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Abstract. The Cox (1972) regression model is extended to include discrete and mixed continuous/discrete failure

time data by retaining the multiplicative hazard rate form of the absolutely continuous model. Application of

martingale arguments to the regression parameter estimating function show the Breslow (1974) estimator to be

consistent and asymptotically Gaussian under this model. A computationally convenient estimator of the variance

of the score function can be developed, again using martingale arguments. This estimator reduces to the usual

hypergeometric form in the special case of testing equality of several survival curves, and it leads more generally

to a convenient consistent variance estimator for the regression parameter. A small simulation study is carried out

to study the regression parameter estimator and its variance estimator under the discrete Cox model special case

and an application to a bladder cancer recurrence dataset is provided.

Keywords: Cox regression, counting process, martingale, tied failure times

1. Introduction

The Cox (1972) hazard function regression model,

�ft; ZðtÞg ¼ �0ðtÞ exp fX ðtÞV�g; ð1Þ

for a failure time variate T > 0, is well established as a central tool for the regression

analysis of absolutely continuous failure times. In (1), Z(t) ¼ {z(u), u < t} is the history of

a covariate process z at times less than t, �0 is an unspecified ‘baseline’ hazard function,

X(t)V¼ {X1(t), . . . , Xp(t)} is a modeled regression p-vector with elements comprised of

functions of Z(t) and terms involving products of these functions with functions of t.

Typically, interest resides in inference on both the regression vector �V¼ (�1, . . . , �p),

sometimes referred to as the relative risk parameter in acknowledgment of the multi-

plicative form of (1), and the cumulative baseline hazard function L0ðtÞ ¼
R t

0
�0ðuÞdu.

The model (1) was presented for absolutely continuous failure times. Various proposals

have been made to extend (1) to accommodate discrete components, since tied failure

times commonly arise in applications. These proposals, elaborated below, have either

dropped the multiplicative form (1) for the discrete hazard rates, or have made ad hoc
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adjustments to the continuous failure time estimation procedure. Here, instead, we retain

the multiplicative form (1) even at times where the cumulative hazard function is not

continuous, giving a model

Lfdt; ZðtÞg ¼ L0ðdtÞ exp fX ðtÞV�g; ð2Þ

where for example L0(dt) ¼ L0(t) � L0(t
�) if t is a mass point of the failure distribution,

while L0(dt) ¼ {dL0(t)=dt}dt ¼ �0(t)dt at a continuity point of the failure distribution. We

will develop estimation procedures for � and L0 in (2), using counting process methods.

2. Methods for Handling Tied Failure Times

Cox (1972) suggested that (1) be relaxed to the discrete logistic model

Lfdt; ZðtÞg ¼ L0ðdtÞ exp fX ðtÞV�g
1þ L0ðDtÞ exp fX ðtÞV�g � 1½ 	 ð3Þ

to accommodate discrete components to the failure time distribution and tied failure time

data, where L0(Dt) ¼ L0(t) � L0(t
�). His partial likelihood argument extended readily to

(3) upon conditioning on the number of failures at each distinct failure time. However, if

there are d failures at a time point t, the partial likelihood factor at t involves a summation

over all subsets of size d from the r individuals at risk at that t. This gives unwieldy

calculations if d and r � d are large, although there are some ways of streamlining these or

closely related calculations (Gail et al., 1981). However, it can be noted that the regression

coefficient in (3) has a logistic regression rather than a hazard ratio interpretation or, in

epidemiologic parlance, has an odds ratio rather than a relative risk interpretation.

Kalbfleisch and Prentice (1973) considered instead a discrete failure time model

obtained by grouping the failure times under (1) according to a fixed partition of the

time axis. This approach leads to a mixed discrete/continuous hazard rate model

Lfdt; ZðtÞg ¼ 1� f1� L0ðdtÞgexpfX ðtÞV�g: ð4Þ

for an appropriately redefined L0 function. The regression parameter in (4) is the same as

in the underlying continuous model (1) when the modeled covariate is time-independent

(i.e., X(t) 
 X ). Note also in this special case that (4) gives a survivor function

Fft; ZðtÞg ¼
Yt
0

f1� L0ðdtÞgexp ðXV�Þ ¼ F0ðtÞexp ðXV�Þ

in the so-called Lehmann class for both discrete and continuous failure time variables.

Using the continuous model, again with time-independent covariates, Kalbfleisch and

Prentice (1980, p.74) obtain a marginal likelihood for � that accommodates ties and
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performs well in analyzing data from (4). This marginal likelihood is the time-independent

special case of

Lð�Þ ¼
Yk
i¼1

exp fSðtiÞV�g
X
P"Qi

Ydi
r¼1

X
‘"Rðti; prÞ

exp fX‘ðtiÞV�g

2
4

3
5
�1

ð5Þ

where t1 <: : : < tk are the ordered failure times in the sample, S(ti) is the sum of the

covariate vectors X(ti) for the di ‘subjects’ failing at ti, Qi is the set of permutations over

these di failing subjects, P ¼ ð p1; . . . ; pdiÞ is an element of Qi, R(ti) is the set of subjects at

risk at time ti and R(ti, pr) is the set difference R(ti) � { p1, . . . , pr�1}. This likelihood

arises by breaking the di ties at ti in all possible di! ways. Estimation based on (5) is also

computationally difficult if some of the di’s are large. Delong et al. (1994) developed an

integral expression for the factors of (5) that can reduce computation time for factors

having large di values, but numerical integration is required. To date, there is no

computationally convenient implementation of the grouped continuous hazard model (4).

