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Abstract. The effect of melting and solute dispersion on heat and mass transfer

in non-Darcy fluid flow over a vertical surface has been studied numerically in the

present article. The flow is assumed to be laminar and steady state. Using simi-

larity transformations, the governing boundary layer equations are transformed into

self-similar nonlinear ordinary differential equations, which are then solved by using

boundary value problem solver. A comparison with the numerical results made for dif-

ferent Ra/Pe values in the absence of some particular parameters. The velocity and

concentration inside the boundary layer are observed to be influenced by the parame-

ters like Ra/Pe, L, B, M . The flow heat and mass transfer coefficients are discussed

through the plots.
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1. Introduction

Melting effect with heat and mass transfer in porous media has much attention in recent years

because of its applications in casting, welding and magma solidification, etc. From boundary

layer theory point of view, Tien & Yen (1965) studied the effect of melting on convective heat

transfer between a melting body and surrounding fluid. Sparrow et al (1977) studied the velocity

and temperature fields, the heat transfer rate, and the melting layer thickness by means of finite-

difference scheme in the melting region for natural convection. Cheng & Lin (2007) studied the

melting effect on mixed convective heat transfer from a solid porous vertical plate with uniform
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wall temperature embedded in the liquid saturated porous medium, using the Runge−Kutta−Gill

method and Newton’s iteration for similarity solutions.

In problems dealing with porous media, the effect of melting, radiation is important in indus-

tries and technologies. The applications are found in situation such as geothermal systems,

heating and cooling chamber, fossil fuel combustion, energy processes and Astro-physical flows.

The effects of non-Darcy mixed convection with thermal dispersion-radiation in a saturated

porous medium was studied by Prasad & Hemalatha (2010). They observed that temperature

decreases with increasing melting parameter. Abbas et al (2008) studied numerically the com-

bined effect of thermal dispersion and thermal radiation on the non-Darcy natural convection

flow over a vertical flat plate kept at higher and constant temperature in a fluid saturated porous

medium.

The effect of double dispersion on non-Darcy mixed convective flow over a vertical surface

embedded in porous medium was studied by Afify & Elgazery (2013). They observed that the

local heat transfer rate increases by increasing the solute dispersion parameter by both aid-

ing and external flows. Murthy (2000) has studied the effect of double dispersion on mixed

convection heat and mass transfer in non-Darcy porous medium. He presented that as Lewis

number increases, the effect of solute dispersion on mass transfer coefficient is less. The effect

of melting on mixed convection heat and mass transfer in a non-Newtonian fluid saturated non-

Darcy porous medium was studied by Kairi & Murthy (2012). Murthy et al (2005) studied the

effects of mixed convection heat and mass transfer with thermal radiation in a non-Darcy porous

medium. They obtained that the effect of radiation is more pronounced in the Darcy medium than

non-Darcy medium. Very recently, Ahmad & Pop (2014) studied the melting effect on mixed

convection boundary layer flow about a vertical surface embedded in a porous medium, Oppos-

ing flows case. In their study they found that dual solution exists in some range of the mixed

convection parameter.

In this article, we investigate the effects of melting and solute dispersion on heat and mass

transfer in a non-Darcy porous medium over a vertical surface. Most of the above studies in the

literature have not considered the solute dispersion effect with melting in their study.

2. Mathematical formulation

Consider the steady state two-dimensional problem of non-Darcy mixed convective flow over a

vertical surface embedded in a porous medium as shown in figure 1. The coordinates (x, y) are

such that x-axis is aligned vertically upwards and y-axis is normal to it. It is assumed that this

surface constitutes the interface between the liquid and solid phases during melting inside the

porous matrix. The plate is at constant temperature Tm. The constant temperatures of the liquid

phase far from the plate and of the solid phase far from the interface are denoted by T∞ and T0.

Under these assumptions the boundary layer equations are

∂u
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∂v

∂y
= 0, (1)
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Figure 1. Schematic sketch of the problem.

where u, v are the velocity components in the x, y directions respectively, Cf is the Forch-

heimer empirical constant, ν is the kinematic viscosity, ρ is the density, g is the acceleration due

to gravity, K is the permeability of the porous medium, βT is the thermal expansion coefficient,

βC is the solute expansion coefficient, α is the thermal diffusivity, ρ is the density, Cp is the spe-

cific heat at constant pressure, qr is the radiative heat flux, C is the concentration and De is the

solute diffusivity.

