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1. Introduction

1.1. Summary of Atkinson 2011

Atkinson (2011) sets out to test the so-called “serial founder model” against
crosslinguistic data on phonological diversity. In his words (Atkinson 2011:
Supporting Online Material: 3), the serial founder model predicts that

[. . . ] during population expansion, small founder groups are expected to carry
less phonemic diversity than their larger parent populations. A series of founder
events should produce a gradient of decreasing phonemic diversity with increasing
distance from the origin.

To test this hypothesis, Atkinson employs a sample of 504 non-extinct lan-
guages from WALS (Haspelmath et al. (eds.) 2008), for which the number of
vowels, the number of consonants, and the number of tones in the language
are annotated (Maddieson 2008a, b, c). For the main analysis, these three mea-
sures were standardized (i.e., the mean was subtracted from each value, which
was then divided by the standard deviation of the measure) and averaged into
one combined measure of the total phonological diversity of a language. This
normalized phonological diversity measure ranges from −1.19 to 1.68 (mean
= 0.02). Each language is also annotated for its coordinates on the globe as well
as it population size (the number of speakers). The main text of Atkinson 2011
presents the results of a linear regression analysis of normalized phonological
diversity against the distance from the hypothesized “origin of language” while
controlling for log-transformed population size and its interaction with the dis-
tance from the origin (population size data was taken from Gordon & Grimes
(eds.) 2005). The origin of language is determined by comparing the model fit
for all 2,560 language coordinates found in the version of WALS employed by
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282 T. Florian Jaeger et al.

Atkinson (WALS has since then been updated, see below). That is, Atkinson fits
his model 2,560-times, each time assuming a different origin of language. In
order to reflect likely migration routes, distances from the respective origin are
based on the Haversine distance between points on a sphere (Sinnott 1984) and
the requirement to pass through the geographically motivated intercontinental
way points summarized in Atkinson (2011: Supporting Online Material: Table
S4, referring to von Cramon-Taubadel & Lycett 2008). The best fitting model
is found in West Africa. Moreover, the quality of fit decreases with increasing
migration distance from West Africa (see also Figure 9 below).

Atkinson’s article has received considerable public attention and sparked
lively discussion among typologists. In this commentary, we focus on potential
issues with the statistical procedures employed in the paper. In particular,
we investigate to what extent the results are robust once genealogical and ge-
ographic relations between languages are taken into account. Such concerns
about violations of independence due to the failure to account for relatedness
between languages play a central role in quantitative research on typology (e.g.,
Bell 1978, Dryer 1989, Perkins 1989). We show that the statistical approach
taken by Atkinson, linear mixed effect regression, provides a powerful way to
control for both genealogical and areal dependencies between languages that
has advantages over previous proposals, such as separate regressions by lan-
guage family or by continent or limiting oneself to stratified samples. While
Atkinson (2011) includes only controls for genetic dependencies in his model,
we introduce two simple ways to extend mixed effect models to account for
effects of language contact (“areal dependencies”). These approaches also pro-
vide an alternative way to account for genetic relations about which there is
high uncertainty.

To ensure comparability between Atkinson’s and our analyses, we rely on
the metric of phonological diversity employed by Atkinson. For the same rea-
son, we use the same population size estimates and distance estimates em-
ployed by Atkinson. This does not mean that we necessarily endorse Atkin-
son’s decisions to use these metrics, which seem to come with serious prob-
lems (see Cysouw et al. 2011, Maddieson et al. 2011). Rather, the primary goal
of our paper is to provide readers unfamiliar with mixed effect approach taken
by Atkinson with an introduction to this powerful statistical approach.

While we find that Atkinson’s results replicate after genetic dependencies
and language contact are taken into account, we also find two serious problems
with Atkinson’s analysis. This leads us to ultimately conclude that the results
provided in Atkinson 2011 do not provide strong support for the serial founder
model. The most serious of these problems is the failure to assess the Type I er-
ror rate of his approach (i.e., the rate of false rejections of the null hypothesis).
In simulations, we find that the actual Type I error rate of Atkinson’s analysis
is much higher than the conventionally accepted rate (any statistical analysis
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Mixed effect models for genetic and areal dependencies 283

has a Type I error larger than 0). We begin with an overview of the statistical
issues we address in this commentary.

1.2. Overview of the issues addressed

The ordinary linear model fit by Atkinson provides a decent fit against the data
(R2 = .31) and the distance from the origin has a highly significant effect in
the expected direction: the phonological diversity of languages seems to de-
cline with increasing distance to the language origin (β = −.00004, t = 10.9,
p < .0001). This effect is illustrated in Figure 1, which shows both the best lin-
ear fit and a local smoother that does not assume linearity between the distance
from the origin and normalized phonological diversity. The local smoother was
added here to provide an accessible visualization of the rather limited non-
linearity in the relation between distance from the origin and phonological di-
versity (which is good, as we will see below).

The reliability of results obtained from a model depends on to what extent
the assumptions of the model are met. Fitting a linear model, such as the one
above, assumes normality, homoscedasticity, linearity, and that the observa-
tions were sampled independent of each other. It also assumes that overly influ-
ential outliers have been removed and that multicollinearity is not an issue. For
now, we focus on the assumption of independence and return to the remaining
assumptions below, where we also explain what they mean. The assumption

Figure 1. Normalized phonological diversity plotted against distance from the single-

origin with the best fit. Circles represent languages. The size of the circle reflects the

number of speakers of that language (as reported in Gordon & Grimes (eds.) 2005).

The solid black line shows the best linear fit through the data. The dashed curve shows

a non-linear fit by a local smoother (Loess) across all language families. Shaded areas

around the two fits indicate 95 % confidence intervals.
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284 T. Florian Jaeger et al.

Figure 2. Illustration of Simpson’s paradox based on simulated data. Here, a fail-

ure to take into account the grouping structure of the data (pseudo language families,

indicated by different colors) would result in the conclusion that the (pseudo) normal-

ized phonological diversity (y-axis) decreases with the distance to the language origin

(x-axis), although the opposite trend holds for most pseudo language families.

of independence is obviously violated since the sample employed by Atkinson
contains languages that are genetically related, and hence not independent of
each other. Additionally, languages may share properties due to extended lan-
guage contact, leading to another violation of the assumption of independence.
This is problematic because languages that are genetically or geographically
related, and hence are likely to share certain properties, form so-called clus-
ters in the data (comparable to repeated measures on the same participant in a
psycholinguistic experiment). If unaccounted for, such violations of indepen-
dence are anti-conservative and hence lead to an increased Type I error rate
(i.e., higher than intended rates of false rejections of the null hypothesis). Put
differently, clustered data can lead to spurious significant effects in the analy-
sis.

A second, intimately related, issue is the possibility of Simpson’s Paradox
if theoretically motivated grouping structure is not accounted for: it is possible
that a trend that is observed across all data points when grouping structure (such
as language family) is not taken into account, does not hold within any of the
groups or even holds in the opposite direction within groups (Simpson 1951
building on Pearson et al. 1899; Yule 1903). Figure 2 illustrates Simpson’s
paradox. As much as Simpson’s paradox can be a concern, it is crucial to note
that fluctuation in the within-group slopes, as observed in Figure 2, does not
necessarily mean that there is no effect. We will return to this issue once we
have established the necessary concepts and terminology.
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Mixed effect models for genetic and areal dependencies 285

To test whether the distance from the origin effect holds once genetic group-
ing structure is accounted for, Atkinson presents several auxiliary analyses in
the supplementary materials of his article. He presents both ordinary linear
regressions over family-level data (data that is aggregated by language fam-
ily) and linear mixed model analyses with crossed random intercepts by lan-
guage family, subfamily, and genus. Here, we focus our discussion on linear
mixed models since we take them to hold considerable promise as a statisti-
cal tool for quantitative typology. Linear mixed models are a type of Gener-
alized Linear Mixed Model (Breslow & Clayton 1993), which provide parsi-
monious ways to account for group level structure in the data while simul-
taneous assessing effects within and across groups (for additional introduc-
tions to mixed models directed at language researchers, see Baayen et al. 2008,
Jaeger 2008, Johnson 2009; for additional applications of mixed models to ty-
pological data see Cysouw 2010, Cysouw et al. 2011). Atkinson reports that
the distance effect remains significant in the predicted direction in all analy-
ses.

In the remainder of this commentary, we will discuss what this does and does
not mean. In particular, we show that Atkinson’s approach addresses concerns
about violations of independence due to genetic relations between language
to a certain extent. We also show that it is possible to extend Atkinson’s
analysis to include controls for language contact and that this does not change
the results reported by Atkinson. In short, the methods employed by Atkin-
son are well-suited for typological analysis and have advantages over previous
proposals used to account for relations between languages.

