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Abstract

Early defibrillation by an automated external defibrillator (AED) is key for the survival of out-

of-hospital cardiac arrest (OHCA) patients. ECG feature extraction and machine learning

have been successfully used to detect ventricular fibrillation (VF) in AED shock decision

algorithms. Recently, deep learning architectures based on 1D Convolutional Neural Net-

works (CNN) have been proposed for this task. This study introduces a deep learning archi-

tecture based on 1D-CNN layers and a Long Short-Term Memory (LSTM) network for the

detection of VF. Two datasets were used, one from public repositories of Holter recordings

captured at the onset of the arrhythmia, and a second from OHCA patients obtained minutes

after the onset of the arrest. Data was partitioned patient-wise into training (80%) to design

the classifiers, and test (20%) to report the results. The proposed architecture was com-

pared to 1D-CNN only deep learners, and to a classical approach based on VF-detection

features and a support vector machine (SVM) classifier. The algorithms were evaluated in

terms of balanced accuracy (BAC), the unweighted mean of the sensitivity (Se) and specific-

ity (Sp). The BAC, Se, and Sp of the architecture for 4-s ECG segments was 99.3%, 99.7%,

and 98.9% for the public data, and 98.0%, 99.2%, and 96.7% for OHCA data. The proposed

architecture outperformed all other classifiers by at least 0.3-points in BAC in the public

data, and by 2.2-points in the OHCA data. The architecture met the 95% Sp and 90% Se

requirements of the American Heart Association in both datasets for segment lengths as

short as 3-s. This is, to the best of our knowledge, the most accurate VF detection algorithm

to date, especially on OHCA data, and it would enable an accurate shock no shock diagno-

sis in a very short time.
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Introduction

Worldwide out-of-hospital cardiac arrest (OHCA) has an average incidence of 55 cases per

100 000 person-year [1], and constitutes one of the leading causes of death in the industrialized

world. Lethal ventricular arrhythmia such as pulseless ventricular tachycardia (VT) and ven-

tricular fibrillation (VF) are the most frequent trigger of cardiac arrest [2]. In fact, ventricular

arrhythmia are observed as initial rhythm in up to 75% of cases if recorded right after the col-

lapse by an on-site automated external defibrillator (AED) [3]. An electric defibrillation shock

is the only effective therapy to revert VF/VT and restore a normal rhythm. AEDs are simple

devices designed for untrained lay people, and thus incorporate a shock/no-shock decision

algorithm based on the analysis of the patient’s electrocardiogram (ECG) [4]. When the algo-

rithm detects a shockable rhythm (VF/VT) the device delivers a defibrillation shock to restore

a perfusing rhythm, otherwise the AED recommends continuation of cardiopulmonary resus-

citation (CPR). The American Heart Association (AHA) established the minimum accuracy

requirements for shock decision algorithms to ensure a safe use of the device, and that the ade-

quate therapy is administered [5]. Shockable rhythms should be detected with a sensitivity

(positive class) above 90%. The specificity for nonshockable rhythms (negative class) should be

above 99% in case of normal sinus rhythms, and above 95% for other arrhythmia like atrial

fibrillation, supraventricular tachycardia, ideoventricular rhythms, heart blocks, or

bradycardia.

The development of automatic shock decision algorithms has been an active field of

research for decades. The ECG of lethal ventricular arrhythmia present some distinctive char-

acteristics such as more waveform irregularity, the absence of narrow or wide QRS complexes

(the ECG waveform deflections associated to ventricular contraction), smaller bandwidths,

and higher ventricular rates. Consequently, initial efforts focused on the development of ECG

features to identify VF, including features to quantify amplitudes [6, 7], waveform correlation

[8], heart rate [9, 10], slope [11, 12], spectral [13–15] and time-frequency characteristics [16–

18], or the complexity of the VF waveform [19–21]. Many of these features have been system-

atically reviewed and compared [22–25] using data from public ECG repositories available

through the physionet initiative [26]. Current findings, however, support the use of ECG from

OHCA patients gathered by defibrillators during treatment because the ECGs may be very dif-

ferent both for shockable and nonshockable rhythms [27]. Recently, efforts have focused on

efficiently combining ECG features for VF detection through state of the art machine learning

techniques like support vector machines (SVM) or random forests [27–33]. These latter studies

explore the limits of the accuracy attainable by a feature extraction approach using both data

from public repositories [28, 29, 31, 32], and from OHCA cases [27, 30].

Machine learning paradigms based on feature extraction and feature selection strongly

depend on the design of the features. An alternative approach is to exploit all available knowl-

edge from the signals and to let the machine learning algorithm learn and select those features.

This is the rationale behind deep learning, and in particular convolutional neural networks

(CNN), and their one dimensional counterparts 1D-CNN, which have been recently intro-

duced for patient specific heartbeat classification [34], arrhythmia classification [35], detection

of myocardial infaction [36], detection of ectopic beats [37], and the detection arrhythmia [35]

including atrial fibrillation [38] and VF [39]. ECG-based arrhythmia classification using

CNNs has been shown to be more accurate than that of clinicians [40, 41], and 1-D CNNs

have outperformed classical feature extraction-classification paradigms in ECG beat classifica-

tion [42]. When there are time dependencies and variable segment lengths in the data Recur-

rent Neural Networks (RNN) are an efficient deep learning approach [43], and in particular

some of its variants like Long Short-TermMemory (LSTM) networks [44, 45]. In fact, LSTMs
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have been proven accurate in diagnostics [46], but also for the detection of anomalous heart-

beat contractions using the ECG [47].

