p is the exponent of the vectorial model and is optimized iteratively. Studies

which focus on mixed convective mass transfer will be discussed later in conjunction

with other works that are used to guide the research done for this thesis.

1.4.1 Surfactants

The word surfactant originates from the term ‘surface active agent’.71 Surfactants

are substances which are adsorbed at the interface between two phases of the same

or of different materials such as an air-water interface.71 In nature, surfactants are

omnipresent in natural and man-made water bodies71 such as lakes, rivers and cooling

ponds. The research conducted for this thesis focuses on transport at the air-water in-

terface, where surfactants naturally collect, and a brief discussion of these compounds

is now presented.

Surfactants belong to a category of compounds known as amphiphiles71 which

are compounds having a water soluble (hydrophilic) part and a water insoluble (hy-

drophobic) part. Thus, surfactants present in water tend to accumulate at the air-

water interface with the hydrophilic part immersed in water and the hydrophobic

part oriented away from the water in a layer which is one molecule thick as shown in

Fig. 3.71 This mono-molecular formation of surfactant molecules at the interface is

known as a monolayer.

The hydrodynamic boundary condition on the free surface of water varies de-

pending on the presence or absence of a surfactant monolayer. In the absence of a

surfactant, the hydrodynamic boundary condition on the water surface is a shear free

boundary condition, whereas the presence of a surfactant monolayer imparts elastic-

ity to the water surface71 changing the boundary condition at the interface to a shear

supporting constant elasticity boundary condition. The elasticity of the surfactant

monolayer is given by the following relation:
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Figure 3: Surfactant monolayer at an air-water interface:71 1) Hydrophobic part, 2) hy-
drophilic part, 3) dissolved surfactant, 4) air-water interface.

ε =
∂σ

∂(lnA)
(29)

where ε is the elasticity of the film, σ the surface tension of the film and A the area

over which the film exists.72,73 This elasticity damps near surface turbulence74 and

reduces the velocity of water imparted by the presence of an air current above the

water surface.74,75 The elasticity of the water surface imparted to it by the surfac-

tant monolayer,73,75 as defined in Eq. (29), determines the extent of this damping.74

Surfactants also decrease the range of turbulent length scales and the number of

structures on the surface.74 The subsurface turbulence plays an important role in

interfacial transport, thus the presence of surfactants can alter transport at the in-

terface. Another important effect of having a surfactant film on the water surface is

the retardation of evaporation of water from the free surface, which can affect the

rate of energy loss from the water surface.73,75 Due to these reasons, for any study

on heat and mass transport at an air-water interface the surfactant concentration on

the surface should be precisely known and controlled.
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1.5 Interfacial mixed convective heat transfer

Convective heat transfer at an air-water interface depends on the convective processes

occurring on both sides of that interface. For example, when the water is warmer

than the air, the warmer water heats the bottom layer of air causing it to rise, thus

creating buoyant flow in the air. At the same time the water is cooled at the surface

resulting in the cooled heavier water sinking into the bulk and thus driving natural

convection on both sides of the air-water interface. If wind were to be present under

either of these situations, it would result in the presence of either natural, mixed or

forced convection dominated conditions depending on the strength of the buoyancy

driven flows on both sides of the interface and on the strength of the wind. When

the air is warmer than the water, it results in stable stratification of both water and

air and no buoyancy, thus if wind were present, forced convection would be the only

possible transport regime on either side of the interface. Under the first situation,

the possibility of the existence of mixed convection on either side of the interface is a

real one.

Table 1 shows all the combinations of the different convective regimes that can

exist at the air-water interface. The numbers indicate the regime number for the

particular air and water conditions. The regimes marked ‘M’ indicate the presence

of mixed convection for either the air side, the water side or both and are the focus

of this thesis. Though regime numbers 1, 3 and 4 have been explored in the research

presented here, they are not the focus of this thesis. A note should be made of regime

2 which was not explored in the research presented here as such conditions can only

exist when forced convection is induced in water by some mechanism other than a

forced air velocity e.g. pumping of water, downhill flow etc. Thus, this regime of heat

transfer was not explored as the research done for this thesis deals with situations

where the forced velocity in water is induced by wind.

Figure 4 is a probability density function (pdf) showing the annual wind speed
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Table 1: Convective regimes at the air-water interface

Convective regimes Air forced Air mixed Air natural

Water forced 1 M 2
Water mixed M M M
Water natural 3 M 4

Figure 4: Annual wind speed distribution over the Savannah River Site76

distribution obtained near a lake at the Department of Energy (DOE) Savannah

River Site in Aiken, South Carolina.76 It is evident from this figure that limnological

conditions are characterized by wind speeds lower than 4 m/s. Such low wind speeds

are characteristic of wind speed conditions over inland water bodies in the U.S.A.77

As shown by Rasmussen et al.,35 this is the range of wind speeds over which combined

forced and natural convection exist over lakes and cooling ponds. It is thus evident

that mixed convection is an important transport regime over inland water bodies and

thus needs to be better understood.

For an air-water system, the heat transfer between the air and water is quantified

18



using the heat transfer coefficient defined as:

ht =
q′′1
∆T

(30)

where ht is the convective heat transfer coefficient, q′′1 the convective heat flux and ∆T

is the temperature difference driving the heat transfer. This temperature difference

can be that between the water surface and either the bulk air or the bulk water

depending on what side of the air-water interface is being investigated. Thus the

heat transfer coefficient can be defined in such a way that its value will be different

for the air side and the water side.

The temperature difference between the bulk water and the bulk air is referred

to here as the gross temperature difference between the fluids. This temperature

difference is the driving force behind the gross convective (sensible) heat transfer

taking place in the air-water system. This is so because, while the water surface

serves as a heat transfer conduit between the bulk water and the bulk air, ultimately

it is the subsurface water which loses its heat to the air. This gross temperature

difference driving the heat transfer is:

∆Tg = Tb − Ta (31)

where Ta is the bulk air temperature and Tb the bulk water temperature.

While the gross temperature difference ultimately drives the heat transfer from

water to air, the mass transfer is due to the water vapor density difference between

the surface and the air. However for reasons discussed in Section 1.6, this tempera-

ture difference between the water surface and the free stream could not be used to
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quantify the mass transfer. Instead, the gross temperature difference was used to

characterize mass transfer as well. The errors introduced in the results and any resul-

tant qualitative change in the mass transfer relationships due to this assumption will

be discussed in Section 4. To investigate this change a measure of the temperature

difference between the water surface and the ambient (air side temperature difference)

will be obtained as described in Section 1.6.

On the air side, ∆Ta will be the temperature difference driving the heat transfer.

∆Ta = Ts − Ta (32)

where Ts is the water surface temperature. On the water side, ∆Tw is the temperature

difference.

∆Tw = Tb − Ts (33)

The air and water side temperature differences are later used to compute the resistance

to heat and mass transfer presented by the water and air side respectively.

While the Rayleigh and Reynolds numbers quantify natural and forced convection

respectively, the term that quantifies the relative influence of these terms on the

transport process, and thus the presence or absence of a mixed convective regime, is

the term ‘G’:

G =
Ra

Re2 · Pr
(34)
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This term G was derived by Oosthuizen78 by an order of magnitude analysis that uses

assumptions based on the characteristics of the boundary layer. This term is basically

a form of the Richardson number (Ri), the relationship between them being:

G =
Ri · β · ∆Tρ0

∆ρ
(35)

This analysis provides for mixed convective flow by considering the buoyancy force

to be more or less equally influential to the forced flow. Oosthuizen derived this term

by analyzing the characteristics of a boundary layer over an inclined solid plate. The

boundary layer mentioned above exists at the air-water interface and influences the

transport at the interface. The analysis done by Oosthuizen to obtain this term G is

presented below.

For any kind of forced flow, Oosthuizen78 accounted for the effect of buoyancy in

the momentum equation by the addition of the following buoyancy term on the right

hand side of the momentum equation.

βg(Ts − Tb) cos φ (36)

where φ is the angle between the direction of the forced velocity and the direction of

the buoyancy force, g the acceleration due to gravity, Ts the water surface tempera-

ture, Tb the bulk water temperature and β the thermal expansion coefficient. Thus,

the momentum equation accounting for the buoyancy force was written as:

u
∂u

∂x
+ ν

∂u

∂y
=

−1

ρ

dp

dx
+ ν

∂2u

∂y2
+ βg(Ts − Tb) cos φ (37)
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This equation was then non-dimensionalized to get the following equation:

u∗

∂u∗

∂x∗

+
v∗L

δ

∂u∗

∂y∗
= −

dp∗
dx∗

+
νL

δ2U

∂2u∗

∂y2
∗

+
βg(Ts − Tb) cos φ L

U2
(38)

where δ is the boundary layer thickness and the asterisk indicates the dimensionless

form of the variable. These dimensionless variables are defined as:

u∗ =
u

U
(39)

v∗ =
v

U
(40)

x∗ =
x

L
(41)

y∗ =
y

δ
(42)

p∗ =
p

ρU2
(43)

Oosthuizen further conducted an order of magnitude analysis of Eq. (38). Assuming

that the x-direction velocity is of order ‘U ’, u∗ will be of order one, similarly x∗ and
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y∗ will also be of order one due to the scaling variables selected. It can be deduced

from an order of magnitude analysis of the continuity equation, that v∗ is of order

δ/L in the boundary layer and hence negligible and since the pressure is scaled with

the stagnation pressure, p∗ will also be of order one. Hence, Eq. (38) was written in

terms of the orders of magnitude of its terms as follows:

θ(1)
θ(1)

θ(1)
+

θ(δ/L)

θ(δ/L)

θ(1)

θ(1)
= −

θ(1)

θ(1)
+ θ(

L2

δ2Re
)

1

θ(δ/L)

θ(1)

θ(1)
+ θ(G) (44)

where ‘θ’ indicates the order of a term. In the term L2

δ2Re
, the value of L2

δ2 is very small

while the value of Re will be very large for a boundary layer, thus it can be seen

that G will be important if it is of order one or greater. Thus Oosthuizen concluded

that forced convective flow will dominate if G is of an order lower than one, mixed

convection will exist if G is of order one, and if it is of an order much greater than

one then natural convective flow will dominate.

The parameter G was further manipulated as shown in Eq. (45) to get it in the

form Ra
Re2

·Pr
which is in fact equal to Gr

Re2 . It should be noted that Oosthuizen looks

at the scenario here where the flow is either assisting or opposing. Thus, the value of

cosφ will be equal to ±1. However, as comparisons between the forced and natural

convective forces are based on the order of magnitude of the term G, only the absolute

value of G is important. The parameter range for these experiments is enumerated

in Section 3.

G = (
βg(Ts − Tb)cosφ L3

ν2
)(

ν2

U2L2
) =

Ra

Re2 · Pr
=

Gr

Re2
(45)

Thus it can be seen that as G gives the comparative influence of forced and free
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convection in a flow, it can be used as a tool for the comparison and analysis of exper-

imental results and to differentiate between different convective regimes. However, it

should be noted that for the case of a forced flow over an air-water interface, φ will

always be 90◦ and thus the analysis breaks down and cannot be used for the situation

here as the buoyancy term shown in Eq. (36) will always be equal to zero. Thus, the

effectiveness of this term in differentiating between transport regimes for the research

done for this thesis is to be verified. A decision on the applicability of the term G to

the present research will be made in Section 5.

With the exception of the study by Katsaros, the studies supporting this work

that have been presented all dealt with natural, forced or mixed convection over flat

plates or others solid geometries. Though these studies are important to understand

the basic mixed convective process, they cannot be used as precedents to understand

interfacial mixed convective transport. Very few authors have studied this interfacial

transport phenomenon. Presented next is a work by Pauken which studies the mass

transfer process under mixed convective conditions.

Among the many works on evaporative mass transfer,32,35,66,69 the only work

which studies the evaporative mass transfer process from a free surface under mixed

convective conditions is the study by Pauken.32 In this study the author conducted

experiments for wind velocities from 1 m/s to 3 m/s and modeled the results for

forced and natural convection as shown in Eqs. (46) and (47) respectively.

Shf = function(Re, Sc) (46)

Shn = function(Grm, Sc) (47)
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where Shf is the Sherwood number under forced convective conditions, Shn the Sher-

wood number under natural convective conditions and Grm the mass transfer Grashof

number which is defined as:

Grm =
ρ(ρa − ρi)L

3

µ2
(48)

where µ is the dynamic viscosity of air.

Pauken obtained the following equations describing turbulent evaporation of hot

water in a cold air stream:

Shf = 0.036Sc
1

3 Re0.8 (49)

Shn = 0.14(GrmSc)
1

3 (50)

These results were then vectorially added to give the functional form for the mixed

convective regime, in a manner similar to the mixed convective Nusselt number func-

tion given in Eq. (19).