However, we also find two serious challenges to Atkinson’s conclusion. The
first relates to the caveat that Atkinson’s model only corrects to a certain extent
for violations of independence. This caveat turns out to be a serious one. As
we will see, the WALS sample employed by Atkinson simply does not contain
enough language families with sufficiently many languages to be confident that
the claimed distance effect still holds once between-language family variation
in the effect are taken into account. The second and, in our view, more serious
challenge originates in Atkinson’s decision to refit the origin model 2,560 times
(in order to find the best origin) to then report the best fitting model, where
the maximized model fit is a function of the very predictor that Atkinson is
interested in (distance to the origin of language). To simplify somewhat for
now, this approach has a high chance to find a significant distance effect even
if there is none. In other words, the approach taken by Atkinson results in
a very large Type I error (see also Cysouw et al. 2011, Jaeger et al. 2011).
This is not a principled limitation of mixed models, but rather a problem with
Atkinson’s use of mixed models (we would like to add, in our view, though that
Atkinson deserves credit for pushing the standards of statistical data analysis
for typological research; see also Cysouw 2010).
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In order to make our assessment of the approach taken by Atkinson accessi-
ble to a broader audience of quantitative typologists, we begin by providing a
brief introduction to mixed models. We then examine how and to what extent
Atkinson’s linear mixed model analysis accounts for genealogical effects. The
goals of these sections are two-fold. First, we introduce readers unfamiliar with
mixed models to this powerful statistical tool. Second, we hope to make the
analysis presented in Atkinson 2011 more accessible by replicating it step-by-
step. After replicating the mixed model reported in Atkinson 2011, we return
to the issue of Simpson’s paradox raised above. We discuss what Simpson’s
paradox does and does not imply and to what extent mixed models can help
to address Simpson’s paradox. We then present two possible ways to extend
Atkinson’s model to account for language contact in terms of geographical ef-
fects. With the new model in hand, we revisit the search for the best single
origin of language under the assumption of a serial founder account. We find
that, even after geographical effects are accounted for, the best fit for a single
origin model robustly predicts this single origin to lie in West Africa, repli-
cating Atkinson’s results. We close with a summary of our analyses and a list
of remaining statistical issues, including the large Type I error rate mentioned
above.

2. Generalized linear mixed models

Linear mixed models are an extension to the linear model. In the linear model
(linear regression), an outcome (or dependent variable), y, is described by
means of a linear predictor plus normally distributed noise (often called ε).
The linear predictor is a weighted sum of all predictors in the model, so that
for each data point i, the outcome yi is described by (E1):

(E1) yi = β0x0 + β1xi,1 + . . .+ βkxi,k + εi, ε ∼ N (0,σ2
ε )

The term β0x0 is often abbreviated as α (the intercept), as x0 is assumed to be
the constant 1 and β0 refers to the intercept coefficient. The remaining β s are
the weights (or coefficients) to the predictors x1 . . .xk, such as, in the current
case, log-transformed population size, the distances from the language origin,
and their product (corresponding to their interaction). The final term, ε , is the
randomly distributed noise (writing ε ∼ N (0,σ2

ε ) means that we assume that
ε is drawn from a normal, or Gaussian, distribution with mean 0 and variance
σ2

ε ). In other words, rather than expecting the outcome to be perfectly described
by the linear predictor, we assume that the process that generates the outcome is
inherently probabilistic and hence noisy. With this in mind, the ordinary linear
regression model presented in Atkinson is described as:
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Mixed effect models for genetic and areal dependencies 287

(E2) NormalizedPhonologicalDiversityi =
α +
βPopulationSize ∗ log(xi, PopulationSize)+
βDistance ∗ xi, Distance +
βPopulationSize:Distance ∗ log(xi, PopulationSize)∗ xi, Distance +
εi, ε ∼ N (0,σ2

ε )

In non-Bayesian data analysis (the current standard in the behavioral sciences),
the best coefficient estimates β̂ 0 . . . β̂ k are typically derived by maximum like-
lihood estimation.1 The maximum likelihood estimates of β0 . . .βk maximize
the probability of the observed data given the predictors and the assumptions
of the linear model (a normally distributed outcome that is linear in the β s).
Statistical inferences can then be drawn over this maximum likelihood model.
As a means of illustration, it might be helpful to think of Equation (E2) in ge-
ometrical terms. The coefficient estimate, β̂ Distance, for the distance from the
language origin, xi, Distance, is an estimate of the slope of the solid black line
in Figure 1 once the effects of the other predictors in the models are taken into
account.

In the case of Atkinson’s study, the hypothesis we would like to test is
whether the true slope, βDistance, is smaller than zero (since a negative ef-
fect is predicted). This hypothesis is tested based on the estimated coefficient,
β̂ Distance, and its estimated standard error (see below), while controlling for the
effects of other predictors, such as population size.

One major shortcoming of the ordinary linear model is that it provides no
direct way to account for violations to the assumption of independence. Such
violations are bound to arise whenever data points fall into groups (i.e., when
subsets of the data are inherently related and hence not independent). Linear
mixed models provide an elegant way to account for such grouping structure,
thereby re-establishing (conditional) independence. In addition to individual-
level noise ε , linear mixed models allow for normally distributed group-level
differences centered around the individual level parameters. Atkinson presents
a linear mixed model with random intercepts by language family, subfamily,
and genus (Atkinson 2011: Supporting Online Material and personal commu-
nication), which we can write as:

1. We use the hat notation whenever we are referring to estimates, as opposed to the true under-
lying – and usually unknown – coefficients.
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(E3) NormalizedPhonologicalDiversityi =
αJ,K,M +
βPopulationSize ∗ log(xi, PopulationSize)+
βDistance ∗ xi, Distance +
βPopulationSize:Distance ∗ log(xi, PopulationSize)∗ xi, Distance +

εi, ε∼N (0,σ2
ε )

αJ,K,M = α0 + aJ + aK + aM, aJ∼N (0,σ2
J ),aK∼N (0,σ2

K),
aM∼N (0,σ2

M),
aJ,aK ,aM⊥ε

In this linear mixed model, the intercept is the sum of the ordinary intercept (cf.
α in (E2) above) and three adjustments based on the language family, subfam-
ily, and genus (i.e., aJ , aK , and aM respectively). Each of these adjustments is
assumed to be normally distributed and centered around 0 (additionally, these
group-level adjustments are assumed to be orthogonal to the individual level
noise ε). These adjustments are called random intercepts because they adjust
the overall intercept α0 to reflect the – by assumption – randomly distributed
group-specific intercepts. In addition to random intercepts, mixed models also
allow random slopes (i.e., adjustments to the slopes of the predictors, the β s).
We will return to this point below.

The model in Equation (E3) can capture genealogical effects on the overall
phonological diversity due to three levels of genealogical relations. Remark-
ably, it does so with only three parameters: the standard deviations of the nor-
mally distributed random intercepts (σJ , σK , and σM). To illustrate how effi-
cient mixed models are, it is helpful to compare this approach to two common
alternative approaches.

First, it is possible to run the ordinary linear regression model shown in (E2)
above by group, i.e., separately for each level of a grouping factor. We will
call this the by-group approach. For example, we could run separate linear re-
gressions within each language family. There are several problems with the
approach. The first problem is that the approach highlights idiosyncrasies at
the sacrifice of the bigger picture. Crucially, separate regressions are bound
to reveal idiosyncrasies even when there are none in the underlying

system that has generated the observed data. Especially for language
families with few languages in the sample that are located in close geographi-
cal proximity of each other (and hence not spanning much of a range in terms
of the distance from the origin predictor), individual-level noise, ε∼N(0,σ2

ε ),
will create spurious differences in the apparent slope of the distance effect, in-
cluding apparent reversals of the effect. Although this problem is ameliorated
for larger language families, by-family regressions will still find arbitrary dif-
ferences between language families. The true question of interest is, however,
whether there is statistical support for the distance effect once grouping struc-
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Mixed effect models for genetic and areal dependencies 289

ture is taken into account. That is, does the distance effect hold globally given

all the idiosyncratic differences in the slope between language fam-
ilies? In order to answer this question, the by-group approach requires sec-
ondary statistics over the distribution of the coefficients from all the by-group
regressions. This is acceptable and, as a matter of fact, has been a standard
approach in some fields before mixed models became available (e.g., Lorch &
Myers 1990).