Because of these computational difficulties, most software packages use as a default

maximization of an approximate likelihood. Breslow (1974) suggested the widely used

approximate partial likelihood

Lð�Þ ¼
Yk
i¼1

exp fSðtiÞV�g
, X

‘"RðtiÞ
exp fX‘ðtiÞV�g

2
4

3
5
di

: ð6Þ

A somewhat better approximation to (5) is due to Efron (1977),

Lð�Þ ¼
Yk
i¼1

exp fSðtiÞV�g
,Ydi�1

r¼0

X
‘"RðtiÞ

expfX‘ðtiÞV�g � rd�1
i

X
‘"DðtiÞ

exp fX‘ðtiÞV�g

2
4

3
5; ð7Þ

where D(ti) denotes the set of subjects failing at ti. The estimators �̂ that maximize (6) or

(7) are readily calculated, but both have some asymptotic bias under the model (4), and the

corresponding matrices f�@2log Lð�̂Þ=@�̂ @�̂Vg�1
are not consistent estimators of the

covariance of �̂.

3. Mixed Discrete and Continuous Relative Risk Model

As mentioned above, another generalization of the continuous failure time model (1) is (2),

which we shall refer to as the mixed discrete and continuous Cox model. The regression

parameter in (2) retains a natural and useful relative risk interpretation, even if the failure

time distribution includes discrete elements. In general, (2) does not arise by grouping

failure times from the continuous model (1), though models (2), (3), and (4), all coincide in
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the very special case in which baseline hazard function for the discrete variate is constant

across failure times and the modeled regression variable is binary. The principal constraint

on (2) is that the (discrete) hazard at any mass point of the failure distribution must be

equal to or less than one. This is not a practically important constraint in the typical setting

where the number of failures is a small fraction of the number of individuals at risk at most

failure times. However, it is important that the application of (2) not be adversely affected

by violations, or near violations of this constraint.

Let Ni(t) be the right continuous counting process that takes value zero at t ¼ 0 and

jumps by one at an observed failure time for the ith subject. We also define, under (2), the

cumulative intensity process

LiðtÞ ¼
Z t

0

YiðsÞ exp fXiðsÞV�gL0ðdsÞ

where Yi (s) takes value one if the ith subject is at risk for an observed failure at time s�,

and value zero otherwise. Let F(t) ¼ {Ni (u), Yi (u
þ), Zi (u

þ), u � t, i ¼ 1, . . . , n} specify

the counting, censoring and covariate processes up to time t. For inference on � in (2),

consider the Doob-Meyer decomposition

NiðtÞ ¼ LiðtÞ þMiðtÞ; i ¼ 1; . . . ; n: ð8Þ

The difference Mi ¼ Ni � Li is a square integrable martingale with respect to the filtration

or history FðtÞ under mild conditions. For example, it is sufficient that sample paths for

each Yi and Xi be left continuous with right hand limits.

An estimating function, which reduces to the partial likelihood score process (Cox,

1975; Andersen and Gill, 1982) if failure times are absolutely continuous, can be written

Uð�; tÞ ¼
Z t

0

Xn
i¼1

YiðsÞXiðsÞ �
Xn
‘¼1

X‘ðsÞp‘ðsÞ
( )

NiðdsÞ ð9Þ

where

p‘ðsÞ ¼ Y‘ðsÞ exp fX‘ðsÞV�g
,Xn

j¼1

YjðsÞ exp fXjðsÞV�g:

Just as in the absolutely continuous special case, substitution from (8) into (9) leads to

Uð�; tÞ ¼
Z t

0

Xn
i¼1

YiðsÞXiðsÞ �
Xn
‘¼1

X‘ðsÞp‘ðsÞ
( )

MiðdsÞ ð10Þ

so that U is a stochastic integral of a predictable process with respect to a square integrable

martingale. Hence, U is itself a square integrable martingale with respect to fFðtÞg. Note
that the overall score U(�,l) is precisely @ log L (�)=@� from (6). Hence, one can expect

the Breslow estimator �̂ to be consistent for � in (2) under suitable regularity conditions.
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Similarly, using (8), a natural estimate of L0(t), for given � is the Nelson-Aalen-type

estimator,

L̂0ð�; tÞ ¼
Z t

0

NSðdsÞ
,Xn

‘¼1

Y‘ðsÞ exp X‘ðsÞV�f g

¼
Z t

0

IfYSðuÞ > 0gL0ðduÞ þ
Z t

0

MSðdsÞ
,Xn

‘¼1

Y‘ðsÞ exp X‘ðsÞV�f g;

where a dot denotes summation from 1 to n and ratios 0/0 are defined to take value zero.