The boundary conditions for Eqs. (1)–(4) are given in the form

κ
∂T

∂y
= ρ

[

hsf + cs(Tm − T0)
]

v, T = Tm, C = Cw at y = 0,

u → u∞, T → T∞, C → C∞ as y → ∞, (5)

Following Rosseland’s approximation the radiative heat flux qr is modeled as

qr = −
4σ ∗

3k∗
∂T 4

∂y
, (6)

where σ ∗ is the Stefan– Boltzman constant, k∗ is the mean absorption coefficient. Assuming that

the temperature differences within the flow are sufficiently small such that T 4 may be expressed

as a linear function of temperature, then the Taylor series expansion for T 4 about Tm, after

neglecting the higher order terms can be written as T 4 ∼= 4T 3
mT − 3T 4

m, then we have

∂qr

∂y
= −

16σ ∗T 3
m

3k∗
∂T

∂y
. (7)
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The continuity Eq. (1) is satisfied by introducing a stream function ψ(x, y) such that

u =
∂ψ

∂y
and v = −

∂ψ

∂x
,

where ψ =
√

αmu∞x f (η), f (η) is the dimensionless stream function and η =
y

x

√

u∞x

αm

. The

velocity components are given by

u = u∞f ′(η) and v = −
1

2

√

αm u∞
x

[

f (η) − ηf ′(η)
]

. (8)

The temperature and concentrations are represented as

T = Tm + (T∞ − Tm)θ(η) and C = Cw + (C∞ − Cw)φ(η), (9)

where θ(η) and φ(η) are the dimensionless temperature and dimensionless concentration. On

using Eqs. (6) and (7), Eqs. (2)–(4) transform into the following two-point boundary value

problem

(

1 + Ff ′) f ′′ +
Ra

Pe
(θ ′ + Nφ′) = 0, (10)

(

1 + Df ′ +
4

3
R

)

θ ′′ +
1

2
f θ ′ + Df ′′θ ′ = 0, (11)

φ′′ +
1

2
Lef φ′ + LeB

(

f ′φ′′ + f ′′φ′) = 0, (12)

f (0) + 2Mθ ′ (0) = 0, f ′ (∞) = 1, (13)

θ (0) = 0, θ (∞) → 1, (14)

φ (0) = 0, φ (∞) → 1, (15)

where the notation primes denote differentiation with respect to η. The non-dimensional con-

stants in Eqs. (10)–(13) are the non-Darcy parameter F , the mixed convection parameter Ra/Pe,

the buoyancy parameter N , the thermal dispersion parameter D, the radiation parameter R, the

Lewis number Le, the solute dispersion parameter B and the melting parameter M , the mass

diffusivity D1. These parameters are defined as

F =
2Cf

√
Ku∞

ν
, Ra =

KgβT ρ∞(T∞ − Tm)

ναm

, P e =
u∞
αm
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,

D =
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αm
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m

kk∗ , Le=
αm

D1
, B =

ξdu∞
αm

, M =
cf (T∞ − Tm)
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.

3. Heat transfer coefficient

The heat transfer rate from the surface of the plate is given by

qw = −keff

[

∂T

∂y

]

y=0

−
4σ ∗

3k∗

[

∂T 4
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]

y=0

. (16)
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The local Nusselt number is defined as

Nux =
xqw

keff (T∞ − Tm)
. (17)

The effective thermal conductivity of the porous medium is given by keff = (1 − ε)ks + εkf , ε

is the porosity of the medium, ks and kf are the thermal conductivity of the solid and convective

fluid respectively. Using Eq. (16) in (17) the dimensionless Nusselt number can be represented

in terms of dimensionless temperature at the surface

Nux√
Pex

= −
{

1 +
4

3
R + Df ′(0)

}

θ ′ (0) . (18)

4. Mass transfer coefficient

The mass transfer rate from the surface of the plate is given by

jw = −De

[

∂C

∂y

]

y=0

. (19)

The local Sherwood number is defined as

Shx =
xjw

De (C∞ − Cw)
. (20)

Using Eq. (19) in (20) the dimensionless Sherwood number can be represented in terms of

dimensionless concentration at the surface

Shx√
Pex

= −
{

1 + Bf ′(0)
}

φ′ (0) . (21)

The variables in Eqs. (19)–(21) are defined as the local mass flux jw Sherwood number Shx ,

local peclet number Pex , solute dispersion parameter B.

5. Solution methodology

The set of nonlinear ordinary differential Eqs. (10)–(12) with boundary conditions (13)–(15)

were solved numerically using the MATLAB bvp4c solver. To apply bvp4c routine to the

differential Eqs. (10)–(12), these can be written as

f ′′ = −
Ra
Pe

(

θ ′ + Nφ′)

1 + Ff ′ , (22)

θ ′′ =
−0.5f θ ′ − Df ′′θ ′

1 + Df ′ + 4
3
R

, (23)

φ′′ =
−0.5Lef φ′ − LeBf ′′φ′

1 + LeBf ′ . (24)

Defining new variables

f1 = f, f2 = f ′, f3 = θ, f4 = θ ′, f5 = φ, f6 = φ′,
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Table 1. Comparison of f ′(0) values with Gorla et al (1999),

Cheng & Lin (2007) for F = N = D = R = Le = 0 and B = 0.