The separate regressions derived in the by-group approach are also prone to
overfitting. To avoid overfitting a linear regression to the sample, it is generally
recommended to have at least 10 to 15 data points per parameter in the model
(for references, see Jaeger 2011: 170). Since the model that we wish to test has
three parameters (βPopulationSize, βDistance, and βPopulationSize:Distance), we would
be advised to have at least 30 to 45 languages within each language family that
we want to include in our test. There are, however, only three language fam-
ilies with that many languages in the sample (Indo-European, Austronesian,
and Niger-Congo with 30, 42, and 62 languages, respectively). By far most
language families in the sample are represented by only one language each (69
out of the 109 families). If we cannot even account for family relations, this
approach is certainly not feasible if we would like to take into account genetic
relationships beyond the family level, such as subfamilies and genera.2 This
would be regrettable since we show below that these levels do carry informa-
tion, in line with typologists’ intuition.

A second alternative to mixed models is to expand the ordinary linear regres-
sion model in (E2) to contain predictors that distinguish between all levels of
the grouping factors. For a grouping factor with k levels (e.g., k different lan-
guage families), we would require k− 1 orthogonal contrasts. Since there are
109 language families, 20 subfamilies, and 278 genera in the sample, to cap-
ture group-level effects for all of three grouping factors separately, we would
have to add 108+19+277 = 404 parameters to the linear model (two orders of
maginitude more parameters than the mixed model approach requires!). Even if
we only distinguish between the 278 genera, this would require 277 additional
parameter and hence at least 3,000 data points, which we don’t have.

The efficiency of mixed models in accounting for group-level effects is at-
tractive since fewer parameters means that the model is less likely to overfit

2. Admittedly, the alternative approach described allows for the slope of the predictors (e.g.,
distance from the origin) to vary freely by language family, which the linear mixed model in
Equation (E3) does not. The alternative approach described here hence is more comparable
to a mixed model with random by-family slopes for the predictors (see below). Such a mixed
model still requires considerably less data (since it has fewer parameters). This advantage in
terms of the number of parameters comes at the potential cost that the differences in the slopes
between language families are assumed to be normally distributed, an assumption that can be
tested.
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290 T. Florian Jaeger et al.

(reducing the chance of spurious effects) and more power to detect real ef-
fects. Mixed models hence promise to be a particularly useful tool for quan-
titative typological research, as typological research frequently faces serious
challenges from data sparseness and additional data are difficult or impossible
to gather. For a more detailed introduction to linear mixed models for language
researchers, we refer to Baayen et al. 2008 (for more advanced introductions,
see Bates forthcoming, Gelman & Hill 2007, Pinheiro & Bates 2004). Another
potential benefit of generalized linear mixed models is that they are suitable
for not only continuous, but also categorical data (e.g., count data), which are
common in linguistic analyses (e.g., mixed logit models and mixed Poisson
models, see Breslow & Clayton 1993). For an introduction to these models for
language researchers, we refer to Jaeger 2008 and Johnson 2009.

Next, we describe the linear mixed model from Equation (E3) in more de-
tail. This is the model that Atkinson refers to in the supplementary materials
(pp. 5–6). As in Atkinson 2011, the model was fit in the freely available statis-
tics software R (R Development Team 2010), using the function lmer from
the library lme4 (Bates & Maechler 2010). Throughout this paper, we provide
references to packages (libraries) for R that might be helpful for typologists
interested in employing ordinary or mixed linear models in their research.

3. Accounting for genetic relationships

3.1. Random effect structure

An examination of the R2s associated with the random effects by language
family, subfamily, and genus reveals the strength of genealogical effects. The
ordinary linear model in Equation (E2), which does not have random effects,
accounts for 30.8 % of the overall variance in phonological diversity between
languages. After adding all three random intercepts, yielding the model in
Equation (E3), the model accounts for 64.6 % of the variance (54.7 % for nor-
malized vowel diversity, 44.3 % for normalized consonant diversity, and 79.1 %
for normalized tone diversity).

Conveniently, mixed models make it possible to test to what extent the in-
clusion of any specific random effect in the model is justified. Thus, we don’t
have to assume that genetic relationships are best modeled in terms of random
intercepts by language family, subfamily, and genus. For each of these three
possible genealogical grouping factors, we can ask whether its inclusion in the
model is statistically justified.

Here, we ask whether we can remove any of the random intercepts, start-
ing with the one reflecting the smallest groupings (genus). This is achieved by
a χ2-test over the difference in deviance between the model in Equation (E3)
against the same model without a random by-genus intercept. This test assesses
whether the additional complexity associated with the random by-genus inter-
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Mixed effect models for genetic and areal dependencies 291

Table 1. Coefficient estimates, Standard error estimates, and p-values for the predictors

in the mixed model described in Equation (E3). P-values are based on 20,000 MCMC

simulations.

Coefficient
estimate

Standard
error

pMCMC

Intercept .134 −.084 < .1 +
Population size (logged) .017 .007 < .03 *
Distance from origin (in 1,000 km) −.029 .006 < .0001 *
Interaction −.001 .001 > .7

cept improves the model quality (its fit against the data) significantly.3 While
by-subfamily and by-family intercepts significantly improve the model’s qual-
ity of fit (χ2

∆s > 9.9, ps < .002), by-genus intercepts do not contribute signif-
icantly (χ2

∆(1) = 1.7, p > .19). Since the qualitative results reported below do
not depend on the inclusion of the by-genus intercept and since genus is a the-
oretically motivated grouping factor, we report the results from a model with
all three genealogical grouping factors (i.e., the model from Equation (E3)).

The coefficient estimates for the three predictors of interest are given in Ta-
ble 1, for which p-values were derived using Markov chain Monte-Carlo sam-
pling (henceforth MCMC sampling).4 To make the coefficient estimate for the
distance from the language origin easier to interpret, distances were measured
in 1,000 kilometers.

Since all predictors were centered (by subtracting their mean from each
of their values), the intercept estimate α̂ encodes the overall predicted mean
normalized phonological diversity. In line with the serial founder account, the
model returns a highly significant effect of distance to the origin: with every
1,000 km from the origin the best fit to the data predicts a decrease in the nor-
malized phonological diversity of about .03 points, corresponding to about 1 %
of the total range of the normalized phonological diversity of languages in the
sample (which, as stated above, ranges from −1.19 to 1.68). This effect is sig-

3. Deviance is a measure of model quality based on the model’s log likelihood (to be precise,
deviance = −2 ∗ log (y | model)). For sufficiently large data sets, differences in deviance
between two nested models approximately follow a χ2-distribution with k degrees of freedom,
where k is the difference in the number of parameters between the two models. Two models
are nested, if one model contains all the predictors (incl. random effects) of the other model,
plus additional predictors. For an introduction and examples, see Baayen et al. 2008 and
Jaeger 2008.

4. MCMC sampling is employed here since the Student’s t-statistic is known to be anti-
conservative. The MCMC sampling procedure employed here is implemented in the lan-

guageR library (Baayen 2010).
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nificant for any combination of the three grouping factors being included as
random intercepts (family, subfamily, and genus).

3.2. Assumptions of linear mixed effect models

Linear mixed models share several assumptions of ordinary linear models men-
tioned in the introduction: the outcome is assumed to be normally distributed
around a linear predictor, which is assumed to be linear in the coefficients.
Furthermore, the errors are assumed not to be correlated with any predictor
or with each other (homoscedasticity and no auto-correlation). Violations of
these assumptions can lead to unreliable results. A variety of standard tests to
assess whether these assumptions are met for a particular data set can be found
in the literature on Generalized Linear Models and Generalized Linear Mixed
Models (e.g., Agresti 2002, Baayen 2008, Gelman & Hill 2007, Harrell 2001).
For the current data set we found that the assumptions of linearity, normality,
and homoscedasticity seem to be met or reasonably closely approximated for
the current data. Evidence that the assumption of linearity is acceptable for the
distance effect comes from the close match between the linear trend and the
local smoother in Figure 1. A variety of techniques are available in modern
regression programs that allow researchers to relax the assumption of linearity
and to systematically investigate non-linear relations within the framework of
ordinary and mixed generalized linear models (for introductions see Baayen
2008 and Harrell 2001). Additional tests with so-called restricted cubic splines
(Harrell 2001: 20–26) for (log-transformed) population size and the distance
effect did not affect any of the conclusions reported here.5

Evidence that normality was not violated comes from the observation that
residuals were normally distributed (see Figure 3, (A)). Test of the assump-
tion of homoscedasticity returned somewhat more mixed results, although still
within acceptable limits. No signs of heteroscedasticity (violations of homo-
scedasticity) were found for the predictors population size and distance from
the origin, which were not correlated with the residuals, as shown in Figure 3,
(B) and (C). Further diagnostic plots revealed signs of mild to moderate het-
eroscedasticity of the residuals by grouping structure, although it is hard to as-
sess the full extent of these violations due to data sparseness (see Appendix B
for details). The first caveat to Atkinson’s conclusion hence is that the data he