This study introduces a deep learning approach that combines a CNN and an LSTM net-

work for the detection of lethal ventricular arrhythmia using data from both public ECG

repositories and from defibrillators used to treat OHCA patients. The paper is organized as fol-

lows. The methodology is described in materials and methods, including a description of the

data, the mixed CNN+LSTM architecture proposed in this paper, and a classical machine

learning approach using SVMs used for baseline comparisons. The results section compares

the baseline classifier and 3 deep learning architectures based only on CNNs to our mixed

CNN+LSTM architecture, analyzes the influence of shortening the analysis segment length,

and evaluates the classification features learned by our deep learner. In the discussion the

results are put in the context of previous findings on the detection of lethal ventricular arrhyth-

mia, with emphasis on the importance of using OHCA data in these studies.

Materials andmethods

Data preparation

The data used in this study come from a previous study on classical machine learning

approaches for the detection of ventricular arrhythmia [27]. What follows is an abridged

description of the data, the ECG preprocessing, and data partitioning for training and testing.

For further details consult [27].

Datasets. The data comprise two datasets, one originated from public repositories of

arrhythmia (public database), and a second dataset from OHCA data recorded by monitor-

defibrillators during treatment (OHCA dataset). Fig 1 shows four characteristic examples of

4-s ECG segments from both databases. The examples illustrate the differences between the

ECGs found in public databases, which come from continuously monitored patients (Holter

records), and the rhythms seen by a monitor-defibrillator attached to patient several minutes

after the onset of cardiac arrest.

Fig 1. ECG samples from the public and OHCA datasets. The examples on the left panel show ECGs from public databases, ranging from
normal (top) to VT and VF in the bottommost examples. The ECGs on the right come from the OHCA dataset, and the two topmost cases are
organized rhythms (without pulse) but with very aberrant QRS complexes. The two examples in the bottom are VF observed minutes after the
arrest occurred, and have smaller amplitudes and fibrillation frequencies than those observed in the public databases (bottom-left).

https://doi.org/10.1371/journal.pone.0216756.g001
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The public dataset was formed using three databases. It includes the complete record set

from the physionet MIT-BIHMalignant Ventricular Arrhythmia Database (VFDB) and the

Creighton University Ventricular Tachyarrhythmia Database (CUDB), and ten episodes

(8201-8210) from the series 1 American Heart Association ECG Database (AHADB) [26].

When more than one ECG channel were available (VFDB and AHADB) only the first channel

was extracted to avoid redundancies, as done in recent studies on this topic [27, 39, 48]. The

records included arrhythmia annotations in the Physionet’s scheme, and all databases included

recordings with lethal ventricular arrhythmia from the onset of the arrhythmia. The sample

rate of all databases was fs = 250 Hz.

The OHCA database originated in a multicenter OHCA study conducted in Akershus

(Norway), Stockholm (Sweden), and London (UK) between 2002-2004 [49, 50]. The original

studies were approved by the regional ethics committees and complied with the Helsinki dec-

laration. Rhythms were annotated by expert clinicians into five classes [30]: VF, VT, asystole

(AS), and organized rhythms with pulse (Pulsed Rhythms, PR) and without pulse (Pulseless

Electrical Activity, PEA). ECG segments of 10 s duration and without CPR artifacts were

included in the dataset. The ECG was acquired through the defibrillation pads with a resolu-

tion of 1.031 μV per least significant bit and a sampling frequency of 500 Hz. The ECG was

resampled to fs = 250 Hz.

ECG preprocessing and data labeling. The ECG was filtered in all datasets following a

typical preprocessing introduced in [24] which consists of: mean subtraction, a moving aver-

age filter, and bandpass filtering in the typical 1 − 30 Hz AEDmonitoring bandwidth [51, 52].

This is the typical preprocessing found in AEDs, although the cutoff frequencies may differ

across AED models. Preprocessing removes low frequency noise (movement, respiration, . . .)

and high frequency noise (power line interference) that may confound the classification

algorithms.

Ground truth rhythm labels were reviewed by consensus among two experienced biomedi-

cal engineers specialized in cardiac arrest rhythms. The process included: identification of

device saturation intervals, annotation of noise intervals, identification of very low amplitude

VF (peak amplitude< 200 μV), and slow VT (rate under 150 bpm), and identification of asys-

tole defined as rhythms with very low rates (under 12 bpm) and/or peak-to-peak amplitude

(< 100 μV).

The ECG signals were then divided into non-overlapping segments of 2, 3, 4, and 8-s, to

analyze the accuracy of the shock decision methods in terms of the ECG segment length. Seg-

ments with noise, low-quality signal or artifacts were discarded. Following the AHA statement,

only segments with a unique rhythm label were considered. Slow VT and fine VF were dis-

carded because the benefits of defibrillation are unclear for these rhythms [5]. Consequently,

they cannot be unequivocally labeled as shockable or nonshockable. Finally, segments labeled

as AS were also discarded [27, 29], because normally AS is identified before the shock decision

algorithm using simple thresholding based on the amplitude/power of the ECG segment [11,

53]. In total 86.5% of available data was used from the public dataset, 96.3% of the AHADB,

82.6% of the VFDB and 85.2% of the CUDB. This was the subset used by Figuera et al [27],

and the curated public datasets with noise and unusable signal annotations are available from

there.