Shm = (Shp
f + Shp

n)
1

p (51)

It was shown before, that the term Ra
Pr·Re2 i.e. Gr

Re2 is a useful tool to distinguish

between convective regimes and was thus used by Pauken. However, Pauken employs

a variant of this term to distinguish between convective regimes, this term being Grm

Re2 .
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The data obtained by Pauken is for 0.1 < Grm

Re2 < 10. Pauken observed that for

this range of Grm

Re2 , the effect of natural convection could not be neglected anywhere,

whereas the contribution of forced convection to the total mass transfer falls below

10% for Grm

Re2 > 5.0. For the convective regime explored here, Pauken obtains the

following expression which describes the nature of the mass transfer process:

Shm = (Sh3
f + Sh3

n)
1

3 (52)

Although many researchers have studied evaporation and provided empirical re-

lations governing this process,30–37 most of these studies focus on obtaining the evap-

oration rate and completely neglect the heat transfer accompanying evaporation. A

notable exception is the study by Katsaros et al.4 However, these authors define the

Nusselt number based on the heat transfer from water due to convection and evap-

oration and do not account for the fact that heat loss due to evaporation from the

water will be comparable to convective heat loss. Thus Katsaros et al. don’t account

for the large contribution of evaporation to the cooling process while defining the

Nusselt number. Thus, the Nusselt number obtained by them is effectively defined

on the basis of heat lost due to mass transfer in conjunction with that lost due to

the convective heat transfer process. Another difference between this study and the

research conducted for this thesis is that the study by Katsaros et al. only explores

evaporative heat transfer in the natural convective regime, without the presence of

wind over the water surface and without surfactants. However, although this work

does not focus on mixed convection at an air-water interface, it may be useful to

compare the natural convection results obtained by Katsaros et al. to that from the

present work.

The study by Pauken effectively explores the mixed convective regime with respect
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to mass transfer, however they do not employ surfactants to ensure consistent surface

conditions and also no surface observational tools to check the consistency of surface

conditions. The authors also do not explore the completely forced convective regime,

the forced convective component was obtained from a Sherwood number having at

least some natural convective component. In spite of these differences from the present

work, this work is selected for comparison and as a guiding tool for the proposed

research, in conjunction with the studies by Oosthuizen46 and Katsaros,4 as these

were the studies which were closest to the research presented here in terms of the

experimental scenario and the research objectives. Though each is limited in its

scope, together they provide valuable groundwork on which this research project can

be based.

1.6 Experimental limitations

Although the concentration difference driving mass transfer is due to the temperature

difference between the water surface, Ts, and the free stream, Ta, the gross tempera-

ture difference was used instead to compute this concentration difference. An infrared

(IR) camera was utilized to observe flow on the water surface. These IR images permit

measurement of Ts. However, the total uncertainty in the IR temperature measure-

ment was large. Thus, surface temperature measurements were not used to quantify

the heat transfer from water and the gross temperature difference was used instead.

This method is justified as irrespective of the water surface temperature, it is the

gross temperature difference between the bulk water and the ambient that drives the

heat transfer process.

A similar argument, however, cannot be made for mass transfer, which should ide-

ally be calculated using the water vapor density difference between the water surface

and the ambient, the former obtained from measured surface temperature using the

IR camera or from estimates from past research. However, as stated before, water
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surface temperature measurements made using the IR camera had large uncertainties,

in some cases the uncertainty being larger than the measurement itself.

The value of ∆Tw is largest at higher water temperatures i.e. at the start of

each experiment and smallest at the end. For a maximum ∆Tw of 5 ◦C at the start

of an experiment, a conservative estimate obtained from measurements made using

the IR camera and also from results presented by past researchers,79 the saturation

density at the surface calculated using the bulk water temperature will increase by

approximately 23% from that calculated using the surface temperature. Similarly,

for the minimum estimated value of ∆Tw of 0.5◦C at the end of an experiment, the

saturation density calculated using the bulk water temperature increases by 4% from

that calculated using the surface temperature. Thus the use of the bulk temperature

to calculate the density at the surface is feasible. However, this increase in saturation

density will affect the Sh(Ra) results, the extent and nature of which will be analyzed

in Section 5.4. The estimates for surface temperature were obtained from preliminary

surface temperature measurements. This was corroborated by Judd79 who showed

surface temperature to differ from the bulk temperature by 1 to 5◦C.

Here, it should be noted that though the IR camera will not be used to obtain

water surface temperature time traces, it will be used to observe flow on the water

surface. The IR camera will also be used to judge the homogeneity of the surface

film.
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2 OBJECTIVES

The objectives of this thesis are as follows:

1. To determine whether natural and forced convective heat transfer at an air-water

interface can be modeled by power law relationships. To formulate functional

relationships between the Nusselt number and the Rayleigh and Reynolds num-

bers i.e. Nu(Ra) for natural convection and Nu(Re) for forced convection, in

the form:

Nu = ARab (53)

Nu = CRed (54)

where A, C, b and d are empirically determined constants.

2. To determine whether natural and forced convective mass transfer at an air-

water interface can be modeled by power law relationships. To formulate Sh(Ra)

and Sh(Re) relationships defining natural and forced convective evaporative

mass transfer respectively, which will be in the form:

Sh = A1Rab1 (55)

Sh = C1Red1 (56)
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where A1, C1, b1 and d1 are empirically determined constants.

3. To determine whether mixed convective heat transfer and evaporation at the air-

water interface can be defined by expressing the Nusselt and Sherwood numbers

as functions of the Rayleigh and Reynolds numbers. To formulate equations de-

scribing the heat transfer and evaporative mass transfer in the mixed convective

regime as a function of Ra and Re i.e. Nu(Ra, Re) and Sh(Ra,Re) for heat

and mass transfer respectively. These equations will be of the form:

Nu = [(CRed)n + (ARab)n]
1

n (57)

Sh = [(C1Red1)p + (A1Rab1)p]
1

p (58)

4. To investigate whether the mixed convective regime lies between wind speeds of

0 - 5 m/s for the present experimental setup.
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3 EXPERIMENTAL METHOD

3.1 Experimental apparatus

The experiments conducted for this thesis are performed in a wind/water tunnel

facility. The wind/water tunnel is constructed by attaching a water tank to the

test section of a wind tunnel. The wind/water tunnel is fabricated from wood, sheet

metal, gasket material and Plexiglas and consists of a blower, isolator section, diffuser

section, test section and a water tank. A schematic of the experimental setup is shown

in Fig. 5.

A one HP, 1745 rpm Dayton blower which provides the forced air flow necessary

for the experiments, is connected to the power supply through a Fuji AF-300 Mini

speed controller, which controls the blower rpm accurately from 30 rpm to 1745 rpm

with an uncertainty of ± 5 rpm. Thus a range of wind speeds from 0.05 m/s to 5

m/s with an uncertainty of ± 0.02 m/s (which translates into an uncertainty of ±

5 rpm in the blower rpm) is obtained. The wind speeds were measured using a hot

wire anemometer, thus this procedure effectively amounted to hot wire calibration

of the blower controls. This uncertainty is calculated by recording the wind speed

at 5 minute intervals over a period of three hours and then computing the standard

deviation of each point from the mean of the time trace.

A vibration isolator connects the blower to the diffuser section of the wind tunnel.

The isolator serves to isolate vibrations caused by the blower, preventing them from

being transmitted to the test section. The diffuser has an area contraction ratio of 4,

is fabricated from sheet metal and has a honeycomb flow straightener installed at its

downstream end. This straightener serves to break any large turbulent eddies into

smaller ones, thus promoting uniform flow at the test section inlet.

The test section, fabricated from Plexiglas, is connected to the diffuser and is 1.145

m long with a glass water tank attached to its floor at its downstream end. This water
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Figure 5: Schematic of the experimental setup: (1) Test section, (2) honeycomb section,
(3) flow diffuser, (4) vibration isolator, (5) water tank, (6) infrared camera, (7) computer
for data storage/processing, (8) blower.

tank, which is 0.27m long, 0.254m wide and 0.31m deep, is covered on all sides except

the top surface by one half inch of Dow polyurethane Weathermate insulation board.

This board reduces wall heat loss from the sides of the tank, thus ensuring that

the dominant heat losses are due to the evaporative and convective losses from the

water to the ambient. The water tank serves as a control volume in which the mixed

convective effect can be studied, and is coupled to the wind tunnel in such a way that

once full, the water level is flush with the floor of the test section. The glass tank and

the Plexiglas enclosure are sealed using GE RTV silicone adhesive (type 110). The

silicone was allowed to cure for one day and the water tank was soaked in water for

an additional day after the curing process. This process ensured leak-proof and clean

experimental conditions.

The electronic instrumentation consists of an infrared camera and a Fluke Chubb

E-4 temperature logger with two temperature measurement probes. One probe is

a dedicated bulk water temperature probe while the second is a dedicated bulk air
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Table 2: Wind speed at different locations above the water surface at the center of the tank
for a nominal velocity of 5 m/s

Location above water surface left wall (m/s) center (m/s) right wall (m/s)

10 cm 5.10 5.00 4.99
20 cm 5.00 5.09 5.09
30 cm 4.99 4.99 4.99

temperature probe. A DigiSense HydrologR thermohygrometer is used to record

relative humidity in the laboratory during the experiment. The water side thermistor

is located in the geometric center of the tank, the air side thermistor is in the plenum

and the thermohygrometer is placed in the laboratory to log humidity values. The

water surface is observed using an Inframetrics SC1000 infrared (IR) camera having

an FOV of 16◦. The infrared camera is mounted on a movable platform on top of the

test section in such a way that it looks down and at an angle of 16◦ upon the water

surface. Specifically, this angle eliminates the narcissus spot, the cold array reflection

from the water surface appearing as a black spot in an image. An additional reason

for setting up the camera at an angle to the normal is to avoid the evaporating water

rising up which can penetrate and damage the camera’s optical system. Plexiglas is

opaque to infrared radiation and thus a small opening at the top of the test section

allows radiation from the surface of the water to be captured by the camera.

A TSI model 231 hot wire anemometer is used to measure wind speeds at the

downstream end of the wind tunnel. The total uncertainty in measurements made by

the anemometer is ± 0.01 m/s. Wind speed measurements are taken at the center of

the tank at nine different locations spatially in the plane perpendicular to the water

surface and facing the test section exit. The wind speed at all these locations varies

by less than 5% of the centerline velocity as shown in Table 2.

A mass balance, which has an uncertainty of ±0.1 mg is used to measure the

rate of evaporation from the tank. The balance and the entire mechanism used to
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Figure 6: The evaporation measurement bench: (1) Water tank, (2) water bulk, (3) test
section, (4) wind direction, (5) weighing scale enclosure, (6) cylinder, (7) water line, (8)
water level in cylinder, (9) weighing platform, (10) display.

quantify the rate of evaporation is shown in Fig. 6 (not to scale), which shows the

mass balance placed next to the wind tunnel. The mass flux measurement apparatus

consists of a 50mL graduated glass cylinder placed on a weighing scale. This entire

apparatus is then placed on a wooden platform in such a way that at least half of

the height of the cylinder is above the water level in the tank. This platform is not

shown in the diagram. The cylinder is connected to the tank with a small length of

tubing, one end of which is submerged in the tank, providing a siphon between the

two containers. To avoid fluctuations in the water level due to the formation of waves

on the water surface, the tank-side end of the tube is submerged far upstream in the

tank as the amplitude of waves is a minimum in this region. The cylinder holds a

small volume of water and its level equilibrates with that of the main tank.

Because the tube is connected to the wind tunnel which is a source of vibrations,

care is taken to ensure that the tube does not touch the cylinder. A 100% relative

humidity environment is required inside the balance to avoid evaporation of water

in the cylinder preventing any error due to evaporation from the cylinder. This is

ensured by keeping a small beaker full of warm water inside the balance enclosure.
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The water in this beaker evaporates to saturate the air inside the balance in less than

5 minutes, thus ensuring that any changes in water level in the cylinder are solely

due to the water level in the cylinder responding to changing water levels in the tank.

The relative humidity in the enclosure was typically measured to be 98 - 100%, thus,

though the air inside the beaker wasn’t fully saturated the evaporation rate from

the beaker was negligible. This was confirmed by measuring evaporation from the

beaker over a period of one full day. The weighing scale is placed on an optical table

which is supported on an inner tube which isolates the weighing scale and reduces

any background vibrations from the lab.