5. Restricted cubic splines and polynomials provide convenient ways to assess degrees of non-
linearity in the data. In the statistics software R, the functions poly() in the library stats (R
Development Team, 2010) and pol() as well as rcs() in the library Design (Harrell 2009)
interface nicely with procedures used to fit ordinary or mixed regression models (for an intro-
duction, see Baayen 2008). See also the package gam for generalized additive models (Hastie
2008).
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(A) (B) (C)

Figure 3. Diagnostic plots for the model described in Equation (E3). The histogram

of residuals (the individual-level errors) in (A) suggests normality. Linear (blue),

quadratic (red), and cubic fits (green) of log-transformed population size in (B) or

distance from the origin in (C) against the standardized residuals reveal no correla-

tions (the shaded 95 % confidence intervals include the zero line at all times). Only six

data points fall outside the interval of −2.5 to 2.5 standardized residuals (indicated by

the dashed lines). Excluding these languages (Austronesian: Iaai, Po-Ai; Niger-Congo:

Bisa; Nilo-Saharan: Koyra Chiini; Sino-Tibetan: Garo, Naxi, and Newari) strengthens

both the population and the distance effect.

employed did not contain enough language families with sufficiently many lan-
guages to achieve confidence that the assumptions of the linear mixed model
are met.

In addition to an evaluation of the assumptions under which a model is fit,
it is advisable to test (i) whether overly influential outliers affect the results
and (ii) whether multicollinearity affects the interpretation of coefficients or
the reliability of standard error estimates. Here, Mandarin is potentially an out-
lier in terms of its population size, but not an extreme one (z-score = 2.52;
absolute z-scores larger than 2.5 or 3 are often considered outliers). Indeed, ex-
cluding Mandarin from the analysis does not change the results qualitatively.
There were no outliers in terms of distance from the origin. Additional analy-
ses removing cases that were outliers in terms of the associated standardized
residuals (see, e.g., Figure 3 and Appendix B) did not change the results quali-
tatively.

Another common issue in any type of regression modeling is multicollinear-
ity. Multicollinearity refers to the presence of high correlations between (sets
of) predictors. Multicollinearity can affect the reliability of regression results.
Here, multicollinearity was not a concern (fixed effect correlation rs < .3).
Since none of the models reported in this paper suffered from multicollinear-
ity, we do not report fixed effect correlations below. For methods to detect and
avoid issues with multicollinearity, see Baayen 2008 and Jaeger & Kuperman
2009.
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The ability of mixed models to efficiently control for shared properties be-
tween languages that are members of the same language family, subfamily,
or genus is based on the assumption that these differences are normally dis-
tributed. This assumption should be assessed when evaluating a model. Figure
4 plots the theoretical vs. actual quantiles of the random intercepts by language
family, subfamily, and genus for the mixed model described in Equation (E3).
Recall that the only parameters fitted for each random intercept is the standard
deviation. It is, however, possible to derive posterior estimates of the random
adjustment for each individual group member (e.g., the intercept adjustment
for each language family). This is called the Best Linear Unbiased Predictor
(BLUP). BLUPs are the modes (the points of with the highest probability) of
the posterior distribution of group member adjustments given the model, its
parameter estimates, and the data X (including both the predictors x1, . . . ,xk

and the group membership indicators J, K, and M). So, for example, for the
language family adjustments aJ, P̂(aJ | X , α̂, β̂ 1, . . . , β̂ k, σ̂ ε , σ̂ J, σ̂K , σ̂M).6 In
Figure 4, each BLUP (represented by a blue point) is surrounded by its 95 %
highest posterior density interval, reflecting the uncertainty about the BLUP, re-
flected in its distribution P̂(aJ |X , α̂, β̂ 1, . . . , β̂ k, σ̂ ε , σ̂ J, σ̂K , σ̂M). If the random
differences are indeed normally distributed, the BLUPs should approximately
fall on a line between standard normal quantiles > −2 and < 2 (i.e., it should
be possible to fit a line in such a way that it touches every interval between −2
to 2). Here, there is no striking evidence for deviation from normality and we
have no reason to assume that deviations from normality cause the model to
miss important generalizations with regard to language family, subfamily, and
genus.

Now that we have ascertained that the normality assumption for the ran-
dom effects seems acceptable, we can examine the BLUPs that can be derived
from the model. As an example, consider Burmese, which is classified as Sino-
Tibetan language in the subfamily Tibeto-Burman and the genus Burmese-
Lolo. The BLUPs for language family, subfamily, and genus are .385, −.097,
and .135, respectively. The positive value for Sino-Tibetan correctly captures
that Sino-Tibetan languages have higher phonological diversity than the av-
erage across all languages. The negative value of the second BLUP suggests
that Tibeto-Burman has somewhat less phonological diversity than other Sino-
Tibetan languages, and so on. Hence, the mean normalized phonological di-
versity expected for Burmese solely on its genetic relationships would be .557
(= .385+−.097+ .135+ .134, the overall intercept from Table 1). Appendix A

6. In the statistics software R, BLUPs for mixed models fit with the function lmer can be ob-
tained via the command ranef(model). Convenient visualization as in Figure 4 is possible
with dotplot(ranef(model), postVar=T) and qqmath(ranef(model), postVar=T). All functions
are part of the package lme4 (Bates & Maechler 2010).
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(A) (B) (C)

Figure 4. Quantile to quantile plot of random intercepts by (A) language family, (B)

subfamily, and (C) genus in a linear mixed model with the main effects and interaction

of (log-transformed) language population and distance from best fit single-origin. The-

oretical quantiles – what would be expected under a normal distribution – are shown

on the x-axis. The y-axis shows the best linear unbiased predictors (BLUPs) for each

level of the random effect. Intervals around dots represent the 95 % highest posterior

density intervals.

provides further information on the BLUPs and how they are related to, but
different from group means (the mean normalized phonological diversity of
different language families, subfamilies, and genera).

In summary, the current model, which is the same as the one presented in
Atkinson 2011, finds that the distance effect holds in the direction predicted by
the serial founder account even after adjusting for differences in the phonolog-
ical diversity between language families, subfamilies, and genera. In the next
section, we return to Simpson’s paradox introduced above. We ask whether the
current model is sufficient to address concerns that the results may be due to
Simpson’s paradox.

3.3. Linear mixed models and Simpson’s paradox

Consider the situation in Figure 2, which illustrates Simpson’s paradox. Simp-
son’s paradox is particularly relevant to the current discussion, as several re-
searchers have pointed out that, for some language families or regions, the
relation between the distance from the origin and phonological diversity seems
to go in the opposite of the predicted direction (e.g., Dryer 2011). This is vi-
sualized in Figure 5, which shows the distribution of normalized phonological
diversity against distance from the origin for the nine largest language fami-
lies in Atkinson’s data.7 While the linear trend predictor by the serial founder

7. Plots were generated with the libraries ggplot2 (Wickham 2009), maps (Becker et al. 2008),
and lme4 (Bates & Maechler 2010) within the statistics software package R (R Development
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effect is observed for Niger-Congo, Nilo-Saharan, and Afro-Asiatic languages
(all located on the African continent), a comparably strong opposite trend is
observed for Indo-European, Sino-Tibetan, and Austro-Asiatic languages (all
located in Eurasia). This could be taken to argue for evidence that the hypoth-
esized effect does not hold across geographic grouping (e.g., continents) or
genealogical groupings (e.g., language families).

The question we have to ask ourselves is under which circumstances we
would want to reject the hypothesis that the distance from the origin predicts
phonological diversity. A clear case of Simpson’s paradox would be obtained
if all within-group trends are the opposite of the between-group trend (see Fig-
ure 2 above). Note that even for such a hypothetical extreme, we would have
to ask ourselves whether the order of the groups in terms of their distance from
the origin is purely co-incidental. For example, if the 109 language families
in the sample sort as predicted by the serial founder model and no alternative
theory accounts for this order, then this by itself constitutes evidence for the
serial founder account. Actually, this is exactly what Atkinson family-level or-
dinary regression analysis shows (Atkinson 2011: Supporting Online Material:
5–7). Hence, the minimum that any alternative model has to explain is how dis-
tance to the origin is either confounded by another variable (cf. Wichmann et
al. 2011) or how distance to the origin affects phonological diversity, if not be-
cause of a serial founder effect. In other words, Simpson’s paradox is less of a
problem as it has been made out to be in some of the discussions of Atkinson’s
article.