Table 1 shows the final datasets for the different segment lengths grouped as shockable and

nonshockable. Shockable rhythms include VF, VT, and ventricular flutter, and nonshockable

rhythms include organized rhythms (PEA/PR) from the OHCA database, and normal sinus

rhythm, supraventricular tachycardia, atrial fibrillation, heart blocks, or ectopic ventricular

activity from public databases.
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Data partitioning. Data was partitioned patient-wise into two sets, 80% of patients to

train the classification algorithms and 20% to report the performance of the algorithms. The

split was done randomly on each of the four databases separately (VFDB, CUDB, AHADB,

and OHCA), and it is the same split used in the study that originated the datasets [27]. Then,

all four training sets were merged into a single dataset to train the models. The results were

evaluated independently for two test sets, the public test set obtained merging the three test set

from the public databases (VFDB, CUDB, AHADB), and the OHCA test set.

Deep learning architecture

Proposed architecture. Fig 2 shows the architecture of our deep learning classifier, which

comprises three stages: a convolutional block with two 1D-CNN stages, an LSTM network,

and a classification stage. The convolutional block extracts the high level descriptors from the

ECG signal, and creates a feature map representing the ECG signal that maintains its temporal

order. The long and short time relations in the feature map are integrated by the LSTM net-

work that outputs Q features that are used by a dense neural network that outputs pSh 2 [0, 1],

the likelihood that the ECG corresponds to a shockable rhythm. pSh was used for the shock/

no-shock decision.

1D-CNN. The convolutional block is composed of two convolutional sub-blocks with a

similar architecture. Each sub-block starts with a convolutional layer of J = 32 filters of size

M = 3, followed by a rectified linear unit (ReLU) as nonlinear activation function. The ReLU

unit is followed by a max-pooling unit of size K = 7 to reduce the dimensionality. The two con-

volutional sublocks result in a time-compressed signal rich enough for feature extraction.

Mathematically the architecture (in the forward direction) of the network is explained as

follows. Let us represent the input signal segment as a column vector of N ordered samples by:

Table 1. Dataset used for shock decision algorithms for different segment lengths grouped by shockable (Sh) and nonshockable (NSh) segments.

Database 2-s segments 3-s segments 4-s segments 8-s segments

Sh NSh Sh NSh Sh NSh Sh NSh

Public 7407 29365 4842 19450 3578 14495 1696 7086

vfdb 3318 15757 2149 10427 1586 7761 746 3780

cudb 1510 6075 981 4015 716 2986 323 1446

ahadb 2579 7533 1712 5008 1276 3748 627 1860

OHCA 1700 3235 1020 1941 680 1294 340 647

https://doi.org/10.1371/journal.pone.0216756.t001

Fig 2. Architecture of the deep learning network. The architecture has three blocks: a convolutional block (CNN), a recursive block (LSTM),
and a final decision stage based on a neural network.

https://doi.org/10.1371/journal.pone.0216756.g002
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s = {si}i = 1, . . ., N = (s1, s2, . . ., sN)
T, where N = L � fs for a segment of length L seconds. A convo-

lutional layer with j = 1, . . .J filters of sizeM and ReLU activation function f(�), has the follow-

ing outputs:

c
j
i ¼ f bj þ

X

M

m¼1

o
j
m � sjiþm�1

 !

with f ð�Þ ¼ maxf0; �g; ð1Þ

where oj
m is them-th coefficient in the j-th filter of the network, and sj its input signal. At the

max-pooling stage each output signal is down-sampled by a factor of K, the pool size, by apply-

ing maximum filter to non-overlapping K sample segments:

p
j
i ¼ maxfcjkgk¼ði�1Þ�Kþ1;...;i�K ð2Þ

The temporal length, Nℓ, at each of the four phases (ℓ = 1, 2, 3, 4) of the two-stage CNN net-

work is given by (see Fig 2):

N‘ ¼ floor
N‘�1

þ 2p�M

s

� �

þ 1 ð3Þ

where N0 = N is the length of the input signal, p = 0 is the padding,M is the kernel size (filter

size, max-pooling size), and s is the stride which is s = 1 for the convolutional layers and s = K

for the max-pooling layers. So for an 8-s segment the successive lengths would be (M = 3 and

K = 7):

N ¼ 8 � fs ¼ 2000 ) N
1
¼ 1998 ) N

2
¼ 285 ) N

3
¼ 283 ) N

4
¼ 40 ð4Þ

and the input to the LSTM network would have a temporal index of i = 1, . . ., 40.

LSTM. The output of the convolutional network feeds the LSTM network in which the vec-

tor with the current state (value) of the input signal is pi ¼ ðp1i ; . . . ; p
J
iÞ

T
with i = 1, . . ., N4. The

LSTM network maps the current output signal state hi ¼ ðh1

i ; . . . ; h
Q
i Þ

T
to the previous states

of the input and output by means of a network of consecutive recurrent cells that consist of

various gates with sigmoid activation functions σ(�).

The equations for the LSTM network in the forward direction are [43–45]:

f i ¼ sðWf pi þ Rf hi�1
þ bf Þ ð5Þ

ii ¼ sðWi pi þ Ri hi�1
þ biÞ ð6Þ

oi ¼ sðWo pi þ Ro hi�1
þ boÞ ð7Þ

ci ¼ f i � ci�1
þ ii � tanhðWc pi þ Rc hi�1

þ bcÞ ð8Þ

hi ¼ oi � tanhðciÞ ð9Þ

where theWQ�J and RQ�Q are the input and recurrence weight matrices, respectively, and bQ×1

are the bias vectors. The number of output features of our network is Q = 20. The fi, ii, oi, ci
vectors correspond to the forget, input, output, and state vectors of the i-th cell in the LSTM

architecture, and� denotes Hadamard or element-wise product.