3.2 Experimental procedure

The water for the experiments is taken directly from the tap, its temperature at

the start of each run being approximately 41◦C. The tank is filled until the water

surface is flush with the lower wall of the test section. Once the tank is full, the

mass flux measuring apparatus is connected to the tank and the water in the two

vessels is allowed to equilibrate. Next the IR camera is turned on and the thermistor

probes positioned in and above water. This is followed by swiping the water surface

with lab wipes to remove any indigenous surfactant on the water surface, which is

immediately followed by the surfactant film application to the water surface to prevent

any indigenous surfactant diffusing back to the water surface. Details regarding the

surfactant application are described in Section 3.3.

Data collection begins an hour after the blower is started to allow the setup to

reach a steady state. A typical experiment ran for three hours, during which time

the bulk air and water temperatures and the relative humidity are logged at the rate

of one data value every 30 seconds. The mass balance also recorded data every 30

seconds. The time rate of decay of the mass balance time trace gave the mass loss

rate which is then used to calculate the Sherwood number.
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The water temperature range for these experiments is selected to give a range in Ra

from 2×109 to 2.2 ×1010 while at the same time ensuring that the Boussinesq approx-

imation78 is not violated. The Boussinesq approximation assumes that the density

difference within the fluid is small enough to be neglected, except where it appears in

terms multiplied by g, the acceleration due to gravity. The underlying essence of the

Boussinesq approximation is that the difference in inertia is negligible but gravity is

sufficiently strong to make the specific weight appreciably different between the two

fluids. For the range of temperatures selected, the Boussinesq approximation was not

violated:

|∆ρ|

ρ0

= β|∆Tw| < 1 (59)

Here ∆ρ is the difference in densities of the bulk and surface water at the maximum

bulk water temperature of 41◦C, ρ0 is the density of the bulk water at the maximum

temperature of 41◦C and β is the coefficient of volume expansion. Similarly, ∆Tw is

the temperature difference between the bulk water and the surface water when the

bulk water temperature is 41◦C and T0 is the maximum water temperature of 41◦C.

This equation shows that at the highest temperature of 41◦C, the ratio between the

density difference of the bulk and the surface water and the bulk water density is

smaller than one. Here, the surface water temperature was set to be 5◦C below

the bulk water temperature. This estimate is the higher limit of the water side

temperature difference as shown by Judd79 and also from preliminary measurements

using the IR camera. Although the measurements obtained using the IR camera had

large errors, even after accounting for these errors, the upper limit of Ts is 5◦C. Thus,

it is shown that the Boussinesq approximation isn’t violated.
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3.3 Surfactant application

Natural bodies of water such as lakes and rivers contain a large amount of a variety

of surfactants.71 Tap water, which is obtained from such natural fresh water reserves

contains some of these surfactants. Although tap water contains surfactants, the

exact quantity and type are unknown and they are also liable to vary from day to

day. This can result in inconsistent surface conditions and lack of reproducibility

of experimental results. Thus, a foreign surfactant is applied to the water surface

during experimentation. The added surfactant helped control the surface conditions

by providing spatial and temporal consistency during an experiment and also over

the entire period of experimentation.

The surfactant chosen for the experiments conducted for this thesis was oleyl

alcohol. This choice was influenced by the low evaporation and dissolution rates of

oleyl alcohol in water80 thus causing lower film losses and more consistent surfactant

coverage. The surfactant solution is prepared by dissolving one gram of oleyl alcohol

in 500 mL of heptane, the heptane serving as a spreading agent for the highly viscous

oleyl alcohol. The solution is stored in a flask tightly sealed with a glass stopper and

covered with parafilm which prevents the solvent from evaporating. To apply this

solution during a run, 40 µL of the stock solution is applied to the water surface in

a protected region of the tank using a microsyringe as it prevents surfactant ‘lenses’,

which are local agglomerations of the surfactant on the surface, from being blown over

to the edge of the tank or over it by wind. Thus applying the surfactant in a protected

region prevents premature loss of the surfactant film due to bleeding over the tank

edge and effectively creates a reservoir of surfactant in the tank. This reservoir was

a piece of Teflon tubing with a slit cut along its length, shown in Fig. 7, positioned

in a corner of the tank farthest downstream and out of the field of view of the IR

camera as shown in Fig. 8. The slit on the tube allows the deposited surfactant to

seep out and replenish the surfactant lost from the water surface thus maintaining the
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Figure 7: Surfactant reservoir: 1) Surfactant, 2) reservoir, 3) slit.

surfactant film on the water surface. The reservoir acts as a protected region where

the surfactant is not affected by waves on the water surface and controls the surfactant

supply to the water surface. Stated another way, this arrangement functioned as an

automatic equilibrium mechanism in which the water surface draws out the required

amount of surfactant to maintain a homogenous surfactant film.

In spite of the low evaporation and dissolution rates of oleyl alcohol,80 the high

operating temperatures, high wind velocities and lengthy duration of the experiments

reported here cause considerable loss of the surfactant film. Thus, the surfactant

film needs to be maintained by replenishing the reservoir. All the available research

on surfactant loss rates concerns surfactant loss in the absence of wind, thus the

amount of surfactant to be applied to the water surface and the replenishment rate

was determined through trial and error. The surfactant concentration chosen was

that which provides homogenous conditions throughout an experiment at the highest

operating temperature and wind speed.

These trial and error experiments showed that for the worst possible scenario i.e.
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Figure 8: Top view of the water tank showing the position of the surfactant reservoir:
1) Water surface, 2) water tank, 3) surfactant reservoir, 4) slit in reservoir, 5) spreading
surfactant.

water temperature of 41◦C and wind velocity of 5 m/s, it is possible to maintain a

homogenous surfactant film for a period of 30 minutes when 40 µL of the solution of

oleyl alcohol in heptane is applied to the water surface. The homogeneity of the film

is determined from the presence or absence of a Reynolds ridge81 on the water surface.

When an external shear, in the form of an air flow is induced on the water surface,

the surfactant present on the water supports this shear to some extent. However, as

this shear increases beyond a certain point, it causes the surfactant film to rupture

thus forming what is known as a Reynolds ridge, which is the physical boundary

between the surfactant free water surface and the surfactant covered water surface.

This ridge is clearly evident in the IR imagery as a boundary separating the clean

and surfactant-covered region of the water surface. An example is shown in Fig. 9

which is a grayscale image of the water surface taken using the IR camera, where

a lighter shade indicates a higher temperature and a darker shade indicates a lower

temperature. The direction of the wind over the water surface in this image is from

the bottom to the top of the image, thus the wind is pushing against the top dark

39



Figure 9: Image showing the Reynolds ridge. The lighter region is the clean one while the
darker is the surfactant covered region. The black strips along the right and bottom edges
are due to the plexiglas obstructing the view of the camera.

Figure 10: Image showing a homogeneous surfactant film

half of the image which shows the sheared and compressed surfactant film. The image

covers an area that is a 0.24 m by 0.24 m square on the water surface in the center

of the tank, this format being the same for all of the IR images presented here. The

lighter region is the surfactant free or clean region whereas the dark region is the

surfactant covered region. This image can be compared to Fig. 10 which shows a

homogeneous surfactant film on the water surface.

During the initial set of trial experiments, 10 µL of oleyl alcohol stock solution

is added to the surfactant reservoir. It was observed that this amount could not
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hold a homogenous surfactant film for longer than 10 minutes after which a Reynolds

ridge was formed. Hence in subsequent trial experiments this amount was steadily

increased. These experiments revealed that 30 µL of stock solution resulted in a

steady surfactant film for 35 minutes. To provide a margin of safety, the procedure

adopted was adding 40 µL of surfactant every 30 minutes, thus ensuring the presence

of a homogenous surfactant film on the water surface throughout the experiment.

This procedure was used for all experiments presented herein.

After each run, the water surface was swiped with lab wipes and the water tank

was thoroughly cleaned using methanol, thereby preventing any surfactant from being

carried on to the next experiment. Thus consistent experimental conditions were

maintained.

3.4 Data processing

Figure 11 shows typical time traces of the bulk air and water temperatures during

an experiment at a wind speed of 4 m/s. As expected, the air temperature varies

very little during an experiment, the maximum air temperature variation during a

single experiment being typically 0.4◦C. The bulk water time trace decays with time,

the temperature range visible in this plot being the typical temperature range of an

experimental run. Thus it can be seen that the bulk air temperature change compared

to the bulk water temperature change is negligible. The bulk water temperature data

points are plotted 5 minutes apart in time, the logging rate is one data value every 30

seconds and every tenth data point is shown on the plot. The same applies to Fig. 12

which shows the typical mass time trace obtained from the mass balance.

The overall goal of each experiment is to compute the dimensionless heat and mass

transfer from the bulk water to the bulk air and relate it to the driving force behind

the transport. In each case this involved taking the derivative of the temperature and

mass time traces. To do this, the time traces of the bulk water, bulk air and mass were
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Figure 11: Typical water and air temperature time traces at 4 m/s wind speed.

first fit by calculating a least squares fit to the data using a fourth order polynomial

model. The fourth order polynomial model was chosen after testing polynomial fits

of orders 1 - 25 as it gave the best fit to the data that also correctly modeled the

data.

The time rate of decay of the bulk water temperature, which was calculated from

the derivative of the polynomial fit to the water temperature data gave the heat loss

from water. This heat loss from the water is a sum of various components:

q = q1 + q2 + q3 + q4 (60)

where the variables are the same as defined in Eq. (21). The tank wall heat loss was

quantified by filling the water tank to the brim and covering all sides with insulation,
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Figure 12: Typical mass loss time trace at 4 m/s wind speed.
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including the top surface. The only possible mode of heat loss from the water in that

case is due to conduction through the tank walls. The water was then allowed to cool

and the temperature of water and the air surrounding the tank were recorded. The

derivative of the bulk water time trace gave the rate of wall heat loss. This heat loss

is calculated as:

q4 = (m1Cp1
+ m2Cp2

)
dTb

dt
(61)

where m1 is the mass of water in the tank, m2 the mass of the glass tank, Cp1
the

specific heat of water and Cp2
the specific heat of glass. This heat loss from the tank is

only due to conduction, driven by the temperature difference between the water and

air on either side of the insulation and dependent on the properties of the insulation.

This wall heat loss is then plotted against the gross temperature difference and the

following linear fit to the data is obtained:

q4c = 1.127(Tb − Ta) + 2.5163 · 10−14 (62)

where q4c is the heat loss during a closed top experiment. The closed top experiment

thus provided an estimate of the wall heat loss for particular values of ∆Tg, this loss

being 9-10% of the total heat loss from the water for experiments at the lowest wind

speed i.e 0 m/s. This percentage further decreased as the wind speed increased and

was accurately accounted for. This heat loss is dependent only on the insulation

around the tank, the insulated surface area and the temperature difference between

the water bulk and the ambient air temperature, thus the absolute loss would remain

the same irrespective of the wind speed, relative humidity or any other factors.
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The heat loss from this experiment is the wall heat loss from the entire surface

area of the tank. Since during a regular open top experimental run, the top surface of

the tank was not insulated, the wall heat loss during an experiment will be different

from that obtained from the closed top run. This loss was obtained by multiplying

the total heat loss by a correction factor which is a ratio of the tank surface area

insulated during an experiment, Ai, to the total tank surface area during a closed top

experiment Ac as:

c1 =
Ai

Ac

= 0.87 (63)

where c1 is the correction factor to be applied. The correction is:

q4 = c1 · q4c (64)

The derivative of the mass time trace gave the rate of mass loss from the water

surface in mg/s and its product with the latent heat of vaporization gave the heat

lost due to evaporation:

q2 =
dm

dt
· hfg (65)

This contribution of heat loss due to evaporation is deducted from the overall heat

loss from water to air obtained from the decay of the bulk temperature time trace as

shown in Eq. (60). This was done to obtain the convective component of the heat

transfer.
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Figure 13: Surfaces for calculating radiation emission from water. Surfaces 2-4 are Plexiglas,
surface 1 is the water whereas surfaces 5 and 6 which are the lab wall and the blower interior
wall respectively are not shown here. The water tank is labeled 7.

The radiative heat transfer between the water surface and the surroundings also

needs to be accounted for. Figure 13 shows the different surfaces of the test section

from which the radiative heat loss was calculated. All surfaces of the enclosure were

assumed to be diffuse and gray as well as the lab and blower walls which exchange

heat with the water surface. The Plexiglas surfaces are numbered 2 to 4, surface 1

is the water surface whereas surfaces 5 and 6, which are the lab wall facing the wind

tunnel exit and the blower interior respectively, are not depicted in this figure.