In linear mixed models, the question whether there is evidence for a corre-
lation at the family-level is addressed by including random intercepts by lan-
guage family (and, mutatis mutandis, by subfamily and genus). In other words,
we are asking whether there is evidence for a family-level correlation after we
have taken into consideration that the different levels of the group (different
language families) have different mean phonological diversity and that these
differences follow a normal distribution. The results presented in Table 1 sug-
gest that the answer to this question is yes.

However, strong evidence for a serial founder effect would require that a
sizeable portion of the within-group variance in phonological diversity is ac-
counted for by the distance to the origin. Obviously, the clearest case for this
hypothesis is obtained if the same trend that is observed between-group also
holds within all groups (e.g., within all language families, subfamilies, etc.).
This is, however, unlikely to be observed. Any observed data will contain noise
(e.g., due to measurement error, misclassification, etc.). Even if the effect we
are interested in is large compared to both within- and between-group noise,

Team 2010). The code for all plots and analyses is available at http://hlplab.wordpress.com/
2011/07/13/glmm-for-typologists/.
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(A)

(B)

Figure 5. (A) Distribution of the nine largest language families in the sample (at least 16

languages each). Circles represent languages. The size of the circle reflects the number

of speakers of that language as reported in WALS. The color of the circle reflects the

language family. (B) Normalized phonological diversity plotted against distance from

the origin for the same subset of languages. Solid colored lines show the best fit linear

trend with 95 % confidence intervals (shaded area) by language family.
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we might not find the same trend for all groups. Especially, for smaller groups,
such as language families that are represented by only a few languages in the
sample, we would not expect the trend to hold within each group even if the
effect is real.

Within the generalized linear mixed model framework, we can formulate our
question as follows: does the predicted effect of distance to the origin hold after
we account for difference between language families, subfamilies, and genera
in terms of both the overall phonological diversity in that group and differences
in the (slope of the) distance effect (βDistance) within that group? Once we for-
mulate the question like this, it becomes clear that, ideally, we would like to
test whether the distance effect holds once we add random by-group slopes for
the distance effect. For example, we could add random by-family slopes for
the distance effect (βDistance) to the model, thereby allowing the distance effect
to vary by language family (cf. Figure 5b). The distribution of between-family
differences in the slope βDistance are assumed to be normally distributed – par-
allel to the assumptions for random intercepts described above.8 And, just as
for the random intercepts, we can employ model comparison to assess whether
the random slopes are justified. At least this is possible in theory. In practice,
data sparseness can make it difficult to definitively conclude whether random
slopes are warranted by the data, as we will see in the next section.

3.4. Are random slopes for genetic grouping structure required?

Here, we begin our investigation of random slopes by testing whether random
slopes by language family are justified for the distance effect. However, the
resulting model does not converge on the full data set. This is due to the large
number of small language families in the sample. Out of the 109 language fam-
ilies in the data, 69 are represented by only one language. Only 26 language
families are represented by at least four languages. For language families with
fewer member languages in the sample, there is simply not enough data to
fit both random intercepts and slopes by language family (especially, once we
consider that the one language representing a language family is also used to es-
timate the by-subfamily and by-genus intercepts, as well as the population and
distance predictor). At this point, there are two choices: either we get more data

8. Although not technically required, it is recommended (and the default in the mixed model
function employed here, lmer from the package lme4, Bates & Maechler 2010) to include
terms for the co-variance between different random effects associated with the same grouping
structure. For example, if we add a random by-family slope for the distance effect to the model
in Equation (E3), we would by default also add a term for the covariance between the random
by-family intercept and the random by-family slope for the distance effect. Below we follow
this convention without further discussion (for further detail, see Baayen et al. 2008, Pinheiro
& Bates 2004).
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or we try to exclude language families with too few languages in the sample.
The first approach is more desirable but beyond the scope of this commentary.

The second approach is feasible but results in a catch 22: On the one hand, a
model with random by-family slopes for the distance effect will only converge
if enough of the language families in the sample contain a sufficiently large
number of languages. On the other hand, the sample we analyze still needs
to be sufficiently large to be able to find effects. Here, we add random by-
family slopes for the population and distance effect as well as the interaction to
Atkinson’s model and refit it on subsets of the data with only language families
with at least k languages in the sample. Whenever the model did not converge,
we simplified the random effect structure, first by removing the random by-
family slope for the interaction (which always prevented convergence when
included), then by removing the random by-family slope for the population
effect, and finally by removing the random by-family slope for the distance
effect. The same stepwise model simplification procedure was applied when
the model converged but model comparison revealed that a random slope was
not required.

The result of this process is summarized in Table 2. Models with any ran-
dom by-family slope only converge once only language families with at least
four languages are included. Support for Atkinson’s conclusion comes from
the fact that the distance effect remains significant for this model (columns “4”
and “< 7”). It is, however, possible that these subsets of the data still do not
contain enough languages per family to find significant random slopes. Inter-
estingly, random by-family slopes are justified only when language families
with at least seven languages are included. Once random slopes are included in
the model, the distance effect becomes insignificant.9

What should we make of this? First, we should note that Atkinson’s results
always replicated for a model with only random intercepts by language, sub-
family, and genus: the distance effect remains significant in this model even
when only 258 languages, representing eight language families, are left in the
sample (not shown in Table 2; in the same model, the population size effect
loses significance once only 17 language families are left). However, there is

evidence that random by-family slopes are required. On the one hand, once ran-
dom slopes are included, the distance effect essentially has become a between-
group predictor, dramatically lowering the power to detect an effect. Indeed,
power simulations reported in Appendix C suggest that the current data simply
do not contain enough language families with sufficiently many languages to
detect an effect even when random slopes are included.

9. We note that the distance effect is also insignificant when only the nine largest language
families with at least 16 languages are included, which reflects the intuition we arrived at
when looking at Figure 5.
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Table 2. Results of linear mixed model with the maximal random effect structure justified

for language family based on exclusion of language families with less than k languages

in the sample (* = significant; + = marginally significant; empty cells indicate that

the random slope or predictor was not significant; n.c. = no convergence, i.e., it was

not possible to include this random effect in the model). All models contained random

intercepts by language family, subfamily, and genus.

Minimum number of
languages per family

1 2 3 4 <7 7 8 9 <16 16 <20

Remaining families in
sample

109 50 31 26 22 17 15 13 10 9 8

Remaining languages in
sample

504 445 407 392 376 346 332 316 289 274 258

Random by-family slopes
for:

Population n.c. n.c. n.c. * * n.c. n.c.
Distance from origin n.c. n.c. n.c. * * * * * *
Interaction n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c.

Significant effect of:
Population + + + + +
Distance from origin * * * * *
Interaction

In short, the WALS data set employed by Atkinson does not provide enough
power to detect the distance effect in a model that would be required to answer
the question whether the distance effect holds after by-family variation in the
slope of this effect is accounted for. Hence, further data will be required to
convincingly test the predictions of the serial founder account. This adds a
considerable caveat to Atkinson’s conclusion.

4. Accounting for language contact

4.1. Language contact and geography

One potentially serious issue with the model presented in Atkinson 2011 is
the lack of control for language contact. Among typologists, there is rather
strong agreement that languages that are spoken in close geographical proxim-
ity (in terms of travel distances) of each other over many generations tend to
share many features. The assumption is that, on average, geographical proxim-
ity tends to correlate with language contact. The Balkan Sprachbund located
in Southeast Europe is a classic example: genealogically, the languages of the
Balkan Sprachbund fall into five distinct subfamilies of Indo-European (Alba-
nian, Hellenic, Romance, Slavic, and Indo-Aryan). Yet Balkan languages share
many grammatical properties. Unfortunately, genetic and geographic group-
ings are often closely correlated (see also Figure D-1 in Appendix D), so that it
can be difficult to disentangle effects of language contact from genealogical ef-
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fects. Still, recent studies provide evidence that language contact co-determines
typological distributions over and above genealogical relations (Cysouw (in
press), Stoneking 2006; see also Croft et al. 2011). Here, we present two ways
to account for effects of language contact due to geographical proximity within
the mixed model framework.

The first approach is to add to the model random effects for geographical
grouping structure, such as continent. While this is a simple and efficient ap-
proach, geographical groupings are arguably somewhat more arbitrary than the
genealogical groupings. Additionally, treating geographical relations by means
of random effects misses the generalization that, for example, continents differ
in mutual proximity and accessibility (cf. Africa-Asia vs. Africa-South Amer-
ica). For this reasons, we also describe an alternative way to account for ge-
ographical effects: we model the amount of “spillover” of the phonological
diversity from neighboring languages as a function of the distance between
languages. Ultimately, neither of the two approaches does justice to the com-
plexities involved in modeling the extent of contact between languages over
the course of history. The goal here is to explore viable ways to include con-
trols for effects of language contact in typological studies. The emphasis lies
on viable, in that there is currently no database that provides a standardized
measure of the amount of language contact between languages.