Hence, L̂0ðtÞ can be expected to be consistent for L0(t) in (2) under regularity conditions

that ensure that I{YS(u) > 0} converges to one uniformly for u" [0, t].

Since U is a martingale under (2), and hence has mean zero with uncorrelated

increments, the variance of U(t) can be written

V ð�; tÞ ¼
Z t

0

V ð�; dsÞ ¼
Z t

0

E Uð�; dsÞUð�; dsÞVAFðs�Þ
� 


:

If the martingales Mi, i ¼ 1, . . . , n are orthogonal (as follows for example from

independent failure time and independent censoring assumptions) then

V ð�; dsÞ ¼
Xn
i¼1

WiðsÞWiðsÞVE MiðdsÞMiðdsÞVAFðs�Þ
� 


¼
Xn
i¼1

WiðsÞWiðsÞVYiðsÞ 1� L0ðDsÞ exp XiðsÞV�f g½ 	L0ðdsÞ exp XiðsÞV�f g;

ð11Þ

where WiðsÞ ¼ YiðsÞXiðsÞ �
Pn
‘¼1

X‘ðsÞp‘ðsÞ; i ¼ 1; . . . ; n. Note that the factor in square

brackets takes value one if s is a continuity point of the failure distribution.

Substituting L̂0ð�; 
Þ for L0 in (11) gives an ‘estimator’ of V (�, t) at specified � that can

be written V̂ ð�; tÞ ¼
R t

0
V̂ ð�; dsÞ where

V̂ ð�; dsÞ ¼
Xn
i¼1

WiðsÞWiðsÞVYiðsÞ exp XiðsÞV�f gL̂0ð�; dsÞ

�
Xn
i¼1

WiðsÞWiðsÞVYiðsÞ exp 2XiðsÞV�f g L̂0ð�;DsÞL̂0ð�; dsÞ: ð12Þ

The first term in (12) is the contribution at time s to �@2log L(�)=@� @�T from (6),

while the second term corrects the variance contribution for discreteness.

Expression (12) is somewhat unsatisfactory in that a variance correction is made even if

NS(Ds) ¼ 1; that is, even if there are no tied failure times at time s. Hence, V̂ does not

reduce to the usual score process variance estimator in the special case of absolutely
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continuous failure times, though the difference between the two estimators will generally

disappear as sample size increases. A variance estimator that reduces to the usual estimator

with absolutely continuous failure times, and that has somewhat better small sample

properties arises by replacing �0(ds) ¼ L0(Ds)L0(ds) in (11) by the ‘unbiased’ estimator

�̂0ð�; dsÞ ¼
NSðDsÞ � 1f gNSðdsÞPn

‘¼1 Y‘ðsÞ exp X‘ðsÞV�f g
� �2�Pn

‘¼1 Y‘ðsÞ exp 2X‘ðsÞV�f g
;

which arises from consideration of E
P
i6¼j

NiðdsÞNjðdsÞAFðs�Þ
( )

.

The resulting variance estimator is V̂ ð�; tÞ ¼
R t

0
V̂ ð�; dsÞ where

V̂ ð�; dsÞ ¼
Xn
i¼1

WiðsÞWiðsÞVYiðsÞ exp XiðsÞV�f gL̂0ð�; dsÞ

�
Xn
i¼1

WiðsÞWiðsÞVYiðsÞ exp 2XiðsÞV�f g�̂0ð�; dsÞ ð13Þ

For example, the contribution at time s to the variance of the score test for � ¼ 0 can be

written

V̂ ð0; dsÞ ¼
Xn
i¼1

YiðsÞfXiðsÞ � X̄ ðsÞgfXiðsÞ � X̄ ðsÞgV NSðdsÞ½YSðsÞ � NSðDsÞ	
YSðsÞ½YSðsÞ � 1	 ;

where X̄ ðsÞ ¼
P

YiðsÞXiðsÞ=Y
ðsÞ. In the special case in which X(s) ¼ X is comprised of

indicator variables for p of p þ 1 samples, (13) is precisely the standard hypergeometric

covariance contribution at time t, usually obtained by conditioning on NS(Ds).

A Taylor expansion of @log L(�)=@� from (6) leads to a variance estimator for the

Breslow estimator �̂ under (2) that can be written

�@2log Lð�̂Þ=@�̂ @�̂
T

n o�1

V̂ ð�̂Þ �@2log Lð�̂Þ=@�̂ @�̂
T

n o�1

ð14Þ

where V̂ ð�Þ ¼ V̂ ð�;lÞ is based on (12) or (13).

A sketch of the proof of the consistency and asymptotic normality of �̂ , of the

consistency of variance estimators for �̂ arising from (12) and (13), and of the consistency

and asymptotic Gaussian distribution for L̂0ð�̂; 
Þ is given in the Appendix.