The emissivities of water, Plexiglas, lab walls (brick) and the blower interior (sheet

metal) were taken from the Handbook of Chemistry and Physics82 and are shown in

Table 3. The form factors for this geometry which were calculated based on methods

presented in Incropera and Dewitt,1 as well as the areas of the different surfaces are

shown in Table 4. The net radiation from surface 1 was determined as:

q4 =
6

∑

j=1

A1F1j(J1 − Jj) (66)

46



Table 3: Emissivities of the different radiating surfaces.82

Material Emissivity

Water 0.97
Plexiglas (0.5”) 0.9

Brick 0.93
Sheet metal 0.7

Table 4: Areas and form factors used in Eqs. (66) and (67).

Surface Form factors Area (m2)

1 F12= 0.15, F13, F14 = 0.225, F15=0.4, F16 = 0.3 0.068
2 F21 = 0.15, F24 = 0.225; F25 = 0.4, F26 = 0.3, F23=0.4 0.068
3 F34 = 0.21, F32, F31 = 0.19, F35 = 0.45, F36 = 0.31 0.078
4 F43 = 0.21, F45 = 0.45, F46 = 0.31, F41, F42 = 0.19 0.078
5 F51, F52 = 0.16, F53, F54 = 0.19, F56 = 0.4 = 0.3 4
6 F65 = 0.4, F64, F62 = 0.225, F61 = 0.4, F63 = 0.21 0.0837

where F1j is the view factor for surface 1, J the radiosity for a surface and ǫ1 is the

emissivity of the water surface. Subscript j denotes the receiving surface. All the

variables on the right side of Eq. (66) are known except for the surface radiosities.

The problem involves solving for the radiosities of the five surfaces exchanging heat

with the water surface simultaneously, thus the radiosities for each can be obtained

by solving the set of simultaneous equations obtained from:

Eb1 − J1

(1 − ǫ1)/ǫ1A1

=
5

∑

j=1

A1F1j(J1 − Jj) (67)

where Eb1 is the emissive heat transfer from the water surface, i is the emitting surface

and i and j will have different values depending on the surface under consideration.

Using the radiosity from surface 1 obtained on solving Eq. (67), the total radiative
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heat flux from this surface was obtained from Eq. (66).

This loss due to the net radiative heat transfer was found to be 0.98% of the total

heat loss from the water surface. Once the contributions due to the evaporative loss,

radiative loss and wall heat loss were deducted from the total heat lost from the bulk

water as shown in Eq. (60), the resulting heat loss was solely due to the convective

heat transfer between the bulk water and the bulk air, the driving mechanism behind

this heat transfer being the temperature difference between them.

The heat loss due to convective heat transfer was thus calculated as:

q1 = q − q2 − q3 − q4 (68)

Using this convective heat loss from the water to air, the heat transfer coefficient and

the Nusselt number were calculated as:

ht =
q′′1
∆T

(69)

Nu =
htL

k
(70)

where q′′1 is the heat flux only due to convective heat transfer and ∆T is the gross

temperature difference between the bulk water and air. Since natural and forced

convection are being studied, L can be the height of the air column, the length of

the water tank or the depth of the water tank. This characteristic dimension for

studying natural and forced convection will be chosen based on the nature of the

flow governing the transport process. For the case of natural convection it has been
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shown83,84 that the breadth of the fluid body is the controlling dimension as it controls

the formation of the buoyant plume whereas for Rayleigh-Bénard convection the depth

of the fluid medium is used. For forced flow over a flat plate past researchers32,33 have

traditionally used the length of the fluid medium as the characteristic dimension. For

the case of the transport process studied here, it will be shown in Section 4.2 that

the air side of the interface controls transport. Thus, as the water tank is enclosed

within a wind tunnel, the height of the air column above the water tank was used as

the characteristic length scale for Ra, Sh and Nu. Using the temperature data for

water and air, the Rayleigh number for heat transfer was calculated:

Ra =
βg∆TL3

να
(71)

These non-dimensional quantities, i.e. Nu, Re and Ra were then related as described

in Section 1.3, and a similar methodology was followed to relate Sh to Ra and Re.

The Reynolds number was calculated as:

Re =
ULu

ν
(72)

where Lu was the characteristic length scale for Re. The geometry of the setup for

this study i.e. water tank placed in a wind tunnel, resembles that of a flat plate

with an unheated starting length, thus the length of the entire wind/water tunnel

was chosen as the length scale for calculating Re. These Nu(Ra, Re) and Sh(Ra, Re)

relationships thus obtained are presented and analyzed in detail in Section 4.

The power law relationships obtained in this work, for example the Nu(Ra) rela-

tionship were obtained by first casting these equations in the logarithmic form:
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Nu = ARab (73)

log10(Nu) = (log10 A) + (b · log10 Ra) (74)

Thus, obtaining a linear fit to log(Nu) versus log(Ra) effectively fits a power law

relationship to the Nu(Ra) data. The natural convection Sh(Ra) relationship and

the forced convection Nu(Re) and Sh(Re) relationships are fit similarly.

3.5 Uncertainty analysis

The uncertainties in the results presented here are due to the instrumental uncertain-

ties and the uncertainties introduced in the calculations due to the processing method

employed. The rules of uncertainty propagation were used to estimate the uncertainty

in the final results presented due to these sources.85,86 Another source of uncertainty

in the results is that which comes from the scatter in the data. This uncertainty can

be quantified by calculating the confidence interval for the results presented using the

students T distribution and by calculating the standard deviation of the data from

the fit to it. This uncertainty will be quantified in Section 4.

The rules of error propagation were used to ascertain the accuracy of the results

presented here. These rules state that if a quantity R is calculated by adding or

subtracting two different terms M and N , each having a certain uncertainty associated

with it, then the uncertainty in the calculated value of R given by the quadrature

rule is:
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Re =
√

(M2
e + N2

e ) (75)

where the subscript ‘e’ denotes the uncertainty in the measurement of the quantity.

This rule is valid if M and N are independent quantities e.g. the total uncertainty in

the measurement of ∆Tg is obtained from the uncertainties in the measurement of Tb

and Ta as both are measured using different thermistors and are thus independent.

If M and N are dependent then the total uncertainty in R is:

Re = Me + Ne (76)

For example, the total uncertainty in any quantity that is obtained by combining

measurements made by the same instrument. If R is calculated by multiplying or

dividing two different quantities, the uncertainty in R which is calculated as the sum

of the fractional uncertainties in M and N is:

Re =
Me

|M |
+

Ne

|N |
(77)

The final rule states that the uncertainty in the nth order derivative of a quantity is

of an order equal to the nth power of the period ‘h’ between successive measurements

of that quantity:

R =
d

dt
(M) (78)
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Re = θ(hn) (79)

h = Mi+1 − Mi (80)

where θ denotes the order of magnitude, i denotes the data point number and n

denotes the order of the polynomial used to fit the data.

The total uncertainty in measurements made by the temperature probes, thermo-

hygrometer and anemometer, were calculated using the quadrature rule85 for additive

errors shown in Eq. (75). The total uncertainty in measurements made by each in-

strument was calculated by using the additive rule to combine the uncertainty in each

component of the particular instrument as:

∆E1 = [(∆e1)
2 + (∆e2)

2]1/2 (81)

∆E2 = [(∆e3)
2 + (∆e4)

2]1/2 (82)

∆E3 = [(∆e5)
2 + (∆e6)

2]1/2 (83)

where ∆E1 is the total uncertainty in measurements made by the thermistor setup,

∆E2 is the total uncertainty in measurements made by the thermohygrometer and
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Table 5: Instrumental uncertainties.

Component Source Uncertainty

∆e1 Thermistor meter ±0.01◦C
∆e2 Thermistor probes ±0.01◦C
∆E1 Air/water temperature measurement ±0.014◦C
∆e3 RH meter accuracy ±1%
∆e4 RH probe accuracy ±1%
∆E2 Relative humidity measurement ±1.4%
∆e5 Anemometer accuracy ±0.01m/s
∆e6 Anemometer probe accuracy ±0.01m/s
∆E3 Velocity measurement ±0.014m/s

∆E3 is the total uncertainty in measurements made by the anemometer. Here, ∆e1

is the uncertainty in the thermistor meter, ∆e2 is the uncertainty in the thermistor

probe, ∆e3 is the uncertainty in the thermohygrometer, ∆e4 is the uncertainty in the

thermohygrometer probe, ∆e5 is the uncertainty in the anemometer and ∆e6 is the

uncertainty in the anemometer probe. The total uncertainty in measurements made

by each component of a particular instrument i.e. ∆e1 through ∆e6 were obtained by

combining the random uncertainty and the systematic uncertainty in that component

using the additive rule of uncertainty analysis.

These individual uncertainties along with the uncertainty of each measurement

are listed in Table 5. The thermistor had a resolution viz. random uncertainty of

0.001◦C and a systematic uncertainty of 0.011◦C while the thermohygrometer had a

random uncertainty of 0.1% and a systematic uncertainty of ± 1.4% when measuring

the relative humidity. The source of the instrument accuracies, repeatabilities and

resolutions was the respective manufacturer’s product specifications manual. The

rules of error propagation stated above are explained in detail by Taylor85 and Figliola

and Beasley.86

Table 6 shows the uncertainties in the different measurements. These uncertainties

propagate through the various calculations done to obtain the required dimensionless

quantities and will also be quantified using the rules of error propagation defined
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Table 6: Uncertainty propagation in Nu.

Quantity Source Systematic uncertainty Random uncertainty(fit) Total uncertainty

Tb Thermistor ±0.014◦C 0.015◦C 0.018◦C
Ta Thermistor ±0.014◦C 0.015◦C 0.018◦C

∆Tg Thermistor NA NA 0.028◦C
mw Mg balance ±0.11mg 8 mg 8.23 mg
dTb

dt
Poly. fit NA NA 0.014 ◦C/s

dM
dt

Poly. fit NA NA 0.018 mg/s
A Ruler ±1mm NA ±1.4mm2

L Ruler ±1mm NA ±1mm
mg Ruler ±1mm NA 13 mg
Cpw Thermistor ±0.02◦C NA 18 KJ/kgK
Cpg Thermistor ±0.02◦C NA 8.4 KJ/kgK

above. The aim here is to ascertain the total uncertainty in the final measurement

of Nu, Ra, Sh and Re, thus the propagation of uncertainties from the initial mea-

surement of the raw data to the final expression of the Nu, Ra, Sh and Re must be

calculated. The uncertainties in the measured quantities are expressed in terms of

their absolute values in Table 5. Thus, as Nu, Ra, Sh and Re are calculated from

∆T , dTb

dt
, dM

dt
and U the uncertainties in these quantities are combined using the rules

of error propagation shown above to get the errors in Nu, Ra, Sh and Re. The

following is a sample calculation for the total uncertainty in Nu:

Nu =
(mwCpw + mgCpg) ·

dTb

dt
· L

A · k · ∆T
− (hfg ·

dM

dt
)− (1.127(∆Tg) + 2.5163 · 10−14) (84)

In Eq. (84), where two quantities are multiplied the multiplicative rule of error propa-

gation is used. Where a derivative is calculated, the derivative rule for error propaga-

tion is used. Thus the different uncertainties are combined to give the final uncertainty

in Nu, the total uncertainty in Nu being due to the uncertainties in its individual

terms. Table 6 shows the uncertainties in the measured quantities and also their

source.
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Using these rules defined in Eqs. (75) - (77) and the equations defining the

dimensionless quantities in Section 1, the total uncertainties in the Nusselt, Sher-

wood, Rayleigh and Reynolds numbers were found to be ±34.62 units, ±0.19 units,

±4.8 × 105 units and ±2 × 103 units respectively within a 95% confidence interval.

These translate into a percentage uncertainty of ±7.8%, ±4.9%, ±1.8% and ±1.3%

in Nu, Sh, Ra and Re for experiments at 0 m/s where the percentage will be largest.
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4 RESULTS

The results presented here are subdivided into two sections; Nu(Ra,Re) relationships

and Sh(Ra, Re) relationships. The experimental results are preceded by a discussion

about the significance of a few experimental and data processing techniques which

were implemented to ensure greater accuracy of the presented results.

4.1 Significance of Ra versus Nu · Ra and Sh · Ra

The propagation of errors was discussed in Section 3.5 and it was shown that the

Nusselt, Rayleigh, Sherwood and Reynolds numbers have errors of ±34.62 units,

±0.19 units, ±4.8 × 105 units and ±2 × 103 units respectively. Though these errors

are not large and it is not possible to completely eliminate all errors, it is desirable

to reduce them further. The largest part of these errors comes from calculating the

temperature difference driving natural convection based on the polynomial fits of the

bulk air and water temperatures. This ∆T term is in the denominators of Nu and

Sh and the numerator of Ra. Thus an uncertainty in ∆T creates opposite errors

in Nu and Sh and Ra i.e. if the uncertainty in ∆T is positive, Nu and Sh will be

overestimated while Ra will be underestimated. This magnifies errors in the Nu(Ra)

and Sh(Ra) relationships. The ∆T term affects Sh as the density gradient driving

mass transfer is calculated from it.