4.2. Modelling language contact by means of random effects

To account for language contact by means of random effects, we extracted two
geo-cultural grouping factors from WALS: continent with six distinct levels
and country with 106 distinct levels. Several typologists have proposed conti-
nents as a relevant geographical grouping structure (Dryer 1989). Country as
a geographical grouping structure, on the other hand, is not generally consid-
ered by typologists, presumably since many country boundaries neither reflect
obstacles to migration nor cultural divisions. Here we consider country as a
grouping structure for three reasons. First, country data was readily available
from the WALS website, whereas more appropriate regional annotation reflect-
ing cultural ties between adjacent language populations would require costly
annotation. Second, in many cases – although admittedly not always – country
structure does reflect local groupings. Finally, under the assumption that geo-
graphically closer languages have on average more language contact with each
other, country structure provides a convenient way to capture a large proportion
of the most extensive language contact.

To assess the effect of countries and continents, we added random inter-
cepts for both terms to the model from Equation (E3). We then tested whether
removal of a random intercept significantly worsened the model in terms of
the χ2-test over difference in model deviance discussed above. Following con-
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ventions for stepwise model comparison, the criterion for excluding a random
intercept was set to pχ2

∆
> .1; the criterion for including an intercept was set to

pχ2
∆

< .05. The result of this comparison process is shown in Figure 6. Adding
a random by-continent intercept to the model from Equation (E3) (i.e., go-
ing from box 4 to box 3 in Figure 6) improves the model only marginally
(χ2

∆(1) = 2.6, p = .1). Furthermore, this weak effect is completely subsumed
by a random by-country intercept: When the by-continent intercept is removed
from a model with all five random intercepts (box 1 to box 2), the resulting
simpler model provides just as good a fit against the data (χ2

∆(1) = 0.3,p > .5).
However, when the by-country intercept is removed from the model with all
five intercepts (box 1 to box 3), this results in a significantly worse model
(χ2

∆(1) = 39.0, p < .0001).10 The model that is most strongly supported by the
data contains random intercepts for language family and subfamily as well as
for country, but not for continent. Similar to the test presented in the previous
section, when only random intercepts by genealogical grouping were consid-
ered, the effect of genus does not quite reach significance (e.g., box 2 to green
box, χ2

∆(1) = 3.2, p < .08). Language family and subfamily remain significant
improvements to the model (χ2

∆(1)s = 9.4, ps < .002). In short, while conti-
nent has been proposed to be an appropriate grouping factor to account for
geographical effect, such a grouping is not supported by Atkinson’s data.

Table 3 reports the results for the model with the random effect structure
best supported by the data (the green box from Figure 6). The inclusion or
exclusion of genus does not affect the conclusions reported below (i.e., the
results corresponding to box 2 are the same as those corresponding to the green
box). The effect of population size is no longer significant (pMCMC > .16), but
the effect of distance from the origin remains highly significant and the effect
still goes in the predicted direction (pMCMC < .0001). The interaction of these
two predictors remains insignificant.

These results suggest that the effect of distance from the best origin holds
up even when geographical effects are controlled for by means of random ef-
fects, thereby lending further support to the serial founder model, in line with
Atkinson’s conclusion.

We close this section by noting that we only considered two geographical
grouping factors here, neither of which are arguably ideal. Future work could
extend the approach taken here to include random effects that identify areas
with high degrees of language contact above the country level, but below the
continent level (such as the Balkan area). In the next section, we explore an

10. Additional random slopes would be barely justified by continents (χ2
∆(2) = 6.0, p = .05) and

not at all by country (χ2
∆(2) = .1, p > .9), compared to the respective intercept-only models.

Even if these slopes are included in the models, the results of the model comparisons shown
in Figure 6 remain unchanged.
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alternative and perhaps more principled way to account for language contact
based on geographical distance.

Table 3. Coefficient estimates, standard error estimates, and p-values for the predictors

in the updated mixed model with a random by-country intercept. P-values are based on

20,000 MCMC simulations.

Coefficient
estimate

Standard
error

pMCMC

Intercept .103 .081 > .16
Population size (logged) .008 .008 > .16
Distance from origin (in 1,000 km) −.035 .007 < .0001 *
Interaction −.001 .001 > .7

Fam + Sub + Gen

Count + Cont

Fam + Sub

Count + Cont

Fam + Sub + Gen

Count

Fam + Sub + Gen

Cont

Fam + Sub

Count

Fam + Sub

Cont

Fam + Sub Fam

Count

Fam + Sub + Gen

1

2 3

4

Figure 6. Schematic illustration of nested model comparison employed to determine the

most strongly supported random effect structure. Each box represents a model with ran-

dom intercepts for the terms in the box (Fam = family; Sub = subfamily; Gen = genus;

Cont = continent; Count = country; all models include log-transformed population size,

distance from the origin, and their interaction as predictors). Upward arrows represent

tests as to whether inclusion of the additional variable(s) present in the upper model is

justified compared to the lower model. Downward arrows represent tests as to whether

exclusion of these variable(s) from the upper model is justified. The color of arrows in-

dicates whether the corresponding in- or exclusion of a random intercept was justified

(green: yes; red: no; orange: marginal). The green model in the middle is the one most

clearly supported by the data.
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4.3. Modelling language contact as a function of migration distance

The goal of this section is to develop a simple measure of the average phono-
logical diversity of a language’s neighbors. This measure can then be included
in the model as a predictor to see whether other effects, such as the distance
effect, remain significant after the partial variance explicable in terms of areal
effects is accounted for.

We follow Atkinson in calculating the migration distance between all pairs
of languages based on the Haversine distance between points on a sphere
(Sinnott 1984) and the requirement to pass through the way points summa-
rized in Atkinson (2011: Supporting Online Material: Table S4, referring to
von Cramon-Taubadel & Lycett 2008). For each language, we then assigned
weights to all other languages. These weights were inversely related to the dis-
tance to the target language. To be specific, the weight of language j for the
calculation of target language k’s areal phonological diversity was assumed to
decay exponentially with increasing distance to target language k, reflecting
a normal distribution centered around the target language and with standard
deviation s:

(E4) wk, j = e

−distance2
k, j

2s2

The weighted areal normalized phonological diversity of a language
k was then calculated by summing over the products of the normalized phono-
logical diversity of all languages j and their weight wk j (the target language’s
phonological diversity was excluded from this calculation). To put the weighted
areal normalized phonological diversity on the same scale as the normalized
phonological diversity, the former was normalized by the average sum of all
weights:

(E5) weighted areal normalized phonological diversityk

=
Σ jwk, j ∗ normalized phonological diversity j

1
k
ΣkΣ jwk, j

With equation (E2) in hand we can compare weighted areal diversity estimates
based on different values for the standard deviation s, where higher values for s

result in proportionally more weight for closer languages. We compared mixed
models as in Equation (E3) updated to also contain the weighed areal normal-
ized phonological diversity in Equation (E5) depending on the value chosen
for s in Equation (E4). An iteratively refined grid search returned the best fit
for s = 685 (see Figure 7). At this value for s, the phonological diversity of
languages at a distance of 500 km, 1,000 km, or 2,500 km will be weighted at
77 %, 35 %, and 0.1 % of the weight of a language at a distance of 100 km,
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Figure 7. Quality of fit of a model as in Equation (E3), updated to also include a pre-

dictor for the weighted areal normalized phonological diversity (see text). The quality

of fit is shown depending on the weight decay rate (the standard deviation, s). Lower

deviance indicates a better fit. The best fit was obtained for s = 685 and is indicated by

a red circle. The corresponding model is summarized in Table 4.

respectively.11 Figure 8 illustrates the respective weights of languages neigh-
boring Albanian and Hindi.