4. Simulation Evaluation

Data were generated from the discrete model (2) with L0(Dt) either 0.1 or 0.2 at integer

values t ¼ 1, 2, . . . and L0(Dt) ¼ 0 otherwise, and with X(t) ¼ X either binary with values
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�0.5 or 0.5 with probability 0.5, or normal with mean zero and variance 0.25. Censoring

times were generated from an exponential distribution having a mean of 10 if L0(dt) ¼ 0.1,

and a mean of 5 if L0(dt) ¼ 0.2 at integer values of t, so that there is a censoring

probability of about 51–53% at each sampling configuration. Relative risk parameter

values � ¼ 0 and � ¼ log 2 ¼ 0.693 were considered at each sample configuration. Ten

thousand simulations were carried out with sample sizes of n ¼ 50 or n ¼ 100.

Table 1 shows sample means and variances for �̂ along with the mean of the usual

approximate likelihood variance estimator V1 ¼ �@2log Lð�̂Þ=@�̂ @�̂
T
from (6), the

consistent variance estimator V2 from (12) and (14), and the preferred consistent estimator

V3 from (13) and (14). Table 1 also shows the empirical coverage rate for nominal 95%

confidence intervals ð�̂� 1:96 V
1
2

j ; �̂þ 1:96 V
1
2

j Þ using each variance estimator j ¼ 1, 2, 3.

At sample size n ¼ 50 one can see a slight upward bias in the Breslow estimator �̂
at � ¼ log 2. The approximate partial likelihood variance V1 somewhat exceeds the

sample variance for �̂ especially at L0(Dt) ¼ 0.2. The consistent variance estimator V2

over-corrects this excess, while incorporation of the unbiased estimator of L0(Dt)L0(dt)

in V3 substantially reduces the overcorrection. There were two samples (out of 80,000)

Table 1. Summary statistics for estimation of the regression parameter � in the discrete special case of the Cox

model (2). Statistics are based on 10,000 simulations of samples of sizes 50 and 100 at each of eight sampling

configurations.

L0(dt) � X Avg �̂
Sample

var �̂ V1y V2y V3y CI1j CI2j CI3j

n ¼ 50

0.1 0.0 B* 0.005 0.183 0.189 0.160 0.171 96.0 94.5 95.0

0.1 0.0 N* 0.005 0.190 0.201 0.169 0.180 95.9 93.7 94.5

0.1 0.693 B 0.715 0.193 0.204 0.174 0.185 96.7 94.7 95.6

0.1 0.693 N 0.735 0.200 0.216 0.178 0.190 96.5 94.0 94.8

0.2 0.0 B 0.001 0.166 0.194 0.148 0.158 97.3 94.4 95.4

0.2 0.0 N �0.001 0.181 0.206 0.154 0.165 97.0 93.5 94.4

0.2 0.693 B 0.728 0.183 0.213 0.164 0.174 97.6 94.9 95.6

0.2 0.693 N 0.713 0.179 0.220 0.157 0.168 97.4 93.2 94.2

n ¼ 100

0.1 0.0 B 0.002 0.082 0.088 0.076 0.079 96.0 94.3 94.8

0.1 0.0 N 0.000 0.086 0.091 0.079 0.082 95.8 94.0 94.5

0.1 0.693 B 0.707 0.089 0.094 0.082 0.085 95.7 94.3 94.8

0.1 0.693 N 0.705 0.090 0.097 0.082 0.085 96.2 94.0 94.4

0.2 0.0 B 0.001 0.076 0.091 0.070 0.073 97.0 94.2 94.6

0.2 0.0 N �0.003 0.078 0.094 0.072 0.075 96.9 93.9 94.4

0.2 0.693 B 0.706 0.081 0.098 0.076 0.079 97.1 94.6 95.0

0.2 0.693 N 0.707 0.078 0.100 0.073 0.075 97.5 94.0 94.5

* B refers to a binary covariate, N to a normal covariate. Each has mean 0.0 and standard deviation 0.5.
y V1 is average of variance estimates from approximate partial likelihood (6), V2 is average of corrected variance

estimators using (12), V3 is average of variance estimators using (13).

j CI1, CI2 and CI3 are empirical coverage rates for intervals ð�̂� 1:96 V
1
2; �̂þ 1:96 V

1
2Þ for V ¼ V1, V2 and V3,

respectively.
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at n ¼ 50 that failed to converge within 10 iterations, one at L0(Dt) ¼ 0.1, � ¼ log 2,

and one at L0(Dt) ¼ 0.2, � ¼ log 2 in the binary covariate special case. These samples

are excluded from the summary statistics shown in Table 1.

At n ¼ 100, all 80,000 runs converged by 10 iterations. The upward bias in �̂ at � ¼
log 2 is much less, and the overestimation of the variance of �̂ by the approximate partial

likelihood procedure (6) is quite evident, especially at L(Dt) ¼ 0.2 where there are many

tied failure times. The consistent variance estimator V2 again somewhat over-corrects,

while there is a good correspondence between the average of the variance estimators

(V3) and the sample variance. For V3, the empirical coverage rates are between 94.4

and 95.0 (with standard error of about 0.05) across the eight sampling configurations.

Hence, it seems appropriate to recommend this variance estimator (V3) for the Breslow

estimator.