Globe and Dropkin3 reduced this uncertainty by plotting the product of Nu · Ra

against Ra instead of plotting Nu versus Ra to get the functional relationship between

these two groups. This reduces errors because the ∆T terms in the numerator of Ra

and the denominator of Nu cancel, making Nu ·Ra a quantity derived only from the

fluid’s thermophysical properties and the convective heat flux:
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NuRa =
qcβgL4

νκ2
(85)

Thus the errors due to the ∆T term are eliminated in the Nu · Ra term. Similarly,

when the product Sh · Ra is plotted against Ra, errors present in Sh from the ∆T

term used to calculate the density gradient driving evaporation are eliminated.

The method of fitting a power law to the Nu(Ra) and Sh(Ra) data was described

in Section 3.4. This was done by fitting a line to the logarithms of the respective

quantities and extracting the exponent and prefactor of the power law from the slope

and intercept of the linear fit. When plotting Nu · Ra versus Ra and Sh · Ra versus

Ra the power law fit changes to:

Nu · Ra = MRan (86)

where M and n are the exponent and prefactor of the power law relationship between

Nu ·Ra and Ra. On taking the log of both sides of Eq. (86) this relationship becomes:

log10(Nu · Ra) = log10(MRan) (87)

log10(Nu) + log10(Ra) = (log10 M) + (n · log10 Ra) (88)

Comparing the above equation to Eq. (74) we obtain:
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A = M (89)

b = n − 1 (90)

Thus, using the modified power law fit, the exponent of the Nu(Ra) power law fit can

be obtained by subtracting 1 from the slope of the linear fit to the log(Nu ·Ra) versus

log(Ra) data. This same procedure can be followed for the Sh(Ra) relationship.

The exponents and prefactors for all Nu(Ra) and Sh(Ra) power law relationships

presented in this thesis are obtained in this way.

The Nu(Ra) and Sh(Ra) relationships for pure natural convection can be ade-

quately modeled using a power law fit. However for data obtained at a fixed wind

speed this approach fails since Nu will have a finite value as Ra approaches zero.

Thus, for all wind speeds greater than 0 m/s, a linear fit of the Nu(Ra) relation-

ship was obtained as it provided the best fit to the data which was also physically

plausible. To model this linear fit of the Nu(Ra) data, the following approach was

used:

Nu · Ra = M1Ra2 + M2Ra + M3 (91)

where M1, M2 and M3 are coefficients of the quadratic relationship between Nu ·Ra

and Ra. M3 is specified to be equal to zero in Eq. (91) while fitting a quadratic

equation to the Nu · Ra values. The Nu · Ra(Ra) relationship was modeled instead

of Nu(Ra) to reduce errors due to the ∆T term, the aim being to extract a linear
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Nu(Ra) relationship from this quadratic Nu · Ra(Ra) model. This equation can be

transformed into an Nu(Ra) relationship by dividing both sides of Eq. (91) by Ra,

giving:

Nu = M1Ra + M2 (92)

Thus a linear relationship between Nu and Ra for wind speeds greater than zero is

obtained. The Nu(Ra) linear fits for forced convection and power law fits for zero

wind speed are presented and discussed in Section 4.4.

4.2 Heat and mass transfer resistance

Thermal resistance is defined as the ratio of the temperature difference, ∆T , to the

heat transferred q. Thus, convection heat transfer resistance is:

Rh =
∆T

qc

(93)

where Rh is the convection heat transfer resistance and qc is the convective heat

transfer. The ratio of the convective heat flux to the driving temperature difference

is the heat transfer coefficient, thus Rh can also be defined as:

Rh =
1

ht · A
(94)

where A is the area over which heat transfer takes place. For the case of an air-water

interface, Rh can be used to estimate the heat transfer resistances on both sides of

the interface. If one side has a significantly higher heat transfer resistance than the

other, then this side controls the heat transfer, in effect acting as a bottleneck for heat

transfer. For the air-water interface, the resistances on both sides of the interface are:
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Ra =
∆Ta

q′′c
(95)

Rw =
∆Tw

q′′c
(96)

where Rw and Ra are the heat transfer resistances on the water and air side of the

interface respectively. Due to conservation of energy, the convective heat flux q′′c on

both sides of the interface is the same. For the experiments conducted for this thesis

∆Ta was never less than 6 ◦C, and ranged from 7.0 ◦C to 15 ◦C whereas it is also known

that ∆Tw typically has a value between 2 to 5◦C.79,87 The heat transfer resistance on

the air side of the interface was therefore always greater for these experiments and

thus the air side controlled the heat transfer.

Similarly, the maximum and only possible resistance to mass transfer is provided

by the air side as water faces no resistance to transfer in water. The only exception to

this would be if the resistance to heat transfer in water is greater than the resistance

to mass transfer, as the energy for evaporation is provided by the bulk water which

dissipates heat to the surface and drives evaporation. Thus comparing the mass

transfer resistance on the air side to the heat transfer resistance on the water side it

was found that:

Rm =
1

hm · A
> Rw (97)

where Rm is the resistance to mass transfer on the air side. Thus, as the air side of the

interface controls the maximum possible heat and mass transfer from the water to air,

all non-dimensional relationships (Nu(Ra), Nu(Re), Sh(Ra), Sh(Re), Nu(Ra, Re)

and Sh(Ra, Re)) will be calculated for the air side of the interface.
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4.3 Prandtl and Schmidt number variations

The equations governing natural and forced convective heat and mass transfer have

been described in Sections 1 and 3. It can be seen from these equations that Nu

and Sh are functions of Pr and Sc of a fluid respectively, just as they are each

functions of Ra and Re. However, the effect of Pr and Sc on Nu and Sh has

been ignored in the research done for this thesis as the air temperature range for the

experiments conducted for this thesis was too small to cause a large change in Pr and

Sc. During a typical experiment, Pr for air changed by approximately 1.24% while

Sc for air changed by approximately 1.4%. These values were calculated based on the

air temperature change at the water surface in comparison with the free stream as

this will be the maximum air temperature fluctuation possible and thus the worst case

possible for Pr and Sc change. The standard deviation of the Prandtl and Schmidt

number from the mean was calculated to be 0.11% of its absolute value.

4.4 Nu(Ra, Re) relationships

To summarize the methodology used to obtain Nu, Ra and Sh, the first step involved

actual measurement of bulk air and water temperatures and the mass flux rate. This

raw data was fit using suitable polynomial functions and these polynomial functions

were then used to calculate the various dimensionless quantities i.e. Nu, Ra and Sh.

The Nu(Ra) and Sh(Ra) plots obtained from these calculated values were subse-

quently fit as well to obtain physically meaningful relationships between them. The

various non-dimensional quantities are calculated for the air side of the interface and

using the gross temperature difference between the bulk water and air as explained

in Sections 1.6 and 4.2.

Figure 14 is a plot of Nu versus Ra for the entire range of wind speeds explored

for the research presented here, five experimental runs being conducted at each wind

speed. This plot shows the results obtained by calculating Nu and Ra from the fitted
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Figure 14: Plot of Nu versus Ra for all wind speeds.

raw data, thus the dotted lines are obtained from the polynomial functions which

were used to fit the raw temperature and mass data. Each dotted line represents an

experiment conducted at the wind speed indicated by the symbols on that dotted

line. For each experiment, the symbols are spaced 10 minutes apart. The gap in the

symbols is used to facilitate viewing the closely grouped lines, while still differentiating

experiments at different wind speeds.

It is evident from Fig. 14 that Nu increases with increasing wind speed as expected.

It is also evident that Nu increases with Ra at the lower wind speeds, however this

trend reverses for wind speeds greater than 2 m/s. At a wind speed of 5 m/s Nu is

essentially constant for all Ra, and thus forced convection dominated.

The functional form fitted to the Nu(Ra) relationships at each wind speed has

been explained in Section 4.1. Figure 15 shows the fits thus obtained for each indi-

vidual wind speed plotted on linear coordinates along with the actual Nu(Ra) values.
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Figure 15: Plot of Nu versus Ra for all wind speeds with the fit for each wind speed
superimposed. Symbols and dotted line show the fit data and solid lines show the fit.
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Table 7: A table of the exponent (b), prefactor (A), slopes (M1), and intercepts (M2) of the
Nu(Ra) fits and the standard deviations in each.

Wind speed (m/s) b ± S.D. M1 ± S.D. A ± S.D. M2 ± S.D.

0 0.37±0.05 - 0.67±0.03 -
1 - 4.6 × 10−6

±0.3 × 10−6 - 341.7±56
2 - 3.3 × 10−6

±2.3 × 10−7 - 522.2±74.3
3 - −4.7 × 10−6

±3.0 × 10−6 - 1009.4±108.2
4 - −1.5 × 10−7

±0.8 × 10−7 - 1203.1±121.1
5 - 1.3 × 10−6

±0.8 × 10−6 - 1401±183

The dotted lines with symbols show the values calculated from the fit data and the

solid lines show the best fit to the data at each particular wind speed. The observa-

tions previously presented regarding the Nu(Ra) trends are confirmed here and an

uncertainty analysis is presented later in Section 5. The quality of the fit and the

scatter in the data, which is denoted by the standard deviation (S.D.) in the func-

tional constants is shown in Table 7. The functional constants at each wind speed are

obtained from the linear fits to the Nu(Ra) values at each wind speed. It can be seen

that the scatter in the experimental data, reflected by the high standard deviation

values, generally increases as the wind speed increases. This points to the increasing

difficulty in maintaining a consistent surfactant film during experiments at the higher

wind speeds.

It was discussed in Section 3.4 that the fits obtained from Fig. 14 are liable to

contain errors due to the ∆T term in Nu and Ra and thus cannot be used to extract

accurate Nu(Ra) relationships. Thus, as discussed before the Nu · Ra(Ra) plot was

used to obtain all Nu(Ra) relationships and the fits thus obtained are replotted on

the linear scale in Fig. 15. Figure 16 shows a plot of the original log(Nu ·Ra) versus

log(Ra) for all wind speeds. It can be seen from this plot that the undulations

present in Fig. 14 have been eliminated to a large extent in Fig. 16. Though this plot

is difficult to interpret and doesn’t provide an intuitive understanding of the Nu(Ra)
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Figure 16: Plot of log(NuRa) versus log(Ra) for all wind speeds.
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Figure 17: Plot of log(NuRa) versus log(Ra) at 0 m/s.

behavior, it is a much better tool to obtain Nu(Ra) relationships as described in

Section 4.1. Thus, all Nu(Ra) relationships at each wind speed will be obtained from

and be graphically presented in this form i.e. log(Ra) versus log(Nu · Ra) and such

a plot will be referred to as the LNR plot.

Figure 17 shows the LNR plot for 0 m/s and the power law fit to it and this fit

defines the Nu(Ra) relationship for pure natural convective conditions. The solid line

shows the power law fit to the Nu(Ra) data whereas the dotted lines show the LNR

plot of the fits obtained from the experimental data at the wind speed indicated by

the symbol. The Nu(Ra) relationship obtained at this wind speed is:

Nun = 0.67(Ra)0.37 (98)
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Figure 18: Plot of log(NuRa) versus log(Ra) at 1 m/s.

The exponent of the power law, b = 0.37 is slightly more than the classic 1
3

power law

for natural convection.

While the power law was used to fit the natural convection runs, a linear Nu(Ra)

model was used for runs having a forced convection component. The resulting Nu(Ra)

relationships obtained at different wind speeds are plotted in Figs. 18 - 22, which

are LNR plots for the different wind speeds, and presented in Table 8. Here, the

Nu(Ra) relationships were obtained by getting a best fit to the Nu · Ra(Ra) data.

These relationships define the Nu(Ra) behavior for all wind speeds. The statistical

significance of these relationships is shown in Table 9 which shows the 95% confidence

interval of the fitting constants at each wind speed. The significance of these constants

and inferences drawn from them will be discussed in Section 5. The table also shows

the values of the comparative term G which was introduced in a bid to identify the

transport regime present during experimentation.
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Figure 19: Plot of log(NuRa) versus log(Ra) at 2 m/s.