M Rax

Pex
f ′(0) (1999) f ′(0) (1977) f ′(0)(Present)

0.0 1.000 1.000 1.000

1.4 2.400 2.400 2.400

3.0 4.000 4.000 4.000

2 8.0 9.000 9.000 9.000

10.0 11.00 11.00 11.00

20.0 21.00 21.00 21.00

the above two second order coupled differential equations and the boundary conditions may be

transformed to six first order differential equations. These can be written as

f ′
1 = f2 (25)

f ′
2 = −

Ra
Pe

(f4 + Nf6)

1 + Ff2
(26)

f ′
3 = f4 (27)

f ′
4 =

−0.5f1f4 − Df ′
2f4

1 + Df2 + 4
3
R

(28)

f ′
5 = f6 (29)

f ′
6 =

−0.5Lef1f6 − LeBf ′
2f6

1 + LeBf2
, (30)

where the prime denote differentiation with respect to η. The boundary conditions are

f1 (0) + 2Mf4 (0) = 0, f2 (∞) → 1, (31)

f3 (0) = 0, f3 (∞) → 1, (32)

f5 (0) = 0, f5 (∞) → 1. (33)

When this is done in a usual way, the function exode can be coded. In exbvp.m

a guess of unknown values based on linear interpolation of the boundary value

specified on an initial mesh of 10 equally spaced points is made. We defined

solinit = bvpinit(linspace(0,10,10),[0 10]) and the BVP is now solved

with default values using sol = bvp4c(@exode,@exbc,solinit). The relative error

tolerance on the residuals is Rel Tol = 10−10 and the absolute error tolerance is Abl Tol

Table 2. Comparison of θ ′(0) values with Gorla et al (1999),

Cheng & Lin (2007) for F = N = D = R = Le = 0 and B = 0.

M Rax

Pex
θ ′(0) (1999) θ ′(0) (1977) θ ′(0) (Present)

0.0 0.2799 0.2706 0.2706

1.4 0.3823 0.3801 0.3800

2 3.0 0.4754 0.4745 0.4745

8.0 0.6902 0.6902 0.6902

10.0 0.7594 0.7594 0.7594

20.0 1.038 1.0383 1.0383
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Table 3. Comparison of θ ′(0) values with Cheng (1977), Cheng

& Lin (2007) for F = N = D = R = Le = 0 and B = 0.

M Rax

Pex
θ ′(0) (1977) θ ′(0) (2007) θ ′(0)(Present)

−0.2 0.5269 0.5270 0.5269

0 -0.4 0.4865 0.4866 0.4866

−0.6 0.4420 0.4421 0.4421

−0.8 0.3917 0.3917 0.3917

−1.0 0.3320 0.3321 0.3321

= 10−10. The maximum value of η(η∞) representing the ambient conditions was assumed

to be 10. The accuracy of the numerical method was validated by direct comparisons with

the numerical results reported earlier by Gorla et al (1999), Cheng (1977), Cheng & Lin

(2007) for various values of mixed convection parameters in the absence of the parameters

F, N, D, R, Le, B (tables 1, 2 and 3).

6. Results and discussion

In the present paper the effects of solute dispersion, mixed convection and melting on the non-

dimensional velocity, concentration, heat and mass transfer rates have been studied. When F = 0

the effect on Darcy regime and F 	= 0 corresponds to non-Darcy regime. The numerical results

are obtained and those are presented in tables and graphs.

The effects of melting and Lewis number on velocity and concentration profiles are shown in

figure 2. It is clear from the figure that an increase in melting parameter leads to increase the

velocity profile and boundary layer thickness. These results are similar to the results reported by

Afify & Elgazery (2013). From a physical point of view, this result may be attributed to the fact

that convection heat transfer restrain from liquid saturated porous medium to the solid porous

plate. A similar kind of behavior is observed for large values of Lewis number also. But increase

in velocity is less in case of large Lewis number as compared with the small values of the Lewis
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Figure 2. Effect of melting and Lewis number on (a) velocity, (b) concentration, when F = 2, Ra/Pe =
2, N = 1,D = 1, R = 2 and B = 1.
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Figure 3. Effect of melting and solute dispersion on (a) velocity and (b) concentration, when F =
2, Ra/Pe = 2, N = 1,D = 1, R = 2 and Le = 1.

number. It is observed from figure 2b that concentration profile decreases with an increase in

melting parameter for both large and small values of Lewis numbers. For large values of Lewis

number the concentration rate is high as compared with the small values of Lewis number. This

enhances the mass transfer rate.