5. Bladder Tumor Recurrence Illustration

Byar (1980) discusses a randomized trial, conducted by the Veteran’s Administration

Cooperative Urological Group, among patients having superficial bladder tumors. One

question of interest concerned the effect of the treatment thiotepa on the rate of tumor

recurrence. Tumors present at baseline were removed transurethrally prior to random-

ization. In addition to the effect of treatment, there was interest in the relationship of

recurrence rate to the number of pre-randomization tumors, and to the size of the largest

such tumor.

Table 2, abstracted from Andrews and Herzberg (1985, pp. 254–299) shows some data

from this trial, including the possibly right censored time to first post-randomization

recurrence. There were 48 patients assigned to the placebo group of whom 29 experienced

at least one recurrence, and 38 patients assigned to thiotepa of whom 18 experienced at

least one recurrence, over a trial follow-up period that averaged 31 months. Recurrence

times were recorded in months resulting in some tied recurrence times, including 8 tied

recurrence times at each of two and three months.

Table 3 shows some analyses of these data using the discrete and continuous Cox model

(2). The Breslow estimator is shown for each of three regression variables, along with

corresponding standard deviation estimates from the approximate partial likelihood (6),

and from the corrected variance estimators using (12) or (13). The variance corrections can

be seen to be quite small in this illustration. Using the standard deviation estimates from

(13) one obtains a standardized test statistic of �0.517/0.308 ¼ �1.68 for treatment, and

corresponding test statistics of 3.22 and 0.69 for the number of baseline tumors, and the

diameter of the largest such tumor, respectively. Hence, there is suggestive evidence for a

benefit of thiotepa (p ¼ 0.09) and strong evidence for association of recurrence risk with

the number of baseline tumors.

The right side of Table 3 repeats these analyses following a grouping of the recurrence

times into six month intervals. Now, with a large number (28) of recurrences in the first

grouping interval one can see somewhat greater conservatism in the approximate partial

likelihood standard deviation estimates. For example, the standardized statistic for testing
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Table 2. Bladder tumor recurrence data adapted from Andrews and Herzberg (1985,

pp. 254–259).

Initial Tumors1 Recurrence Initial Tumors Recurrence2

Number Size Time Number Size Time

Placebo Group

1 1 0* 1 5 2

1 3 1* 2 1 3

2 1 4* 1 3 12

1 1 7* 1 2 32*

5 1 10* 2 1 34*

4 1 6 2 1 36*

1 1 14* 3 1 29

1 1 18* 1 2 37*

1 3 5 4 1 9

1 1 12 5 1 16

3 3 23* 1 2 41*

1 3 10 1 1 3

1 1 3 2 6 6

3 1 3 2 1 3

2 3 7 1 1 9

1 1 3 1 1 18

1 2 26* 1 3 49*

8 1 1 3 1 35

1 4 2 1 7 17

1 2 25 3 1 3

1 4 29* 1 1 59*

1 2 29* 3 2 2

4 1 29* 1 3 5

1 6 28 2 3 2

Thiotepa Group

1 3 1* 8 3 26

1 1 1* 1 1 38*

8 1 5 1 1 22

1 2 9* 6 1 4

1 1 10* 3 1 24

1 1 13* 3 2 41*

2 6 3 1 1 41*

5 3 1 1 1 1

5 1 18* 1 1 44*

1 3 17 6 1 2

5 1 2 1 2 45*

1 1 17 1 4 2

1 1 22* 1 4 46*

1 3 25* 3 3 49*

1 5 25* 1 1 50*

1 1 25* 4 1 4

1 1 6 3 4 54*

1 1 6 2 1 38

2 1 2 1 3 59*

1 Initial number of tumors of eight denotes 8 or more. Size denotes diameter of

largest such tumor in centimeters.
2 Recurrence times are measured in months. An asterisk denotes right censoring.
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for no effect of thiotepa takes value �0.471/0.209 ¼ �1.52 (p ¼ 0.13) based on (6), as

compared to �1.73 (p ¼ 0.08) based on (12) and �1.71 (p ¼ 0.09) based on (13), with

somewhat different implications concerning the suggestion of benefit from thiotepa.

6. Summary and Discussion

A simple generalization (2) of the Cox regression model has been proposed to

accommodate continuous, discrete and mixed continuous/discrete failure times. The

Breslow (1974) estimators of the regression parameter and cumulative baseline hazard

function, though usually regarded as computationally convenient approximations to

estimators under the grouped continuous model (4), are shown to be consistent under

the discrete/continuous relative risk model (2). The variance estimator obtained by

regarding (6) as a partial likelihood is inconsistent, but simply calculated consistent

estimators can be obtained using martingale theory. These variance estimators, and

corresponding nominal confidence intervals based on asymptotic normal approximations

appear to have adequate performance in moderate sized samples, especially if unbiased

estimators of L0(dt) and L0(Dt)L0(dt), and the variance estimator from (13) is used. The

score statistic variance estimator (13) also has the advantage of reducing to the familiar

hypergeometric variance in the special case of a logrank test to compare the survival

curves for several populations.