Fully connected layer: The 20 feature output vector of the LSTM network, hi for i = N4, is

densely connected to a classical neural network with one sigmoid output layer that outputs

pSh. Finally, pSh is compared to a threshold to output a binary shock/no-shock decision. The
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decision threshold that maximized the balanced accuracy of the training set was selected once

the model was optimized.

At the training stage, the network was optimized to minimize the binary cross-entropy loss

function (L), defined as:

L ¼
X

i

Zi½yi ln ðpShiÞ þ ð1� yiÞ ln ð1� pShiÞ� ð10Þ

where ηi is the weight of instance i. Weights were assigned to address class imbalance and to

give equal weight to shockable and non-shockable classes during training. Optimization was

done using Stochastic Gradient Descent with Nesterov acceleration, a learning rate of 10−3, a

learning rate decay of 10−6, and a momentum of 0.9. These are recommneded/typical values

used in Stochastic Gradient Descent from the specialized literature on the topic [54, 55]. One

of the advantages of our design is that the three blocks of the network are optimized end-to-

end to simultaneously extract the high level feature description of the signal (convolutional

block), its temporal relationships (recurrent network block), and the arrhythmia classification

(classification block).

CNN only networks. A number of CNN only networks have been previously introduced

for heartbeat [34, 56] and arrhythmia classification [39]. These approaches proved that it is

possible to obtain high level descriptors of the ECG using only 1-D convolutional blocks,

although they differed on the characteristics of the networks such as depth, filter lengths or

max-pooling size. We have implemented three representative examples (see Table 2) and com-

pared their performance to our architecture, in which an additional LSTM block is added to

better characterize the temporal relations of the arrhythmia.

All the experiments on the deep learning models were done using a Tesla V100-DGXS-

16Gb GPU, and were based on the Keras framework [57] with Tensorflow backend [58]. The

CNN only and the proposed CNN-LSTM architectures were trained using 600 epochs, at each

epoch all training data were fed to the models in batches of 256.

Baseline learner. A SVM classifier with Gaussian kernel [59] was optimized to obtain a

baseline performance for the shock decision algorithm. SVMs for the detection of VF have

been demonstrated before on data from public databases [27, 29, 31], and on OHCA studies

[27]. In the feature extraction phase 30 classical VF detection features were computed, com-

prising all the analysis domains of the ECG. The code for feature extraction is available

through [27]. Two configurations of the SVM were tested, with all 30 features, and with the

top 8 features as selected in [27] using ensemble methods. These will be termed SVMall and

SVMsel in what follows.

Our dataset can thus be represented by a set of instance-label pairs

fðx
1
; y

1
Þ; :::; ðxn; ynÞg 2 RK � f�1g, where yi = 1 for shockable and yi = −1 for

nonshockable rhythms, and the vector xi contains the values of the K features for ECG seg-

ment i. The decision function of the SVM is found by solving the following maximization

Table 2. Architectures of the CNN only models used for comparison.

CNN Layers Filters Filter size Max-pool size Dense layers

Kiranyaz et al [34] 2 32, 16 15, 15 6 1

Zubair et al [56] 3 32, 16, 8 5, 5, 5 2 1

Acharya et al [39] 4 3, 5, 10, 10 5, 5, 5, 4 2 2

https://doi.org/10.1371/journal.pone.0216756.t002
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problem [59]:

max
ai

X

n

i¼1

ai �
1

2

X

n

i;j¼1

aiajyiyj exp ð�gk xi � xj k
2Þ

( )

ð11Þ

s:t: : 0 � ai � C 8i; and
X

n

i¼1

aiyi ¼ 0 ð12Þ

After solving the maximization problem, the vectors that have non-zero Lagrange multipli-

ers (αi) are called support vectors. The SVM decision function depends only on the support

vectors, and can be written as:

f ðxÞ ¼ sign
X

Ns

i¼1

aiyi exp ð�g k x� xik
2Þ þ b

" #

ð13Þ

where the Ns support vectors and the threshold b are determined in the optimization phase.

A rhythm will be classified as shockable for f(x) = 1, or nonshockable for f(x) = −1.

The gaussian kernel SVM has two optimization hyper-parameters, C is the soft margin

parameter and γ the width of the gaussian kernel. Bayesian optimization was used to deter-

mine the optimal hyper-parameters of the SVM in the training data, and the hyperparameter

search region was bound to 10−3 � C� 2 � 102 and 10−3 � γ � 2 � 102. Class imbalance was

addressed by weighting the instances in the training data to match the total weight of the

shockable and nonshockable classes. Finally, at most 0.5% of instances were discarded as outli-

ers during training, this number is roughly equivalent to applying the 3-σ rule for a normal dis-

tribution [60].

Performance metrics and evaluation

The performance of the classification algorithms was evaluated using the test sets. Shock deci-

sion algorithms are binary classifiers, so results are reported in terms of sensitivity (Se) and

specificity (Sp), positive and negative predictive values (PPV and NPV), and two measures of

global accuracy, total accuracy (Acc) and balanced accuracy (BAC), which is defined as:

BAC ¼
1

2
ðSeþ SpÞ:

The AHA statement gives a similar importance to the detection of shockable (Se) and non-

shockable (Sp) rhythms, by setting the minimum performance goals for Se and Sp at 90% and

95%, respectively. Consequently, we ranked our solutions by their BAC, which is simply the

unweighted mean of sensitivities for a two-class problem. BAC is less sensitive to class imbal-

ance than total accuracy [30]. Since our data is strongly imbalanced (roughly by a proportion

of 4/1 in all datasets), we assigned weights as inverses of the class prevalences to the training

instances on the optimization phase of all the classifiers. The McNemar test was used to test

the null hypothesis that the accuracy of our model was greater than that of the other models at

the 95% confidence interval, that is a p< .05 was considered significant [61].