Table 8: Nu(Ra) relationships for all wind speeds

Wind speed (m/s) Nu = f(Ra) G

0 Nu = 0.67(Ra0.37) ∞

1 Nu = (4.6 × 10−6)Ra + 341.7 0.03
2 Nu = (3.3 × 10−6)Ra + 522.2 0.001
3 Nu = (−4.7 × 10−6)Ra + 1009.4 0.0001
4 Nu = (−1.5 × 10−7)Ra + 1203.1 0.00006
5 Nu = (1.3 × 10−6)Ra + 1401 0.000004
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Figure 20: Plot of log(NuRa) versus log(Ra) at 3 m/s.

Table 9: Table of the exponent (b), prefactor (A), slopes (M1), and intercepts (M2) of the
Nu(Ra) fits and the 95% confidence interval (C.I.) of each constant.

Wind speed (m/s) b ± 95%C.I. M1 ± 95%C.I. A ± 95%C.I. M2 ± 95%C.I.

0 0.37±0.07 - 0.67±0.07 -
1 - 4.6 × 10−6

±0.5 × 10−6 - 341.7±65.1
2 - 3.3 × 10−6

±3.1 × 10−7 - 522.2±87.3
3 - −4.7 × 10−6

±4.9 × 10−6 - 1009.4±147.3
4 - −1.5 × 10−7

±1.8 × 10−7 - 1203.1±170
5 - 1.3 × 10−6

±1.6 × 10−6 - 1401±236
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Figure 21: Plot of log(NuRa) versus log(Ra) at 4 m/s.

Figure 23 is a plot of Nu versus Re for all wind speeds and it shows the change

in Nu with wind speed, with the different points at each wind speed being obtained

from different experiments at a constant value of Ra = 2.5 × 107. This value of Ra

was chosen as all experiments conducted had this Ra value in common. It is evident

from Fig. 14 that the number of Ra values in common among all the experiments

was very small and also spread over a very small range, thus this was the only value

at which an Nu(Re) relationship was obtained. It should be noted that these points

were obtained from the calculated Nu values and not from the fits to this data

which gave the Nu(Ra) relationships. Thus there are 5 points at each wind speed

representing each experiment conducted at that wind speed. The Nu(Re) relationship

thus obtained is:
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Figure 22: Plot of log(NuRa) versus log(Ra) at 5 m/s.
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Figure 23: Plot of Nu versus Re for all wind speeds at Ra = 2.5 × 107.

Nuf = 0.1585(Re)0.85 (99)

This relationship is graphically depicted in Fig. 24 where only the wind speeds of

2 - 5 m/s were used to obtain Eq. (99). These wind speeds were selected because

they exhibit a strong dependence of Nu on Re. This method of getting the Nu(Re)

relationship at constant Ra has been used by Oosthuizen46 and Pauken.32 An initial

attempt was made to formulate an Nu(Re) relationship by using wind speeds ranging

from 1 m/s to 5 m/s. However, all attempts made to use the Nu(Re) relationship

obtained in this way when formulating the Nu(Ra,Re) mixed convection relationship

gave a very high rms deviation from the fitted functions at each wind speed.

Another method which was tried to obtain the Nu(Re) relationship involved using

72



5.1 5.15 5.2 5.25 5.3 5.35 5.4 5.45 5.5 5.55

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

logRe

lo
gN

u

Ra = 2.5 x 107

Figure 24: Plot of log(Nu) versus log(Re) for wind speeds 2 - 5 m/s at Ra = 2.5 × 107.
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the intercepts of the Nu(Ra) linear fits obtained for wind speeds 1 - 5 m/s as a measure

of zero Ra value of Nu. This was meant to be the completely forced convection

dominated value for Nu. A linear fit was obtained between log(Nu) and log(Re)

using these values, and a power law relationship was obtained between Nu and Re.

However, when the Nu(Re) relationship obtained in this way was used to get an

Nu(Ra,Re) equation for mixed convection the mixed convection equation showed a

very high rms deviation. A similar attempt made by using the intercepts for only

wind speeds 2 - 5 m/s also gave a very high rms deviation and was abandoned. The

reason behind the failure of this method may be that the linear fits were extrapolated

far outside their Ra range to get these intercepts, thus giving an erroneous value of

Nu at zero Ra.

Once the individual equations governing the Nu(Ra) relationship at each wind

speed and the Nu(Re) equation were obtained, the final step of obtaining a fit to

the entire data set was completed. The best fit to the data was given by a vectorial

fit to the data using the Nu(Ra) relationship at 0 m/s and the Nu(Re) relationship

at constant Ra for wind speeds of 2 - 5 m/s. The form of the equation adopted to

obtain this mixed convective equation is:

Num = (Nun
n + Nun

f )
1

n (100)

Equation (100) was used to obtain the equation governing mixed convective heat

transfer, by iterating for the exponent n over a range of -100 to 100 in steps of 0.5

to obtain the best fit to the experimental data. A value of n = 4 gave the best fit

to the data giving the least rms deviation from the Nu(Ra) values. Smaller itera-

tion increments were not chosen to maintain consistency with past mixed convection

studies32,33,46 which have shown exponents of 3.532 and 4.46 The resulting equation
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Figure 25: Nu(Ra,Re) relationship predicted by the vectorial additive equation for an
exponent of four. Symbols show data and solid lines show vectorial fit.

is:

Num = [(0.67Ra0.37)4 + (0.1585Re0.85)4]
1

4 (101)

Figure 25 shows a plot of Eq. (101) along with the experimental data. Figure 26 is

a similar plot with an exponent n = 3, revealing unsatisfactory results in that the rms

deviation of the values predicted by the mixed convection equation from the Nu(Ra)

fit values was very high. Comparing Figs. 25 and 26, the latter can be clearly seen to

perform much worse in predicting the Nu(Ra) results. Similar poor behavior resulted

when using the vectorial model with other exponents. The performance of the mixed

convective equation in predicting the Nu(Re) data can be seen in Fig. 27.
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Figure 26: Nu(Ra,Re) relationship predicted by the vectorial additive equation for an
exponent of three. Symbols show data and solid lines show vectorial fit.
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vectorial fit.
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Figure 28: LNR plot of the fits to the Nu(Ra) data with the mixed convection equation
superimposed. Solid lines show individual fits and symbols show the performance of the
mixed convection equation of exponent four at each wind speed.

Table 10 shows the percent rms deviation from the fits to the experimental data of

the mixed convection equation at each wind speed. The percent rms deviation is the

rms deviation divided by the fitted experimental values at each wind speed. It can be

seen that the mixed convection equation performs best at the lower wind speeds and

has the lowest rms deviation at these wind speeds. A better idea of the performance

of this fit is provided by Fig. 28 which shows the LNR plot of the mixed convection

equation superimposed on the fits to the experimental data at each wind speed. Solid

lines show the mixed convection equation fit at each wind speed whereas the symbols

show the experimental data.

The different methods described above were tried out to get the function describ-

ing the entire data set. Another method which was used to obtain a consolidated
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Table 10: Percent rms deviation of the mixed convective equation from the individual fits
at each wind speed.

Wind speed (m/s) % rms deviation

0 8.1
1 9.4
2 9.9
3 16.1
4 14.7
5 15.4

Nu(Ra,Re) relationship was by fitting a 3-D surface to the fitted Nu(Ra) equation

at each Re. This was done by plotting the Nu(Ra) fit obtained for each wind speed

against Re, and then fitting a surface to this 3-D data optimized to reduce the least

squares error of the surface fit. However, this equation gave an rms deviation from the

fit worse than that provided by the optimized vectorial fit, and was thus abandoned.

4.5 Sh(Ra, Re) relationships

Figure 29 is a plot of Sh versus Ra for the entire range of wind speeds explored for the

research presented here. Five experimental runs were conducted at each wind speed.

These are the results obtained by calculating Sh and Ra from the fitted experimental

data. That is, each curve is derived from the polynomial function used to fit the

temperature and mass data. The format of the plots presented here is the same as

that used to present the Nu(Ra) results.

Figure 29 shows that Sh increases with an increase in wind speed as expected.

This plot also shows that Sh increases with increasing Ra at wind speeds of 0 and

1 m/s, thus indicating the presence of some natural convection influence. This trend

reverses for wind speeds of 2 and 3 m/s, and for wind speeds above 3 m/s Sh is

essentially constant.

The functional form fitted to the Sh(Ra) relationships at each wind speed has been
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Figure 29: Plot of Sh versus Ra for all wind speeds.
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Figure 30: Plot of Sh versus Ra for all wind speeds with the fit at each wind speed super-
imposed. Symbols and dotted lines show the data and solid lines show the fit.
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Table 11: A table of the exponent (b1), prefactor (A1), slopes (M1), and intercepts (M2) of
the Sh(Ra) fits and the standard deviation in each constant.

Wind speed (m/s) b1 ± S.D. M1 ± S.D. A1 ± S.D. M2 ± S.D.

0 0.323±0.05 - 0.029±0.002 -
1 - 9.5 × 10−8

±1.7 × 10−8 - 5.1±0.86
2 - 6.4 × 10−9

±1.3 × 10−9 - 20±2.18
3 - −1.3 × 10−8

±3 × 10−9 - 28±8.4
4 - 1.1 × 10−8

±0.4 × 10−8 - 34±9.1
5 - 0.8 × 10−8

±0.4 × 10−9 - 42±9.43

explained in Section 4.1. Figure 30 shows the fits thus obtained for each individual

wind speed plotted on linear coordinates along with the calculated Sh(Ra) values,

the plot pattern being the same as that for the Nu(Ra) fit shown in Fig. 15. The fits

obtained confirm the observations made about the Sh(Ra) trends and an uncertainty

analysis is presented in Section 5. The quality of the fit and the scatter in the data,

which is denoted by the standard deviation (S.D.) of the functional constants for all

experiments at a particular wind speed from those of the fitted function is shown

in Table 11. It can be seen that the scatter in the experimental data, reflected by

the high standard deviation values, is generally higher for experiments with a greater

forced convection influence i.e. 3 - 5 m/s than for those with a greater natural

convection influence i.e. experiments at wind speeds lower then 3 m/s. This points

to the increasing irreproducibility of experiments at the higher wind speeds. The

statistical significance of these relationships is shown in Table 12 which shows the

95% confidence interval of the fitting constants at each wind speed. The significance

of these fit constants and inferences drawn from them will be discussed in Section 5.

Figure 31 shows a plot of log(Sh · Ra) versus log(Ra) for all wind speeds. It can

be seen from this plot that the undulations present in the data which were evident in

Fig. 29 have been eliminated to a large extent due to the reduction in the uncertainty

associated with the ∆T term. This plot will be used to obtain the Sh(Ra) fits and in
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Table 12: A table of the exponent (b1), prefactor (A1), slopes (M1), and intercepts (M2) of
the Sh(Ra) fits and the 95% confidence interval (C.I.) of each.

Wind speed (m/s) b1 ± 95%C.I. M1 ± 95%C.I. A1 ± 95%C.I. M2 ± 95%C.I.

0 0.323± 0.065 - 0.029± 0.0049 -
1 - 9.5 × 10−8

±2.1 × 10−8 - 5.1± 1.4
2 - 6.4 × 10−9

±1.9 × 10−9 - 20± 2.88
3 - −1.3 × 10−8

±3.7 × 10−9 - 28± 4.3
4 - 1.1 × 10−8

±0.7 × 10−8 - 34± 7.10
5 - 0.8 × 10−8

±0.7 × 10−9 - 42± 7.76
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Figure 31: Plot of log(ShRa) versus log(Ra) for all wind speeds.
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Figure 32: Plot of log(ShRa) versus log(Ra) at 0 m/s.

conjunction with an accurate Sh(Re) relationship extract a meaningful Sh(Ra, Re)

function which explains the entire data set. The Sh(Ra) fits obtained from this plot

are replotted on a linear scale in Fig. 30. All Sh(Ra) relationships will henceforth be

presented in this format and such a plot will be referred to as an LSR plot.

Figure 32 is the LSR plot at 0 m/s. The bold line shows the power law fit to

the Sh(Ra) data. The Sherwood numbers presented here are accurate to ±0.19 units

with the standard deviation in the exponent and prefactor shown in Table 11. The

Sh(Ra) relationship obtained at this wind speed is:

Shn = 0.029(Ra)0.323 (102)

The Sh(Ra) relationships for 1 - 5 m/s were obtained from a best fit model to the
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Table 13: Sh(Ra) relationships for all wind speeds

Wind speed (m/s) Sh = f(Ra) G

0 Sh = 0.029(Ra0.323) ∞

1 Sh = 9.5 × 10−8Ra + 5.1 0.03
2 Sh = 6.4 × 10−9Ra + 20 0.001
3 Sh = −1.3 × 10−8Ra + 28 0.001
4 Sh = 1.1 × 10−8Ra + 34 0.00006
5 Sh = 0.8 × 10−8Ra + 42 0.000004

Sh · Ra(Ra) data. The best fit to this data was given by a linear Sh(Ra) model as

discussed in Section 4.1. The Sh(Ra) relationships thus obtained at different wind

speeds are graphically shown in Figs. 32 - 37, which are LSR plots for wind speeds

0 - 5 m/s. To reiterate, the dotted line with symbols shows the LSR plot of the

Sh and Ra values which were obtained by fitting the raw data and then calculating

Sh and Ra based on formulae described in Section 3.4. The solid line is the best

fit to the Sh(Ra) data which gives physically meaningful results. The final working

relationships for each wind speed are presented in Table 13.