The simulation study and the illustration (Sections 4 and 5) are consistent in supporting

the appropriateness of the Breslow estimator under model (2), and the adequacy of the

corresponding variance estimator based on (6) unless a noteworthy fraction (e.g., 10% or

more) of study subjects fail at specific failure times. For example, the variance correction

in the illustration was of little practical importance even though 8 of the 86 study

subjects recurred at each of two months, and three months from randomization. On the

other hand, the variance correction developed here is easily implemented and avoids

concern about undue conservatism in tests and confidence intervals when using the

mixed discrete and continuous Cox model (2).

As mentioned above, model (2) requires some constraint on the covariates and relative

risk at a mass point {L0(Dt) > 0} in order to assure a valid discrete hazard. For example,

Table 3. Cox model (2) analysis of bladder tumor recurrence data.

Recurrence Times

from Table 1

Recurrence Times Grouped

into 6-Month Intervals

Std. Dev. Estimates from Std. Dev. Estimates from

Regression Variable �̂ (6) (12) (13) �̂ (6) (12) (13)

Treatment (0-placebo; 1-thiotepa) �0.517 0.316 0.305 0.308 �0.471 0.309 0.272 0.275

Number of baseline tumors 0.235 0.076 0.071 0.073 0.204 0.074 0.055 0.057

Size (cm) of largest baseline tumor 0.068 0.101 0.097 0.098 0.067 0.102 0.088 0.089
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in the simulations leading to Table 1 with L0(Dt) ¼ 0.2 and � ¼ log 2, the N(0, 1)

covariates need to be slightly restricted (X < 4.64) to assure that the relative risk factor is

less than 5.0.

Since the estimating function (9) involves the regression parameter, but not the baseline

hazard function, the constraint that (2) should not exceed unity does not explicitly come

into play in testing and estimation on �. For example, it is well-known that the Breslow

estimator that solves (8) does not experience numerical difficulties even if the number of

ties, or the fraction of the risk set that fails, is large at some follow-up times. It can happen

that the hazard rate estimator L̂0ðdsÞexpfX ðsÞV�g exceeds one at extreme covariate values,

but this is also the case with absolutely continuous data under the Cox model since a step

function estimator of L0 is utilized. However, with tied failure times, but not with

absolutely continuous failure times, the estimated hazard rate

L̂iðdsÞ ¼ L̂0ðdsÞexpfXiðsÞV�g

can exceed one at covariate values Xi (s) for individuals in the risk set R(s), and the

contribution of such individuals to the variance increment (11) at time s need not be

positive. Hence, it would be prudent to modify the contribution of subject i to (12) and

(13) to the maximum of the given values and zero in order to acknowledge the hazard

rate constraint.

Our simulations study illustrates that the estimation procedures proposed in this paper

can be expected to perform well even if the actual and estimated discrete hazards are not

small and even if the variance contributions are not constrained in the manner just

described. However, the model (2) itself seems less natural if there are only a few

distinct failure times, and we recommend that the use of (2), the Breslow estimator, and

the corrected variance estimator given here, be restricted to settings in which the discrete

hazards are expected to be much less than unity at most failure times.
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Appendix

Asymptotic Distribution Theory for the Discrete and Continuous Cox Model (2)

A sketch of the asymptotic results stated previously is given here by adapting the

arguments of Andersen and Gill (1982) (hereafter AG) for the absolutely continuous

special case. Like AG we assume a finite follow-up period [0, �], and without loss of
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generality set � ¼ 1. For simplicity, we also restrict attention to univariate failure times.

Both of these restrictions can likely be avoided.

Extending the AG notation, define

Sð j;kÞð�; tÞ ¼ n�1
Xn
‘¼1

X‘ðtÞð jÞY‘ðtÞ exp X‘ðtÞVk�f g

for j ¼ 0, 1, 2 and k ¼ 1, 2, where X(t)(0) ¼ 1, X(t)(1) ¼ X(t) and X(t)(2) ¼ X(t)X(t)V. Also
define: E(�, t)¼ S (1,1)(�, t)S (0,1)(�, t)�1; C1(�, t)¼ S (2,1)(�, t)S (0,1)(�, t)�1� E(�, t)E(�, t)V;
and C2(�, t) ¼ {S (2,2)(�, t) � S (1,2)(�, t)E(�, t)V� E(�, t)S (1,2)(�, t)Vþ E(�, t)E(�, t)VS (0,2)

(�, t)}S (0,1)(�, t)�2.

Consider the following conditions:

(i) (finite interval). L0(1) < l
(ii) (asymptotic stability). There exists a neighborhood B of �0 and functions s( j,k), j ¼

0, 1, 2, k ¼ 1, 2 such that OSð j;kÞð�; tÞ � sð j;kÞð�; tÞO!p 0, uniformly in B � ½0; 1	,
where O 
O denotes supremum over the absolute values of the elements of the array.