The discriminating power of the features learned by our CNN+LSTM architecture was eval-

uated using a Receiver Operating Curve (ROC) analysis in the test set. In our architecture,

those features are the 20 components of the output signal state at time i = N4, hN4
2 RQ of the

LSTM block. We will denote those features by lstmj for j = 1, . . .20. The CNN+LSTMmodel

was trained using the training data, and the trained model was used to compute the LSTM

Mixed convolutional and long short-termmemory network for the detection of lethal ventricular arrhythmia

PLOSONE | https://doi.org/10.1371/journal.pone.0216756 May 20, 2019 8 / 22

https://doi.org/10.1371/journal.pone.0216756


features in the training and test sets. The value of the LSTM features output by the model for

the test set was used for the ROC curve analysis. The features were ranked using the Area

Under the Curve (AUC) of the ROC analysis.

Results

Performance of the classification algorithms

Table 3 shows the performance metrics for 4-s segments in the test dataset, both for the public

and OHCA databases. As shown in the table the mixed deep learning architecture proposed in

this study presents the best performance, and the McNemar test showed that the accuracy of

our model was significantly better than that of the rest of the classifiers. The differences

between our solution and the best CNN and SVM solutions are only marginal for the public

dataset, but very large for the OHCA database with differences in BAC and Acc of over

2.2-points and 1.4-points, respectively. A 1.4-point increase in Acc from a baseline of 96.1%

(for SVMsel) means that over 35% of the errors are now corrected.

For 4-s segments, the time needed to train our model (CNN+LSTM) in our high-end archi-

tecture was 1 hour and 3 min. The CNN only models were much quicker to train, with training

times below 5 min. The time needed to classify a test sample (without parallelization) using the

trained models was of 245 ms for our model, and below 14 ms for the CNN only models. All

the deep learning models could be easily implemented and used in real time in low end hard-

ware like the Field Programmable Gate Arrays (FPGA) and low end micro-processors used in

AEDs [62].

Dependence with the length of the analysis segment

The BAC of the algorithm as the analysis segment is shortened is shown in Fig 3. The algo-

rithm’s accuracy is preserved for ECG analysis segments longer than 3-s, with a BAC above

99% in the public database and above 97% for the OHCA database. Although the accuracy is

still good for 2—segments, the performance of the shock decision algorithms degrades. As

shown in the figure, the proposed architecture outperforms the baseline SVM classifier

(p< .05 for the McNemar test for all segment lengths) specially in the OHCA database. And it

performs better than the best CNN only solution (p< .05) for longer segment lengths, and

similarly for small segment lengths (see S1 Fig for the comparison with the rest of the CNN

models).

Our results show that a deep learning architecture can accurately detect shockable rhythms

with very short ECG segments, even on data from OHCA patients. Furthermore, the algorithm

Table 3. Performance metrics for 4-s segments. The the p-values are for the pairwise comparison of the accuracy of the proposed model to each of the other classifiers.
The proposed network had a highest accuracy and the results were significant at the 95% confidence level (indicated by a†).

Method Public datasets OHCA datasets

Se/Sp BAC/Acc PPV/NPV p-val Se/Sp BAC/Acc PPV/NPV p-val

Proposed network 99.7/98.9 99.3/99.1 96.3/99.9 - 99.2/96.7 98.0/97.5 93.6/99.6 -

Deep learners

Kiranyaz et al [34] 99.3/98.4 98.9/98.6 94.6/99.8 < .05† 97.7/93.8 95.8/95.1 88.4/98.8 < .05†

Zubair et al [56] 95.6/96.2 95.9/96.1 87.5/98.7 < .05† 93.9/89.4 91.7/90.9 81.0/96.8 < .05†

Acharya et al [39] 98.4/98.1 98.2/98.2 93.6/99.5 < .05† 94.7/91.6 93.2/92.6 84.5/97.3 < .05†

Baseline SVM

SVMall 98.5/98.3 98.4/98.4 94.3/99.6 < .05† 91.7/96.0 93.9/94.6 91.7/96.0 < .05†

SVMsel 99.2/98.7 99.0/98.8 95.5/99.8 < .05† 93.9/97.1 95.5/96.1 93.9/97.1 < .05†

https://doi.org/10.1371/journal.pone.0216756.t003
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is AHA compliant for all segment lengths and datasets (except 2-s segments on OHCA data),

as shown in Fig 4. The sensitivity and specificity were always above their respective minimum

AHA goals of 90% and 95%.

Learned and designed features

One of the salient characteristics of deep-learning architectures is their ability to automatically

learn the discrimination features. Table 4 shows the AUCs of the lstmj features on the test data-

set for 4-s segments. Features are ordered using the AUC for the complete dataset (public

+OHCA) because the features presented a mixed ranking when evaluated on the public and

OHCA datasets separately. Six features had global AUCs above 95%, and are therefore very

good individual shock/no-shock decision features. In most cases the AUCs for the public data-

base were larger than for the OHCA database, which confirms that accurate shock/no-shock

decisions are more difficult for OHCA rhythms. However the network was also able to learn

several features that are better suited for OHCA data, such as lstm9 or lstm1.