Figure 38 is a plot of Sh versus Re and it shows the change in Sh with wind

speed. The different points at each wind speed are calculated Sh values from each

experimental run when Ra = 2.5 × 107. The sensitivity of Sh to Re decreases at 0

and 1 m/s and thus presents a move away from the forced convective regime. The

Sh(Re) equation for forced convection obtained from the data at 2 - 5 m/s is:

Shf = 0.001(Re)0.81 (103)

This relationship is graphically depicted in Fig. 39 which is a plot of log(Sh) versus

log(Re) at a fixed Ra of 2.5 × 107, the reason behind the choice of this Ra being

explained in Section 4.4.
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Figure 33: Plot of log(ShRa) versus log(Ra) at 1 m/s.
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Figure 34: Plot of log(ShRa) versus log(Ra) at 2 m/s.
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Figure 35: Plot of log(ShRa) versus log(Ra) at 3 m/s.

88



7 7.1 7.2 7.3 7.4 7.5 7.6
8.55

8.6

8.65

8.7

8.75

8.8

8.85

8.9

8.95

9

9.05

logRa

lo
gS

hR
a

4m/s
fit

Figure 36: Plot of log(ShRa) versus log(Ra) at 4 m/s.
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Figure 37: Plot of log(ShRa) versus log(Ra) at 5 m/s.
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Figure 38: Plot of Sh versus Re for all wind speeds at Ra = 2.5 × 107.
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Figure 39: Plot of log(Sh) versus log(Re) for wind speeds 2 - 5 m/s at Ra = 2.5 × 107.
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Once the individual Sh(Ra) relationship at each wind speed and the Sh(Re)

relationship were obtained, the final step of obtaining a fit to the entire data set was

completed. The best fit to the data was given by a vectorial fit to the data using

the Sh(Ra) relationship at 0 m/s and the Sh(Re) relationship at constant Ra for

wind speeds of 2 - 5 m/s. The form of the equation adopted to obtain this mixed

convective equation is:

Shm = (Shp
n + Shp

f )
1

p (104)

Equation (104) was used to obtain the equation governing mixed convective heat

transfer, by iterating over the exponent n to obtain the best fit to the experimental

data. A value of n = 4 gave the best fit to the data giving the least rms deviation

from the Sh(Ra) values. The full form of this equation therefore, is:

Shm = [(0.029Ra0.323)p + (0.001Re0.81)p]
1

p (105)

This mixed convective equation is graphically depicted in Fig. 40, the symbols and

dotted lines represent the fitted experimental results, whereas the solid lines show the

predicted Sh(Ra) relationship obtained by using Eq. (105). Figure 41 shows a sample

plot at an exponent of 3, which gave unsatisfactory results. Similar results were given

by a vectorial model with other exponents. The performance of the mixed convective

equation in predicting the Sh(Re) data can be seen in Fig. 42.

Table 14 shows the percent rms deviation of the Sh(Ra) relationships from the

fits to the experimental data obtained at each wind speed from the mixed convec-

tion equation. The percent rms deviation is the rms deviation divided by the fitted
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Figure 40: Performance of the Sh(Ra,Re) relationship predicted by the mixed convection
equation for an exponent of four.

Table 14: Percent rms deviation of the mixed convective equation from the individual fits
at each wind speed.

Wind speed (m/s) % rms deviation

0 7.9
1 19.6
2 9.1
3 16.5
4 15.1
5 14.8
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Figure 41: Performance of the Sh(Ra,Re) relationship predicted by the mixed convection
equation for an exponent of three.
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Figure 42: Sh(Ra, Re) relationship predicted by the vectorial additive equation for an
exponent of four on Sh − Re coordinates. Symbols show data and the solid line shows the
vectorial fit.
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Figure 43: LSR plot of the fits of the Sh(Ra) data with the mixed convection equation
superimposed. Symbols show individual fits at each wind speed and solid lines show the
performance the of mixed convection equation of exponent four.

experimental results at each wind speed. Overall, the Nu(Ra,Re) mixed convection

equation performs better than the Sh(Ra,Re) equation. A better idea of the perfor-

mance of the Sh(Ra,Re) vectorial fit is provided by Fig. 43 which shows the LSR

plot of the mixed convection equation superimposed on the fits to the experimental

data. The plot format is similar to Fig. 28.

Another method which was attempted to obtain an Sh(Ra, Re) equation utilized

a surface fit as in the case of the Nu(Ra, Re) equation. However, this method showed

an rms deviation of the data from the surface fit which was much worse than the

vectorial additive fit. An Sh(Ra,Re) equation was also attempted by using the

Sh(Re) relationship modeled from the intercepts of the linear fits to the data at 1 -

5 m/s and also 2 - 5 m/s as a separate attempt. The combined Sh(Ra, Re) equation

97



modeled using both these methods gave an rms deviation of the data from the fit

that was very high. Thus, these methods were abandoned in favor of the vectorial

additive fit.
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5 DISCUSSION

The discussion of the results is categorized in two sections: discussion of Nu(Ra, Re)

results and discussion of Sh(Ra,Re) results.

5.1 Curve fitting procedure

The method of fitting the raw data was described in Section 3.4. It was mentioned

there that the best fit to the data that was physically appropriate was chosen to fit

the data. It was seen that for the various polynomial fits chosen to fit the raw data,

the 22nd order polynomial fit fitted the data with the least rms deviation of the fit

from the data. However, this fit gave extrema in the time derivatives of the raw

temperature and mass data which were physically incorrect. Thus the lowest order

fit which minimized these extrema while at the same time fitting the data reasonably

accurately was chosen. The quality of the fit was judged from the rms deviation of

the data from the fit. The fit thus chosen was a fourth order polynomial fit.

It can be seen from the Nu(Ra) plots shown in Section 4.4 that the extrema that

had to be avoided are still present in the plot. This could only be eliminated by

reducing the order of the polynomial function fitting the raw temperature and mass

data. Figure 44 shows a plot of Nu versus Ra obtained by fitting the raw data by

a second order polynomial. It can be clearly seen from this plot that the Nu(Ra)

relationships obtained at the lower Ra have a large scatter with the non-physical

behavior seen with the fourth order fit still present. Thus a compromise was reached

between modeling the data physically as accurately as possible without sacrificing the

accuracy of the fitting procedure by utilizing the fourth order polynomial fit.

5.2 Nu(Ra, Re) results

Table 15 outlines the relevant prior work on convective heat transfer, the parameter

range explored, the experimental configuration and their results. The results obtained
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Figure 44: Plot of Nu versus Ra for all wind speeds obtained from a second order fit to the
raw data.
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Table 15: Comparison of Nu(Ra) results of different studies.

Study Config. Re range Ra range Nu(Ra)/Nu(Re) reln.

Present Evap - N - 1.1 × 107
− 4.1 × 107 Nu = 0.67Ra0.37

Globe and Dropkin3 RB - N - 1 × 105
− 7 × 108 Nu = 0.069Ra0.33

Katsaros et al.
4 Evap - N - 3 × 108

− 4 × 109 Nu = 0.06Ra0.33

Chu and Goldstein2 RB - N - 108
− 2 × 1011 Nu = 0.055Ra0.33

Garon88 RB - N - 107
− 3 × 109 Nu = 0.1Ra0.293

Present work Evap - F 1.4 × 105
− 3.5 × 105 - Nu = 0.1585Re0.85

Boyarishnov70
et al. Evap - F ? - Nu = 0.67Re0.8

Katto67 Evap - F 105
− 4 × 105 - Nu = 0.06Re0.8

Oosthuizen46 FL - F ? - Nu = 0.59Re0.5

in the present work are compared with these studies.

Table 15 is divided in two parts, the top half compares the natural convection

results, and the bottom half compares the forced convection results from different

studies. In this table, ‘RB’ refers to Rayleigh-Bénard studies, ‘Evap’ refers to evap-

orative studies and ‘FL’ refers to flat plate studies. The extensions -N and -F stand

for ‘natural’ and ‘forced’ thus indicating the transport regime.

It can be seen from the table that the natural convection results for the present

work are close to the 1
3

power law relationship which is typical of natural convection

results obtained over a flat plate, and the geometry of the experimental setup here

is similar to a flat plate. The small deviation in the results can also be logically ex-

plained. While Katsaros et al.4 are the only researchers who study natural convection

for an air-water interface, there are some dissimilarities from the research presented

here as they do not account for the heat lost due to evaporation, thus effectively

defining the Nusselt number on the basis of the total heat lost due to evaporation

and convective heat transfer. In the research done for this thesis the contribution of

evaporative heat loss to the total heat lost from the air-water interface during nat-

ural convection increased as the temperature decreased i.e. as Ra decreased. This

indicates a greater percentage change in the convective heat loss compared to the per-
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centage change in the total heat loss as Ra decreases. Thus, should the evaporative

loss be included in the calculation of the Nusselt number, it will result in a smaller

reduction in Nu as Ra decreases i.e. a smaller exponent for the Nu(Ra) relation-

ship. This can explain the results obtained by Katsaros et al.4 Secondly, Katsaros

et al.4 define the heat transfer process for the water side of the air-water interface

whereas it is defined for the air side for the work done for this thesis. The effect of

this on the Nu(Ra) relationship obtained cannot be gauged. This can explain the

small deviation in the natural convection results obtained in the present research.

Another point to note is the fact the while the exponent for natural convection

is 0.37, it has an uncertainty of ±0.07 units associated with it. Thus, the exponent

may vary from to 0.3 to 0.44 which included the 1
3

power law that has been observed.

Thus, this study which is among the first that obtained air-water interfacial natural

convective results with the presence of foreign surfactants on the water surface, shows

that the results under such a scenario are close to the natural convection power law

results obtained in general and also to the results obtained by Katsaros et al.

The second section of Table 15 compares the results obtained by different re-

searchers studying the relationship between Nu and Re for forced convective heat

transfer. The listed studies are those which are closest in terms of the experimen-

tal scenario to the present work. While the results of Oosthuizen46 differ from the

present work, the study by Boyarishnov et al.70 is closest in its results to the present

work. This may be explained by the fact that Boyarishnov et al. work over the same

parameter range and for the same experimental configuration as the present work

while Oosthuizen works over a much smaller Re range. The exponent of the Nu(Re)

relationship obtained in the present work, being 0.85, is very close to the classic tur-

bulent flat plate exponent of 0.8 and falls within the general range of Re exponents

from 0.5 to 0.8 that has been seen by previous researchers.

It is evident from the results obtained that the scatter in the data increases as
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the wind speed increases. This is also indicated by the high value of the S.D. in

the fitting constants at the higher wind speeds. This should be expected because

the surfactant loss rate increases with wind speed, thus complicating maintenance of

consistent surface conditions.

The individual natural and forced convective relationships obtained in this study

were used to develop a mixed convective equation which provided a consolidated

Nu(Ra,Re) relationship which can explain the Nu(Ra) trend over the entire range

of Re. The performance of the mixed convection equation is shown in Table 10. It

can be seen here that the rms deviation of the Nu(Ra) relationships predicted by the

mixed convection equation for each wind speed indicates that the mixed convection

equation is reasonably accurate within the Ra and Re range of these experiments.

However, for all instances, the percentage rms deviation of the relationships predicted

by the mixed convection equation from the Nu(Ra) fits to the fitted experimental

data is less than 16%.

The Nu(Ra) relationships and the C.I. of the fitting constants obtained at each

wind speed are tabulated in Table 9 and shown in Fig. 15. It can be seen that Nu

is dependent on Ra for wind speeds of 0 and 1 m/s whereas for wind speeds of 3 -

5 m/s, Nu is largely independent of Ra as seen from the slope of the Nu(Ra) plot.

However, the slope is very close to zero at 2 m/s, thus it can be concluded that the

mixed convection region falls between 1 and 3 m/s for this experimental setup and

is very close to 2 m/s. It can also be concluded that the air-water system is natural

convection dominated at 0 and 1 m/s and forced convection dominated for 3 - 5 m/s.