Figure 3 shows the effects of melting parameter and solute dispersion on velocity and con-

centration profiles. It is observed that with an increase in melting parameter the velocity profile

increases and concentration decreases. On the other hand, an increase in solute dispersion leads

to increase the velocity profile and decreases the concentration profile.

The behaviour of Nusslet number and Sherwood number as an increasing function of melt-

ing parameter for various values of mixed convection and Lewis number are shown in figure 4.

Mixed convection parameter is defined as the ratio of the Rayleigh number to Peclet number.

Mixed convection parameter takes a positive value for aiding flow and negative value for oppos-

ing flow. Where Ra/Pe = 0 represents forced convection and Ra/Pe = 1 correspond to the

(a) (b)

Figure 4. Variation of (a) Nusselt number and (b) Sherwood number as an increasing function of melting

parameter for different values of Ra/Pe and Le, when F = 2, N = 1,D = 1, R = 2 and B = 1.
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(a) (b)

Figure 5. Variation of (a) Nusselt number and (b) Sherwood number as an increasing function of melting

parameter for different values of Ra/Pe and B, when F = 2, N = 1,D = 1, R = 2 and Le = 1.

natural convection, respectively. It is interesting to mention that heat transfer rate is more at the

wall and gradually decreases far from the wall. On the other hand, heat transfer rate increases

with an increase in mixed convection parameter, for small and large values of Lewis number. It

can also be noticed that an increase in heat transfer rate is more for lower values of Lewis num-

ber. The physics behind this may be explained in such a way that Lewis number implies that heat

dispersion is more pronounced than mass dispersion and for this particular system this results

in heat and mass transfer rates are larger for large values of Lewis number as compared with

the small values of Lewis number. These results are similar to the results obtained by El-Amin

et al (2008). It is clear from figure 4b that for small values of Lewis number, mixed convection

parameter enhances the mass transfer rate near that wall. Mass transfer rate decreases with an

increase in mixed convection parameter from the wall, this reduction is less for small value of

Lewis number as compared to the large values.
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Figure 6. Radiation and Lewis number effects on (a) velocity and (b) concentration in the presence and

absence of melting parameter, when F = 2, Ra/Pe = 2, N = 1,D = 1, B = 1.



464 K Hemalatha et al

0 1 2 3 4 5 6 7 8
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

η

f
’
(

η
)

R = 0, B = 0.5, M = 0

R = 0, B = 1.0, M = 0 

R = 1, B = 0.5, M = 0

R = 1, B = 1.0, M = 0

R = 0, B = 0.5, M = 2

R = 0, B = 1.0, M = 2

R = 1, B = 0.5, M = 2

R = 1, B = 1.0, M = 2

(a)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

φ
(

η
)

B = 0.5, M = 0

B = 1.0, M = 0 

B = 0.5, M = 2

B = 1.0, M = 2

R = 2

(b)

Figure 7. Radiation and solute dispersion effects on (a) velocity and (b) concentration in the presence

and absence of melting parameter, when F = 2, Ra/Pe = 2, N = 1, D = 1, Le = 1.

Heat and mass transfer rates for various values of mixed convection and solute dispersion are

shown in figure 5. It is clear from this figure that heat transfer rate increases with an increase in

mixed convection parameter, this increment is more in the presence of solute dispersion. Mass

transfer rate as an increasing function of melting parameter is shown in figure 5b. It is interesting

to note that in the presence of solute dispersion mass transfer rate enhances farther from the wall

compared to near the wall.

Sample results for velocity and concentration are given in figures 6 and 7, respectively. It is

observed that the velocity profile increases with an increase in the thermal radiation parameter.

And also observe that an increase in the Lewis number increases the velocity profile far from

the boundary. From figure 6b, it is clear that increase in radiation parameter, the concentration

increases. For a fixed values of parameters increase in melting increases the concentration for

larger values of Lewis number, but the increase in concentration profile is less for the small

values of Lewis number.
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Figure 8. Non-Darcy and Lewis number effects on (a) velocity and (b) concentration in the presence and

absence of melting parameter, when Ra/Pe = 2, N = 1, D = 1, R = 2, B = 1.
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Figure 8 demonstrates that the effects of non-Darcy and Lewis number on velocity and con-

centration profile. It is noted that the velocity profile increases with an increase in melting

parameter. It can also be observed from the figure that increases in non-Darcy parameter decrease

the velocity from the wall. The concentration profile decreases with an increase in non-Darcy

parameter.

7. Conclusions

The effects of melting and solute dispersion on heat and mass transfer on non-Darcy mixed

convective flow over a vertical plate has been investigated in the present study. It is observed

that velocity profile increases with an increase in melting parameter, whereas the concentration

profile decreases. For large values of Lewis number concentration rate is high as compared with

the small values of Lewis number. Mass transfer rate is more in the presence of solute dispersion

far from the wall.
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