We then applied dimensionality reduction techniques to visually assess and compare the

classical VF-detection features to the features learned by our deep learning architecture. We

choose the t-Distributed Stochastic Neighbor Embedding (t-SNE) dimensionality reduction

technique [63, 64], which is a nonparametric nonlinear technique well suited for 2-D represen-

tations that has been shown to outperform many typical dimensionality reduction techniques

in problems ranging from hand-digit recognition to genomic data clustering [63, 65]. In our

configuration we reduced 30 classical features [27] and 20 LSTM features computed using 4—

segments to a 2-D map suitable for visualization using scatterplots. The results for the public

and OHCA datasets are shown in Fig 5, respectively. It is visually apparent that LSTM features

produce a better and more separable clustering than the classical features. In fact, the Davies-

Boudin index to measure the separability of the clusters [66] was significantly lower for the

Fig 3. Performance for different segment lengths. Performance of the proposed network and the best baseline SVM and CNN only solution
[34] for different segment lengths. The performance is worse for the OHCA database. The proposed solution outperforms the baseline SVM in
both databases for all segment lengths (p< .05), and the best CNN solution (p< .05) except for short segment lengths.

https://doi.org/10.1371/journal.pone.0216756.g003
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learned features on 1000 bootstrap replicas of the experiment. The values mean (standard devi-

ation) values were 1.073 (.006) for the LSTM features and 1.472 (.013) for the hand-crafted fea-

tures (p< .05). These numbers confirm that the LSTM features produced a better clustering of

the two classes than the classical VF-detection features.

Finally, we redesigned the classical SVM learner but fed it with the LSTM features instead,

in line with a recent proposal that uses learned features from a 1-D CNN to detect VF [48].

The objective was to show if, for a classical machine learning approach based on SVM, the

accuracy improved using the LSTM features instead of the classical VF-features. And if so, to

determine the minimum number of LSTM features needed to improve those classification

Fig 4. Sensitivity and specificity for different segment lengths. Sensitivity and specificity of the proposed deep learning network for different
segment lengths for the public and OHCA databases. The algorithmmeets AHA’s minimum 90% sensitivity for all segment lengths, and the
95% specificity for segment lengths longer than 2 s.

https://doi.org/10.1371/journal.pone.0216756.g004

Table 4. AUCs on the test set of the LSTM features of proposed architecture (see Fig 2). The model was trained in the training set for 4-s ECG segments, and this model
was used to compute the LSTM features in the test set. The features are ordered by descending AUCs on the complete test set (public+OHCA).

Feature Dataset Feature Dataset

Complete Public OHCA Complete Public OHCA

lstm4 99.12 99.34 96.96 lstm5 91.19 91.10 92.57

lstm6 98.81 99.19 95.13 lstm3 85.91 85.44 90.24

lstm19 98.53 99.34 94.99 lstm8 85.84 85.93 88.43

lstm14 96.64 96.72 97.33 lstm10 83.15 84.35 82.93

lstm11 95.39 95.62 90.95 lstm17 80.19 81.40 72.90

lstm15 95.29 97.13 78.30 lstm9 79.80 78.39 88.32

lstm16 94.47 94.89 92.24 lstm1 78.91 76.87 90.97

lstm18 94.19 94.35 92.83 lstm12 75.47 75.61 83.91

lstm13 92.49 93.19 88.70 lstm2 66.97 67.84 56.51

lstm17 91.52 81.40 72.90 lstm20 56.80 57.00 50.87

https://doi.org/10.1371/journal.pone.0216756.t004
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results. All the experiments were done using the features obtained from the 4-s segments, and

the SVM classifiers with LSTM features were optimized and evaluated using the same proce-

dures used for the baseline SVM. First, on the training data a simple linear discriminant analy-

sis classifier was used to select the best combination of LSTM features for all the possible

feature sets of K = 1, 2, . . .20 features. Then, for each value of K the SVM classifier was opti-

mized on the training data, and its performance was evaluated in the test set. The results are

shown in Fig 6, compared to the best baseline SVM learner based on classical VF-features. The

SVM based on LSTM features outperformed the SVM based on classical features for as few as

K = 4 LSTM features, and using the LSTM features improved the accuracy particularly for the

most challenging data, the OHCA dataset.

Fig 5. Visualization by t-SNE of the separability for the learned and classical VF-detection features. Two dimensional map visualization
using t-SNE with the Barnes-Hut algorithm based on 30 classical VF-detection features [27] (top), and the 20 LSTM features (bottom). All
experiments were done for the 4-s segments, and the visualization is separated for the public (left) and OHCA (right) datasets.

https://doi.org/10.1371/journal.pone.0216756.g005
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Sources of classification errors

Fig 7 shows eight 4-s segments from the OHCA dataset incorrectly classified by our deep

learning architecture. The examples shown in the figure illustrate the difficulty of classifying

certain borderline OHCA rhythms. The four examples on the left (Fig 7(a)) show rhythms

labeled as shockable that were misclassified as nonshockable by our algorithm. The first missed

shockable rhythm presents several bursts of high amplitude activity, which result in large

slopes in the ECG that are sometimes interpreted as QR segments, although no distinct QRS

complexes are visible. In the second example the rhythm is ventricular and regular, but the

ventricular rate is around 150 bpm, a threshold used frequently to separate intermediate VT

from shockable fast VT. Finally the two bottom-most examples correspond to the late stages of

VF in which the amplitude and fibrillation frequencies are lower, and the rhythm starts to

degenerate into asystole.