The same conclusion can be drawn from the Nu(Ra) fits at each wind speed given

by the vectorial additive equation. The table also shows the value of the comparative

term G which was introduced in a bid to identify the transport regime present during

experimentation. However, it was seen that the values of the term G indicated the

presence of forced convection throughout the range of wind speeds from 1 - 5 m/s.

103



Table 16: Comparison of Sh(Ra) results of different studies.

Study Config. Re range Ra range Relation

Present work Evap - N - 1.1 × 107
− 4.1 × 107 Sh = 0.029(Ra)0.323

Pauken32 Evap - N - ? Sh = 0.14(Ram)0.33

Present work Evap - F 0 − 3.5 × 105 - Sh = 0.001(Re)0.81

Pauken32 Evap - F ? - Sh = 1.3(Re)0.5

Smolsky69 TF - F ? - Sh = 0.4(Re)0.67

As from the Nu(Ra) and Nu(Re) data it is known that experiments at 1 m/s are

natural convection dominated, and also the fact that this term had been derived for

mixed convection over solid bodies and the present research focuses on the air-water

interface, this term is thus not used as a tool to identify the transport regimes.

5.3 Sh(Ra, Re) results

Table 16 outlines the available studies on evaporative mass transfer, the parameter

range explored, the medium of mass transfer and their results. The results obtained

in the present work are compared with these studies.

The top half of the table compares the Sh(Ra) i.e. natural convection results

while the bottom half compares the Sh(Re) i.e. forced convection results of different

studies. In the table ‘TF’ refers to evaporative studies from a thin film on a flat plate.

The exponent of the Sh(Ra) relationships obtained here is 0.323. However, it should

be noted that this value of the exponent is accurate to ±0.07 and thus can have any

value from 0.25 to 0.39. The exponent of the Sh(Re) relationship, being 0.81, is also

very close to the classic 0.8 power law relationship between Sh and Ra that has been

observed.

Pauken32 relates a mass transfer Rayleigh number to the Sherwood number, and

though this study is similar to the present research Pauken does not employ sur-

factants to maintain consistent surface conditions. Inspite of this fact, the results
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obtained by Pauken fall within the C.I. of the natural convection results obtained in

the present work. Smolsky69 studied the evaporative mass transfer process from a thin

film applied to a flat plate. Thus, a comparison between this study and the present

work is not possible due to the difference in the experimental setup. This table re-

flects the lack of available literature on Sh(Ra,Re) relationships for the experimental

setup similar to the present work.

As seen in Figs. 29 and 38 the nature of the Sh(Ra) relationships obtained in

the present work suggest a minimal role played by forced convection at 1 m/s. This

scenario however quickly changes for wind speeds greater than 1 m/s. It can be seen

from Figs. 29 and 38 that the Sh(Ra) curve obtained at 2 m/s, shows a sudden

transition away from natural convection. This dependence reduces further at 3 m/s,

with the least Rayleigh number dependence seen at this wind speed. In fact, a negative

slope is seen at 2 and 3 m/s, which is counter-intuitive as it suggests an increase in the

mass transfer coefficient as Ra reduces. The general Ra dependence of Sh at 4 and 5

m/s is much smaller than that at 0 and 1 m/s and these runs can be considered to be

forced convection dominated runs. These results are counter-intuitive as an increase

in Re should produce a continuous trend of reducing Ra dependence of Sh. An

explanation of the negative slope at 2 and 3 m/s will be provided in Section 5.4 which

shows the Sh(Ra) relationships at different wind speeds considering ∆Ta to be the

temperature difference creating the water vapor density difference driving evaporation

as opposed to ∆Tg. It will be shown in this section that the counter-intuitive Sh(Ra)

relationship seen at 2 and 3 m/s can be explained by computing Sh and Ra using

∆Ta. This trend can be considered to be an accurate representation of the actual

Sh(Ra) trend though the accuracy of the fit constants themselves is doubtful due to

the use of the limited IR data available for obtaining these relationships.

The individual natural and forced convective relationships obtained in this study

were used to develop a mixed convective equation which provided a consolidated
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Sh(Ra,Re) relationship that can explain the Sh(Ra) trend over the entire range of

Re. The performance of this mixed convection equation in predicting the data is

shown in Table 14. It can be seen here that the rms deviation of the Sh(Ra) rela-

tionships predicted by the mixed convection equation from the fits obtained indicates

that the mixed convection equation is reasonably accurate within the Ra and Re

range of these experiments. For all wind speeds, the percentage rms deviation of the

relationships predicted by the mixed convection equation from the Nu(Ra) fits to the

fitted experimental data is less than 20%.

The Sh(Ra) relationships and the C.I. of the fitting constants obtained at each

wind speed are tabulated in Table 12 and the fits are shown in Fig. 30. It can be seen

here that Sh is dependent on Ra for wind speeds of 0 and 1 m/s whereas for wind

speeds 3 - 5 m/s, Sh is largely independent of Ra as seen from the slope of the Sh(Ra)

plot. However, the slope is very close to zero at 2 m/s, thus it can be concluded that

the mixed convection region falls between 1 and 3 m/s for this experimental setup

and is very close to 2 m/s. It can also be concluded that the air-water system is

natural convection dominated at 0 and 1 m/s and forced convection dominated for 3

- 5 m/s. The same conclusion can be drawn from the Sh(Ra) fits at each wind speed

given by the vectorial additive equation.

5.4 Sh(Ra) relationships using surface temperatures.

The Sh(Ra) results presented in Section 4.5 were obtained by considering ∆Tg to be

the temperature difference creating the water vapor density difference which is the

driving force behind the evaporation process. However, as has been discussed before,

it is ∆Ta which drives this process and it was due to the errors in the measurements

made using the IR camera that the use of ∆Ta was not feasible. Thus, the effect

of using ∆Tg instead of ∆Ta in calculating Sh needs to be studied. It should be

noted that this will only demonstrate a qualitative effect and will not be used to
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Table 17: Estimates of ∆Tw at the start and end of experiments at each wind speed.

Wind speed (m/s) ∆Ta at start ∆Ta at end

0 2.5 2.5
1 3.0 2.6
2 2.5 1.5
3 3.5 2.2
4 3.6 2.0
5 4.0 2.5

quantify the uncertainty in the Sh(Ra) due to using ∆T . The most reliable means

of carrying out this study was by first assuming a certain reasonable value of ∆Tw to

be utilized in calculating Ts. From the limited IR data available, a measure of ∆Tw

at the start and end of each experiment was obtained and a characteristic value of

∆Tw at the start and end of experiments at each wind speed was obtained from these

values. The aim of this exercise was only to study the qualitative effect of using the

surface temperature on the Sh(Ra) trends, thus the quantitative uncertainty in the

IR measurement is not measured here. The estimates of ∆Tw obtained at each wind

speed are shown in Table 17.

Since data on values of ∆Tw at the start and end of each experiment was now

available, assuming a linear drop in ∆Tw, values of ∆Tw and consequently of Ts

were obtained for the entire length of experiments at each wind speed. Using these

estimates of Ts, the new values of Sh were calculated as were the Sh(Ra) relationships

at each wind speed for these values. These relationships are presented in Table 18

and graphically depicted in Fig. 45. Table 19 shows the confidence interval of the fit

constants thus obtained.

It is evident that the negative slope in the Sh(Ra) which was seen at 2 and 3 m/s

is not seen when ∆Ta is used instead of ∆Tg. These relationships define the Sh(Ra)

relationships and trends with the uncertainty introduced due to the incorrect use of

∆Tg eliminated. However, it should be noted that the estimates of ∆Ta were obtained
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Figure 45: Plot of Sh versus Ra for all wind speeds calculated using the surface temperature
with the fit for each wind speed superimposed. Symbols and dotted line show the data and
solid lines show the fit.

Table 18: Sh(Ra) relationships for all wind speeds obtained using the surface temperature.

Wind speed (m/s) Sh = f(Ra)

0 Sh = 0.039(Ra0.317)
1 Sh = 1.3 × 10−7Ra + 8.4
2 Sh = 1.2 × 10−8Ra + 19
3 Sh = 9 × 10−9Ra + 32
4 Sh = 1.4 × 10−8Ra + 40
5 Sh = 1.3 × 10−8Ra + 44
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Table 19: A table of the exponent (b1), prefactor (A1), slopes (M1), and intercepts (M2) of
the Sh(Ra) fits and the 95% confidence interval (C.I.) of each calculated using Ts.

Wind speed (m/s) b1 ± 95%C.I. M1 ± 95%C.I. A1 ± 95%C.I. M2 ± 95%C.I.

0 0.317± 0.065 - 0.039± 0.0059 -
1 - 1.3 × 10−7

±0.23 × 10−7 - 8.4± 0.004
2 - 1.2 × 10−8

±1.4 × 10−8 - 19± 2.38
3 - 9 × 10−9

±0.8 × 10−9 - 32± 4.3
4 - 1.4 × 10−8

±1.0 × 10−8 - 40± 6.9
5 - 1.3 × 10−8

±1.2 × 10−8 - 44± 7.2

from a small pool of estimates of Ts, and due to this lack of absolutely reliable surface

temperature data, these results cannot be considered to be accurate. However, as it

is known that ∆Ta will follow the trend shown in Table 17, the reversal in the Sh(Ra)

trends seen at 2 and 3 m/s is reasonable. Thus, it can be argued that experiments

for wind speeds 0 - 1 m/s are natural convection dominated, those for wind speeds 1

- 3 m/s are mixed convection dominated and experiments for wind speeds 3 - 5 m/s

are forced convection dominated.

Just as in the case of the Nu(Ra) results, it can be seen that Sh is dependent on

Ra for wind speeds of 0 and 1 m/s whereas for wind speeds 3 - 5 m/s, Sh is largely

independent of Ra as seen from the slope of the Sh(Ra) plot. However, the slope

is very close to zero at 2 m/s, thus it can be concluded that the mixed convection

region falls between 1 and 3 m/s for this experimental setup and is very close to 2

m/s. The same conclusions can be drawn from the Sh(Ra) fits at each wind speed

given by the vectorial additive equation.
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6 CONCLUSION

In this work functional forms for mixed convective heat transfer and evaporation at

the air-water interface in the presence of an oleyl alcohol monolayer were obtained.

To obtain these functions, equations defining natural and forced convective heat and

mass transfer as functions of the Rayleigh and Reynolds number respectively were

obtained.

It was thus shown that the power law relationships normally associated with nat-

ural and forced convective transport over a flat plate can be used to model heat

transfer and evaporation at the air-water interface. The equation defining natural

convective heat transfer at the air-water interface thus obtained is:

Nun = 0.67(Ra)0.37 (106)

whereas the natural convective mass transfer equation which was obtained is:

Shn = 0.029(Ra)0.323 (107)

Thus, a power law fit for evaporative heat and mass transfer for natural convective

conditions gave a functional form with an exponent of 0.37 ± 0.08 for heat transfer

within a 95% confidence interval. The natural convective mass transfer equation gave

a power law fit with an exponent of 0.323 ± 0.07 within a 95% confidence interval.

The forced convection results gave a power law fit for forced convective heat trans-

fer which agreed with the turbulent flat plate correlation with a Reynolds number

exponent of 0.85 for the Nu(Re) relationship and a Reynolds number exponent of

0.81 for the Sh(Re) relationship. The prefactors for the forced convective Nu(Re)
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and Sh(Re) relationships are 0.1585 and 0.001 respectively. The Nu(Re) and Sh(Re)

equations thus obtained are:

Nuf = 0.1585(Re)0.85 (108)

Shf = 0.001(Re)0.81 (109)

A vectorial functional form was used to fit the Nu(Ra,Re) and Sh(Ra, Re) data

and obtain a mixed convection equation which fit the entire data. The equation thus

obtained defining mixed convective heat transfer is:

Num = [(0.67Ra0.37)4 + (0.1585Re0.85)4]
1

4 (110)

whereas the equation defining mixed convective mass transfer is:

Shm = [(0.029Ra0.323)4 + (0.001Re0.81)4]
1

4 (111)

It was thus shown that heat transfer and evaporation at the air-water interface

can be defined by expressing the Nusselt and Sherwood numbers as functions of the

Rayleigh and Reynolds numbers in a vectorial additive form. All relationships were

evaluated for the air side of the interface and using the gross temperature difference

between the bulk water and air as the driving force. The mixed convective equations
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predicted the Nu(Ra, Re) and Sh(Ra, Re) data obtained at all wind speeds with

reasonable accuracy.

It was concluded that the mixed convective region lies between 1 and 3 m/s for

both heat and mass transfer. The Nu(Ra) and Sh(Ra) experimental results in this

region are reasonably well predicted by the vectorial additive form and this form is

thus adopted for defining mixed convection.
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