Interestingly, the best weighted areal normalized phonological diversity
(s = 685) seems to captures all relevant continent-level, subfamily-, and
genus-level information as well as some country-level information. If the best
predictor for weighted areal normalized phonological diversity is included in
a model with random intercepts by language family, subfamily, genus, conti-
nent, and country, only the by-country and the by-family intercepts continue
to contribute significantly to the model’s quality (χ2

∆ > 16.0, p < .0001 and
χ2

∆ > 19.0, p < .0001, respectively). The weighted areal normalized phonolog-

11. The method employed here to find the best value for the s in Equation (E4) has a potential dis-
advantage: it is quite heavily influenced by the distribution of languages in the sample (i.e.,
those languages for which information about phonological diversity is available). In other
words, the density of languages per area differs for different regions. This means that, for
some languages, their closest neighbors in the sample are further away than for other lan-
guages. To the extent that this reflects the actual distribution of neighboring languages in the
world, there is no problem. However, to the extent that the by-region language density in the
sample diverges from the actual by-region language density differently for different regions,
this weakens the current approach. For this reason, it is important to note that the results re-
ported below hold for all values of s shown in Figure 7. We also conducted an alternative
analysis in which the weighted areal normalized phonological diversity was normalized sep-
arately for each language (by dividing by ∑ j wk, j instead of 1

k ∑k ∑ j wk, j). This replicates the
results reported below.
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(A) (B)

Figure 8. Illustration of weighted influence of the phonological diversity of neighboring

languages on Albanian (A) and Hindi (B). The weighted influence is indicated by font

size. Only languages in the sample are plotted. The target languages (Albanian, Hindi)

are indicated by a red star. Neighboring languages are plotted based on their longitude

and latitude relative to the target language. The relative distances between languages

in terms of longitude and latitude were adjusted to reflect migration distances.

ical diversity remains a significant predictor in all models (χ2
∆s > 15.0, ps <

.0002; for further information on the correlation between weighted areal nor-
malized phonological diversity and genetic as well as geographic grouping fac-
tors, see Appendix B). We note that the significance of weighted areal normal-
ized phonological diversity is itself not of primary interest here. The critical
question is whether the distance effect remains significant after the phonologi-
cal diversity of surrounding languages is controlled for in the model.

Table 4 summarizes the results of a model with population size, distance
from origin, their interaction, and the predictor for the weighted areal normal-
ized phonological diversity. The reported model includes random intercepts
by language family and country. The weighted areal normalized phonological
diversity had a highly significant effect in the predicted direction: the phono-
logical diversity of languages is to a large extent driven by the phonological
diversity that they are surrounded by (the direction of this effect holds for all
parameterizations of the standard deviation displayed in Figure 7). Replicating
the result reported in the previous section, population size no longer reaches
significance, whereas the distance effect remains highly significant in the pre-
dicted direction. The interaction of population size and distance from the ori-
gin was not significant. As expected, the effect of the phonological diversity of
surrounding languages is positive, indicating that languages in close proximity
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Table 4. Coefficient estimates, standard error estimates, and p-values for the listed pre-

dictors in a linear mixed model with random by-family and by-country intercepts. P-

values are based on 20,000 MCMC simulations.

Coefficient
estimate

Standard
error

pMCMC

Intercept .018 .048 > .3
Population size (logged) .008 .007 > .14 +
Distance from origin (in 1,000 km) −.024 .006 < .0001 *
Interaction −.001 .001 > .9
Weighted areal phonological diversity (s = 685) .390 .078 < .0001 *

tend to resemble each other in terms of their phonological diversity. Including
random intercepts by subfamily and genus does not change the results qualita-
tively.

In short, the distance effect based on the best single origin found in Atkin-
son 2011 continues to remain significant even after various genealogical and
geographic effects are taken into account. Of course, the two approaches we
have proposed to model effects of language contact are, at best, a reasonable
first step. More sophisticated models of language contact could be pursued in
future research. First, while the employed migration distances capture some
aspect of geography, they fail to account for local terrain and geographic barri-
ers. Second, we might expect that the amount of language contact between two
groups of speakers depends on average on the language density of the inter-
vening terrain (i.e., the number of languages spoken in the terrain the speakers
would have to cross to be in contact with the other group). Third, language
contact does not have to be symmetrical – as a matter of fact, this might be the
exception. Ultimately, an adequate investigation of the effect of language con-
tact might require additional databases that capture amount of influence one
culture has on another. Alternatively, the extent of lexical borrowing from one
language to another could be used to estimate these asymmetric influences. An
interim solution could approximate asymmetric effects by entering the relative
population sizes into equation (E5) above.

For now, we conclude that, to the extent that we include available controls
in the model, the distance result presented in Atkinson still holds. The popula-
tion effect reported in Atkinson, however, does not reach significance anymore.
With what we have learned in mind, we return to Atkinson’s search for the ori-
gin of language.
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5. Re-visiting the search for the origin of language

We repeated the procedure employed in Atkinson to determine the best single
origin of language with the updated model we have developed. We extracted
all 2,677 language locations recorded in WALS (this number is somewhat larger
than the one reported in Atkinson 2011, due to recent additions to the WALS

database; Atkinson, personal communication). Following Atkinson, we then
calculated the pair-wise migration distances between all languages (see above).
We fit 2,677 separate linear mixed models for each of the possible origins.
Each model contained (log-transformed) populations size, the distance to the
hypothesized origin (which was different for each model), and the interaction
of these two predictors. Additionally, random intercepts by language family,
subfamily, and country were included. That is, unlike the model reported in
Atkinson 2011, we included a control for language contact in the model. The
results reported below are unaffected by the presence or absence of a random
intercept for country, random intercepts for all three genealogical grouping fac-
tors and/or the predictor for the weighted areal normalized phonological diver-
sity. The results also do not depend on the inclusion of population size in the
model.12

In all cases, the best origin is predicted to be in West Africa between a lon-
gitude of 4.8 to 9.5 and a latitude of −1.25 to 9.33 (incl. Cameroon, Gabon,
and São Tomé and Príncipe). Figure 9 shows the model quality for each hypo-
thetical point of origin (assessed as the difference in the deviance between a
model with the distance predictor and a model without – both maximum like-
lihood fitted). The best fits are restricted to Africa. Even the worst fit found
for Africa (∆deviance = 14.5) is better than the best fit in any other continent
(Asia, ∆deviance = 13.8; cf. the best overall fit, ∆deviance = 24.2).

In line with the serial founder account, the distance effect has the predicted
direction for all models with good fit (i.e., β̂ Distance < 0, for all the models in
Africa and the Middle East), as is illustrated in Figure 10 (Atkinson does not
provide the distribution of coefficient values across the 2,560 models he fit, but
our replication of his model, the one in Equation (E3), yields a qualitatively
similar plot).

12. We note that, for this data set, comparison of ordinary linear models for each hypothetical
origin of language happens to return qualitatively equivalent results (the best point of origin
differs only minimally and falls within the range of longitude and latitude given above). Of
course, the ordinary models each have a considerably lower model quality (e.g., in terms of
their R2) and they over-estimate the significance of the distance effect (as they don’t account
for the genetic relations between languages).
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Figure 9. Model quality depending on hypothesized point of language origin. Better fits

correspond to higher improvements in terms of the model’s deviance compared to a

model without the distance predictor. The best fit is indicated by a star. The solid black

dots mark the five way points that inter-continent migration routes are assumed to pass

through (see Atkinson 2011: Supporting Online Material: Table S4).

Figure 10. Coefficient for distance from origin effect (β̂ Distance) depending on model

quality (as plotted in Figure 9). The best fit is indicated by a star.
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6. Summary and remaining issues

Atkinson (2011) set out to test the serial founder account, which, he argues,
predicts that the diversity of the phonological inventory decreases with increas-
ing distance from the origin of language. To test this prediction, Atkinson em-
ployed linear mixed models to account for grouping structure due to genetic
relations between the languages in his sample. We have provided an introduc-
tion to these models, which we consider to be a useful statistical tool for typo-
logical research and we have sketched two approaches to incorporate controls
for language contact into such a model, one in terms of additional random ef-
fects and one in terms of an aggregate measure to areal phonological diversity.
Both approaches revealed large effects of language contact in that language in
close proximity resemble each other in terms of their phonological diversity.
Interestingly, the second of these approaches turned out to capture lower-level
(and hence more local) genetic relations between languages in additional to
effects of language contact. This approach may hence provide an efficient way
to model genetic relation effects for genetic groupings that are presented by
only a few languages in the sample each (e.g., language families with only a
few languages in the sample and most, if not all, subfamilies and genera in the
sample). While we have focused here on linear mixed models for the analysis
of normally distributed outcomes, the generalized linear mixed model frame-
work (Breslow & Clayton 1993) includes models for the analysis of outcomes
with different distributions, such as binomially or Poisson distributed outcomes
(e.g., count data).

We have scrutinized several of the decisions made in the statistical analyses
conducted by Atkinson. In order to maximize comparability of his approach
and the tests provided here and in order to achieve the primary goal of this
article – to provide an introduction to mixed models for typologists –, we have
employed the same measures of phonological diversity, population size, and
migration distance (although there are problems with several of these mea-
sures; Maddieson et al. 2011; Matthew Dryer, personal communication). We
have also abstained from investigating additional hypotheses, such as that the
average word length in a language is the primary determinant of its phonolog-
ical inventory size (Nettle 1998, Wichmann et al. 2011).