Fig 6. LSTM features used in an SVM classifier. Performance of an SVM classifier based on LSTM features, compared to the
best baseline classifier using classical features, SVMsel.

https://doi.org/10.1371/journal.pone.0216756.g006
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The four examples on the right (Fig 7(b)) show rhythms labeled as nonshockable that were

misclassified as shockable by our algorithm. The two topmost examples of missed nonshock-

able rhythms correspond to two supraventricular rhythms but with very wide QRS complexes

and unstable heart rate, which result in a more irregular ECG than normally seen for non-

shockable rhythms. The bottommost examples correspond to PEA cases with no supraventric-

ular activity, but low rates. In the bottommost example the ventricular rate is very slow

(around 60 bpm), but there is a high frequency quivering between ventricular contractions

that produces a very irregular ECG.

Discussion

This is, to the best of our knowledge, the first study that uses OHCA data to develop and evalu-

ate a deep learning architecture for the detection of shockable arrhythmia during cardiac

arrest. In addition, we have for the first time analyzed the influence of the segment length on

the performance of the deep learning classifier, and we have done an in-depth analysis of the

features learned by our architecture when compared to the classical features used for the detec-

tion of VF over the past two decades. When compared to other deep learning approaches and

classical machine learning approaches our architecture showed the best accuracy for the

shock/no-shock decisions, specially of OHCA data. Our solution would therefore increase the

security of AED algorithms by avoiding inappropriate shocks, and would ensure shocks are

delivered when the patient is in VF. Furthermore, the algorithm fits within the computational

and memory constraints of the low-end hardware of an AED. Therefore it could be imple-

mented simply by changing the shock decision algorithm of the AED, i.e. a low cost software

change.

Shock advice algorithms in current AED are safe, they are tested following the AHA frame-

work [5] and IEC standards. Testing of those algorithms is done using AHA compliant vendor

proprietary rhythm libraries, and the algorithms meet the AHA requirements for Se/Sp. In

fact, many of those algorithms have been recently updated to be safely used in children using

pediatric rhythm libraries [67, 68]. The characteristics of the rhythms in these libraries are

Fig 7. Examples of classification errors from the OHCA set. Examples of 4-s segments corresponding to borderline rhythms that were
misclassified by the deep learning architecture. Segments corresponding to shockable rhythms are shown in the left, and segments
corresponding to nonshockable rhythms in the right.

https://doi.org/10.1371/journal.pone.0216756.g007
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similar to the publicly available databases, and are frequently obtained from in-hospital

electrophysiology studies [11, 68]. However, when the algorithms are used to diagnose

rhythms in OHCA patients the Se/Sp values reported are lower. For instance, a recently

described AED algorithm [11] presented Se/Sp of 99.5/98.0% when tested on proprietary

rhythm databases, but when tested with OHCA data in the ventilation pauses during 30:2 CPR

the Se/Sp decreased to 93.8/95.9%, respectively [69]. Similar results were found for another

AED algorithm with OHCA rhythms and short ECG analysis segments of 3-5 s [70]. So further

research on VF detection using OHCA data is needed, and the deep learning approach pro-

posed in this study is a contribution in that direction.

Two recent papers have introduced deep learning architectures based on 1D-CNNs for the

detection of shockable arrhythmia [39, 48]. Both studies are based on data from public ECG

repositories, in particular the malignant ventricular arrhythmia were obtained from the CUDB

and VFDB databases. As shown by our results (see Table 3) the detection of shockable arrhyth-

mia is easier on data from public repositories than in OHCA data, a result that had already

been proved using classical machine learning algorithms [27]. OHCA data is recorded using

defibrillators in a pre-hospital setting, and by the time the emergency services arrive the condi-

tion of the myocardium may have considerably deteriorated. This implies that the nonshock-

able rhythms recorded during OHCAmost frequently correspond to pulseless patients, have

irregular rates, and aberrant QRS complexes in patients with conduction problems [71]. VF is

also recorded minutes after its onset, and by that time VF amplitude, fibrillation frequency,

and waveform complexity have normally deteriorated [72, 73]. Furthermore, in OHCA there

are frequent rhythm transitions from shockable to non-shockable rhythms as a result of the

therapies applied by the emergency services [74], so borderline rhythms are more frequent.

Therefore, although using ECGs from public databases is a standard practice and provides a

good benchmark for the development and comparative assessment of VF detection methods

[23, 24], it is desirable to use OHCA data to develop and test VF-detection methods. Our

results show that the BAC were 1-3 points lower for the OHCA data than for the data from

public ECG repositories, depending on the classifier (SVM or deep learner) and the segment

length used for classification.

The design of our deep learning architecture combines 1D-CNN blocks with an LSTM net-

work. The solution considerably improves the performance of some previous deep learning

approaches [34, 56], of which some were specifically introduced to detect lethal ventricular

arrhythmia [39]. Those architectures were based only on convolutional networks, and did not

include the LSTM stage introduced in this study to integrate the temporal relations in the

ECG. The benefits of adding an LSTM block are larger for longer segment lengths (see Fig 3)

because then the LSTM network efficiently captures the temporal relations of the arrhythmia.

An advantage of using an LSTM is that the network is able to learn the long term temporal

relations of the ECG. LSTMs can capture different time scales and can capture subtle ECG

nuances for arrhythmia classification [75, 76]. As shown in Table 3, the addition of an LSTM

block improves the VF-detection accuracy of the deep learning architectures based only on

CNN blocks. The increase in BAC over the best CNN only architecture is 0.5-points for public

data, but over 2-points for the more challenging OHCA data. Acharya et al [39] reported an Se

and Sp of 91.0% and 95.3% (BAC, 93.3%) for the public datasets in the first study that intro-

duced CNN networks for the detection of lethal ventricular arrhythmia. Our implementation

of their network yielded a much higher BAC of 98.2% on the public datasets, but we used a 4-s

segment and cleaned the data of artifacts, intervals with loss of signal, asystole, and intermedi-

ate rhythms. These differences increase the BAC since classification is easier on longer seg-

ment lengths (see Fig 3), and noisy data is a confounding factor for the design of the classifiers.