(iii) (regularity). For all ð�; tÞ"B � ½0; 1	 and k ¼ 1, 2, s(1,k)(�, t) ¼ @s(0,k)(�, t)/@�, s(2,k)

(�, t) ¼ @s(1,k)(�, t)V=@�; s( j,k) is a continuous function of �"B, uniformly in t"[0, 1]
and s( j,k) is bounded on B � ½0; 1	, for j ¼ 0, 1, 2 and k ¼ 1, 2; s(0,1) is bounded away

from zero on B � ½0; 1	. Also define the matrices

�ðtÞ ¼
Z t

0

c1ð�0; uÞsð0;1Þð�0; uÞL0ðduÞ;

VðtÞ ¼ �ðtÞ � DðtÞ ¼ �ðtÞ �
Z t

0

c2ð�0; uÞsð0;1Þð�0; uÞ2L0ðDuÞL0ðduÞ;

where e ¼ s(1,1)=s(0,1), c1 ¼ s(2,1)=s(0,1) � e eVand c2 ¼ {s(2,2) � s(1,2)eV� e s(1,2)Vþ e

eVs(0,2)}{s(0,1)}�2, and require �(1) to be positive definite.

(iv) (Lindeberg). For any " > 0

Z 1

0

n�1
Xn
i¼1

AXijðuÞA2
Iðn�1=2AXijðuÞA > "Þf1� LiðDuÞgLiðduÞ!

p
0

for j"{1, . . . , p}, where Li (du) ¼ Yi (u) exp{Xi (u)V�0}L0(du).

(v) (orthogonality). The martingales Mi ¼ Ni � Li, i ¼ 1, . . . , n are orthogonal

(e.g., independent failure mechanisms and independent censoring).

THEOREM: Under the discrete and continuous model (2) and conditions (i) to (v), �̂
solving U(�, 1)¼ 0 is consistent for the true �0, and n

1=2ð�̂� �0Þ converges in distribution
to a mean zero normal distribution with variance �(1)�1V(1) �(1)�1 as n ! l.

PRENTICE AND KALBFLEISCH206



Proof: The consistency of �̂ follows from considering

Lð�; tÞ ¼
Z t

0

Xn
i¼1

YiðuÞXiðuÞV� � log Sð0;1Þð�; uÞ
n o

NiðduÞ; and

Að�; tÞ ¼
Z t

0

Xn
i¼1

YiðuÞXiðuÞV� � log Sð0;1Þð�; uÞ
n o

LiðduÞ:

Even though (N1, . . . , Nn) is not a multivariate counting process, since there may be

multiple jumps at a given time, the process

n�1 Lð�; tÞ � Lð�0; tÞf g � Að�; tÞ � Að�0; tÞf g½ 	 ðA1Þ

is a square integrable martingale for each �. Since the (predictable) covariation process for

Mi has value {1 � Li(Du)}Li (du) at time u, and the Mi’s are orthogonal by assumption (v)

the covariation process B for (A1) is given by

nBð�; tÞ ¼ n�1
Xn
i¼1

Z t

0

Gið�; uÞGið�; uÞV 1� LiðDuÞf gLiðduÞ;

where Gið�; uÞ ¼ YiðwÞXiðuÞVð� � �0Þ � log Sð0;1Þð�; uÞ=Sð0;1Þð�0; uÞ
� 


. Under conditions

(i), (ii) and (iii), nB(�, t) converges to a finite quantity. Lenglart’s inequality (AG,

Appendix 1) then shows that n�1{L(�, t) � L(�0, t)} has the same probability limit as

n�1{A(�, t)� A(�0, t)}. The latter is readily shown to converge in probability to a function,Z t

0

sð1;1Þð�; uÞVð� � �0Þ � log
sð0;1Þð�; uÞ
sð0;1Þð�0; uÞ

� �
sð0;1Þð�0; uÞ

� �
L0ðduÞ

that has first derivative zero at � ¼ �0, and second derivative the negative of the positive

definite matrix �(1) at � ¼ �0 and t ¼ 1. It follows as in AG that �̂ !p �0.

Consider now the standardized score process

n�1=2Uð�0; tÞ ¼
Xn
i¼1

Z t

0

n�1=2 YiðuÞXiðuÞ � Eð�0; uÞf gMiðduÞ

which defines a square integrable martingale with covariation process given byZ t

0

n�1
Xn
i¼1

YiðuÞXiðuÞ � Eð�0; uÞf g YiðuÞXiðuÞ � Eð�0; uÞf gV 1� LiðDuÞf gLiðduÞ

¼
Z t

0

C1ð�0; uÞSð0;1Þð�0; uÞL0ðduÞ �
Z t

0

C2ð�0; uÞSð0;1Þð�0; uÞ2L0ðDuÞL0ðduÞ:

This covariation process converges in probability to the positive semidefinite matrix

V(t) ¼ �(t) � D(t). The Lindeberg condition (iv) can now be used to show that the

conditions for Rebolledo’s central limit theorem (e.g., Andersen et al., 1993, p.83) are
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fulfilled, so that {n�1/2U(�0, t), t"[0, 1]} converges to a mean zero Gaussian process

with variance matrix V(t) at time t. Specifically, for the Rebolledo theorem to apply we

need to show that for each j,Z t

0

n�1
Xn
i¼1

AXijðuÞ � Ejð�0; uÞA2
I n�1=2AXijðuÞ � Ejð�0; uÞA > "
n o

1� LiðDuÞf gLiðduÞ!
p
0;

where the subscript j denotes the jth element of the vector. NowZ 1

0

n�1
Xn
1

AEjð�0; uÞA2
I n�1=2AEjð�0; uÞA > "
n o

1� LiðDuÞf gLiðduÞ !
p
0

on the basis of conditions (i)–(iii), so that condition (iv) and an elementary inequality

used by AG (also Andersen et al., p.499) gives the desired result.

A Taylor expansion of U (�, 1) about �0, evaluated at �̂ gives

n�1=2Uð�0; 1Þ ¼ n1=2�̂ð�*; 1Þð�̂� �0Þ

where �̂ð�; tÞ ¼
R t

0
C1ð�; uÞ NSðduÞ=nf g, and �* is on the line segment between �̂ and �0.

Proof that �̂ð�*; 1Þ is consistent for � follows as in AG (p.1108). This establishes the

stated asymptotic distribution for n1=2ð�̂� �0Þ.
As noted above, the argument in AG establishes that �̂ð�*; tÞ and hence �̂ð�̂; tÞ are

consistent estimators of �(t). A similar approach shows that

D̂ð�*; 1Þ ¼
Z 1

0

C2ð�*; tÞ
NSðDtÞNSðdtÞ

n2

� �

to be consistent for D. Specifically, consider

OD̂ð�*; 1Þ � Dð1ÞO �O
Z 1

0

C2ð�*; tÞ � c2ð�*; tÞf g NSðDtÞ
n

NSðdtÞ
n O

þ O
Z 1

0

c2ð�*; tÞ � c2ð�0; tÞf g NSðDtÞ
n

NSðdtÞ
n O

þ O
Z 1

0

c2ð�0; tÞ
�
NSðDtÞ

n

NSðdtÞ
n

� Sð0;1Þð�0; tÞ2L0ðDtÞL0ðdtÞ

� Sð0;1Þð�0; tÞ
n

L0ðdtÞ þ
Sð0;2Þð�0; tÞ

n
L0ðDtÞL0ðdtÞ

�
O

þ O
Z 1

0

c2ð�0; tÞ Sð0;1Þð�0; tÞ2 � sð0;1Þð�0; tÞ2
n o

L0ðDtÞL0ðdtÞ

þ
Z 1

0

c2ð�0; tÞ
Sð0;1Þð�0; tÞ

n
L0ðdtÞ �

Z 1

0

c2ð�0; tÞ
Sð0;2Þð�0; tÞ

n
L0ðDtÞL0ðdtÞO:
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The first term on the right side of this expression converges in probability to zero

since the stability and regularity conditions imply that OC2ð�*; tÞ � cð�*; tÞO
converges uniformly to zero in B � ½0; 1	 and

Z 1

0

NSðDtÞ
n

NSðdtÞ
n

� 1. The regularity

conditions and the consistency of �̂ imply that the second term converges in probability to

zero. The integral of the quantity in curly brackets in the third term is a square integrable

martingale with covariation process that converges at time t to s(0,1)(�0, t)
2L0(Du)L0(du).

Hence, Lenglart’s inequality can be used as in AG to show that this term also converges to

zero in probability, as does the final term in view of the stability and regularity conditions.

This shows the consistency of the score variance estimators arising from (12) and the

consistency of the corresponding �̂ð�̂; 1Þ�1
V̂ð�̂; 1Þ�̂ð�̂; 1Þ�1

as a variance estimator for

n1=2ð�̂� �0Þ. It follows that (12) in conjunction with (14) over a finite follow-up interval

provides a valid variance estimator for �̂. A simple argument establishes that the difference

between the score statistic variance estimator based on (13) and that based on (12)

converges in probability to zero. This justifies (13) in conjunction with (14) as a variance

estimator for �̂ over a finite follow-up interval.

For brevity we will not go through the development of the asymptotic Gaussian

distribution for the cumulative baseline hazard function estimator defined by L̂0ð�̂; tÞ;
t"½0; 1	. Instead we merely note that L̂0ð�̂; 
Þ is strongly consistent for L0 over [0, 1]

from writing

AL̂0ð�̂; tÞ � L0ðtÞA ¼ A
Z t

0

S�1
0 ð�̂; uÞI YSðuÞ > 0f g NSðduÞ

n
�
Z t

0

L0ðduÞA
� A

Z t

0

S�1
0 ð�̂; uÞ � s�1

0 ð�̂; uÞ
n o

I YSðuÞ > 0f g NSðduÞ
n A

þA
Z t

0

s�1
0 ð�̂; uÞ � s�1

0 ð�0; uÞ
n o

I YSðuÞ > 0f g NSðduÞ
n A

þA
Z t

0

s�1
0 ð�0; uÞI YSðuÞ > 0f g NSðduÞ

n
� s0ð�0; uÞ

n
L0ðduÞ

� �
A

þA
Z t

0

I YSðuÞ > 0f g � 1½ 	 L0ðduÞ
n A:

Each term on the right hand side is readily seen to converge in probability to zero,

uniformly for t" [0, 1].
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