The recent contribution by Nguyen et al [48] used 8-s ECG segments and data cleaning, and
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reported Se and Sp of 97.1% and 99.4% (BAC, 98.3%). Their results are therefore similar, when

compared on the same conditions, to the values we obtained for the model proposed by

Acharya et al. In any case, the addition of the LSTM block results in at least 1-point increase in

BAC for the public datasets over those two architectures. It is important to emphasize that in

practice an AED instructs the rescuer to stop CPR and avoid movements to analyze the

rhythm, so the ECG observed by the device is free of artifacts. In the event of a low quality sig-

nal or loss of signal the device would not analyze the ECG. VF detection algorithms should

therefore be tested under these conditions, as recommended by the AHA [5].

Most studies introducing or comparing algorithms for the detection of malignant ventricu-

lar arrhythmia use 4- or 8-s analysis segments [23, 24, 27–29, 31, 32, 48]. The duration of the

interruptions in CPR therapy associated to an AED analysis ranges from 5.2 − 28.4 s depend-

ing on the AEDmodel [77]. An important factor in this time is the ECG segment length

needed by VF-detection algorithms to classify the rhythm as shockable or non-shockable.

Consequently, shortening the analysis segment would shorten hands-off intervals (without

CPR) during AED use, and shorter hands-off intervals increase the OHCA survival rates [78].

Moreover, reducing the analysis segment to around 3-s would enable the continuous monitor-

ing of the rhythm during 30:2 CPR (30 compressions and 2 ventilations) because the rhythm

could be analyzed during the ventilation pauses [69]. Our results for the OHCA data show that

AHA requirements for Se and Sp are met for analysis segments of at least 3-s. When we tested

a 2-s analysis segment the Sp on the OHCA data fell to 93.6%, below the 95% AHA target, and

there was an overall decrease in BAC from 98.9% for 8-s segments to 95.2% for 2-s segments.

In contrast, on the public data the BAC decreased only from 99.6% for 8-s segments, to 98.1%

for 2-s segments, and the Se and Sp were above 97.5% for all the tested segment lengths (see

Figs 3 and 4). These results suggest that capturing the characteristics of OHCA arrhythmia is

difficult using short segment lengths, specially for nonshockable rhythms in which heart rates

are frequently very slow and QRS complexes may be very wide due to aberrant ventricular

conduction. It is therefore important to use OHCA data to explore the limits of accurate VF

detection in cardiac arrest patients. In any case, our deep learning architecture was capable of

an AHA compliant diagnosis for segment lengths as short as 3-s, shorter than the typical AED

analysis duration which is above 5-s [77].

Finally, we bench-marked the results of our deep learning architecture against a state of the

art machine learning algorithm using SVM and a large set of well known hand crafted VF-

detection features. Our deep learning architecture outperformed the classical machine learning

approach on both the public and the OHCA datasets and for all segment lengths, a trend

observed in several other ECG classification problems [34, 37, 40, 41]. The increase in BAC

was marginal for the public dataset, for instance for 4-s segments the BAC was only 0.3-points

higher. However, for the OHCA there was a substantial increase in BAC which was 1.5 to

3-points larger depending on the segment length. Our deep learning architecture learned a set

of 20 features output by the LSTM network. These features showed better separability, and per-

formed better than the classical hand-crafted features when fed to the SVM classifier. Deep

learning approaches can therefore be conceived and exploited to obtain improved ECG classi-

fication features, as proposed by Nguyen et al [48].

Deep learning solutions have proven effective and accurate for VF detection during OHCA.

In the future several other clinical decision support algorithms during OHCA could benefit

from using deep learning solutions. Some areas of current research include the prediction of

shock success [79, 80], the analysis of the ECG during manual and mechanical chest compres-

sions [81, 82], multiclass rhythm classification [30], or the detection of pulse [83]. In fact some

deep learning solutions have been recently proposed for instance for the detection of pulse

[84]. Moreover, given the difficulties in gathering annotated OHCA data it would be of great
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interest to investigate the possibility of using these initial approaches in solutions with

improved data efficiency, such as few shot learning solutions.

Conclusion

We have designed a mixed CNN and LSTM deep learning architecture for the detection of

lethal ventricular arrhythmia. Our results show that this network outperforms the classical

machine learning algorithms and the deep learning architectures based only CNN layers that

had been proposed to date for this task. Furthermore, our results are tested on public reposito-

ries of ECG data but also on OHCA data which is harder to classify. Our architecture enabled

an AHA compliant shock/no-shock decision for analysis segments as short as 3-s. Finally, the

computational demands of our model fit in the low-end hardware of an AED, and implement-

ing it on an AED would be low cost since it only involves a software change to the device.

Supporting information

S1 Fig. Performance of all deep learners for different ECG segment lengths. In the figure

CNN1 refers to Kiranaz et al [34], CNN2 to Zubair et al [56], and CNN3 to Acharya et al [39].

The networks CNN2-3 perform worse for longer segment length, they are more complex and

need to adjust more weights (see Table 2) and perform better with more instances in the data-

set. The advantages of using an LSTM block diminish for shorter segment lengths, as the

LSTM is not able to capture the long temporal relations in the arrhythmia.
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