Our evaluation of the statistical analyses conducted by Atkinson mostly

found his results confirmed for the current sample. We found that even after
adding approximate controls for language contact into the linear mixed model,
distance from the origin remained a significant predictor of phonological di-
versity in the expected direction. Model evaluation suggested that most of the
assumptions under which the model was fit were met, but that there were po-
tentially some problems with the assumption of homoscedasticity: in a model
that has random intercepts for language family, subfamily, and genus, many of
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the levels of the grouping factors will be represented by only one language.
This makes it difficult to assess whether the residuals of the model exhibit the
same variance for all levels of the grouping factors (cf. Appendix B).

However, the sparseness of grouping factor levels with a sufficiently large
number of families in the sample also causes a more severe problem: under the
arguably more appropriate random effect structure, including random slopes
in addition to random intercepts, the distance effect is not significant. Atkin-
son (personal communication) correctly points out that random slopes do not
seem to be required for the full data set, but – as we have shown above – this
is simply due to the fact that a model with random slopes for the distance ef-
fect does not converge on the full data set. If the data is reduced to language
families with sufficiently many languages in the sample to successfully fit ran-
dom slopes for the distance effect, the distance effect becomes insignificant.
Further complicating things, our preliminary power simulations indicate that
the remaining sample simply does not offer enough power to find the distance
effect in a model with random slopes (Appendix C). This leaves us in the most
unenviable position that there is evidence that the best model for the complete
data set supports Atkinson’s claim, while a model that is preferred on theoret-
ical grounds (a model with random slopes) fits only for a small subset, which
does not provide enough power to detect an effect (which then, indeed, is not
detected).

What does follow from this is that (i) there is considerable between-language
family variation in the distance effect, but (ii) Atkinson’s claim is only sup-
ported under the assumption that the languages in the sample that are part of
small families are representative for that language family.

This might be acceptable, if it was not for the final remaining issue that we
raised in the introduction, but that we have not discussed so far: in order to
find the most likely origin of language, Atkinson compares over 2,500 mixed
models (one for each language coordinate in WALS). The distance effect is then
assessed in the model based on the best origin. That is, the distance effect is
assessed in the model for which adding distance to the model improved the
model’s deviance the most compared to all other possible origins. This proce-
dure is obviously biased to find an effect for distance to the origin: if there is
such an effect for any hypothetical origin, it will find it.13 This is a serious
problem with the analysis presented in Atkinson 2011. Admittedly, the distri-
bution of model fits depending on the hypothesized origin seems to support

13. Note that the issue we are raising here is in no way an inherent problem of mixed models,
but rather stems from reporting analyses based on models that were pre-selected based on a
criterion that refers to the effect of interest (for a discussion of similar biases in the analyses
of data from functional magnetic resonance imaging, see Kriegeskorte et al. 2010, Vul et al.
2009).
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Atkinson’s conclusion (see Figures 9 and 10): all models providing support to
Atkinson’s conclusion cluster in the same region (Southwest Africa), which
also is a likely candidate for the origin of language based on non-linguistic ev-
idence (see references in Atkinson 2011). However, Cysouw et al. (2011) pro-
vide evidence that such a geographical clustering of good fits is also obtained
by chance under very general assumptions (i.e., even if the serial founder ac-
count does not hold; see also Jaeger et al. 2011).

The most appropriate assessment of the error rate would require re-sampling
languages in a way that respects their genetic and areal relations as well as their
within-family, -subfamily, and -genus distribution of phonological diversity. In
other words, what is missing is a simulation that would assess the answer to
the question “Given the distribution of phonological diversity within language
family, subfamily, and genus, and given the distribution of languages within
language family, subfamily, genus, and area (e.g., country), how likely were we
to find distributions of model improvements due to the inclusion of a distance
to the origin effect that resemble those in Figure 9, except that they have a
different origin?”

Here we refer to a modest first step in this direction (for a full report, see
Jaeger et al. (2011); see also Cysouw et al. 2011 for similar results): we as-
sessed the Type I error rate associated with Atkinson’s analysis by estimating
the chance of a significant distance effect based on just (i) the location and ge-
netic relations of the 504 languages in the sample, (ii) the 2,677 possible origins
given by the (updated) WALS data, and (iii) the distribution of the normalized
phonological diversity values in the sample. For each sample of the simulation,
the quintuple of language family, subfamily, genus, log-transformed popula-
tion size, and normalized phonological diversity was randomly re-assigned to
the 504 language locations in the sample. We then fit the 2,677 mixed mod-
els from Equation (E3) for all possible origins for each of the 10,000 samples.
Of the 10,000 samples, model comparison against the baseline model without
the distance effect revealed 20.3 % significant improvements. This is consid-
erably higher than the 5% that would be expected under a Type I error rate
for p < .05 as criterion for significance. Based on the t-value of the models in
each sample, we found that for 14.52 % of the 10,000 samples the best model
returned a significant main effect of distance to the origin in the expected di-
rection (t < −1.96).

In conclusion, while Atkinson is to be applauded for employing a statistical
approach that provides a powerful way to control for genetic and areal depen-
dencies in the data, the conclusion that the serial founder model is supported
by the sample he analyzes suffers from (i) the inability to control for between-
family variation in the effect and (ii) an apparently drastically inflated Type I
error rate. Given that others have failed to replicate the effect on alternative
data sets (Cysouw et al. 2011), we tentatively conclude that there is, as of now,
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no support for the serial founder model from the distribution of phonological
diversity across languages.
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Appendix A: More on Best Linear Unbiased Predictors (BLUPs)

In the main text, we introduced the notion of the best linear unbiased predic-
tors (BLUPs). The BLUPs are related to the mean normalized phonological
diversity of the respective grouping factors, but they are not the same. Without
going into too much detail here, the BLUPs reflect another desirable prop-
erty of mixed models, called shrinkage (see Gelman & Hill 2007, Kliegl et al.
2010). Shrinkage refers to the fact that BLUPs are shrunk towards the overall
mean. The amount of shrinkage is determined by the amount of data available
for each level of a random effect and by how far the BLUP estimate is away
from the overall mean, thereby avoiding anti-conservativity. This is illustrated
in Figure A-1, which plots both the mean normalized phonological diversity
for all language families and the corresponding BLUPs. Notice how the BLUP
for the language family with the most languages in the sample (Niger-Congo)
is identical to its mean, whereas BLUPs for language families with only a few
languages in the sample are much closer to the overall mean than a naïve esti-
mate based on the language family’s mean normalized phonological diversity
would suggest.

In other words, in addition to providing an efficient way to avoid violations
of independence, mixed linear models also yield more reliable estimates of
group-specific properties (such as the phonological diversity of a language fam-
ily).
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Figure A-1. Shrinkage illustrated for the random intercepts by language family. Solid

circles represent the means across languages in a family (both in terms of phonological

diversity and the distance from the origin). Circle size reflects the number of languages

in the family. Blue stars indicate the BLUPs for language family intercepts in the Atkin-

son model with crossed random intercepts by language family, subfamily, and genus.

The black and blue solid lines show best linear fits based on the language family means

and BLUPs, respectively.

Appendix B: Diagnostic plots for Atkinson’s model

To assess the assumption of normality and homoscedasticity for the individual-
level noise (the assumption that the individual-level errors are identically and
normally distributed across all levels of the grouping factors), it can be helpful
to plot the residuals of the fitted model by group. A full overview of meth-
ods to evaluate the validity of mixed models is beyond the scope of this ar-
ticle (for introductions, see Agresti 2002, Baayen 2008, Bates (forthcoming),
Jaeger & Kuperman 2009, Pinheiro & Bates 2004). Here, we present two ex-
ample plots that serve to illustrate that it is difficult to estimate the assumption
of homoscedasticity for grouping factors with many group levels that are rep-
resented by a small number of individual data points (e.g., language families
with few languages in the sample). Figures B-1 and B-2 plot residuals by con-
tinent and by combination of continent and language family. Although we did
not find continent intercepts to contribute to the model, we include a plot for
by-continent variance of the residuals, because continents as grouping factors
have received some attention in the typological literature (e.g., Dryer 1989).
Overall, the plots suggest normality (for most levels, the residuals are centered
around zero). There are, however, signs of heteroscedasticity: the residuals vary
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Figure B-1. Standardized residuals by continent. There are only mild signs of het-

eroscedasticity (the residuals are not identically distributed between groups). A small

number of outliers are also observed (black dots).

more for some language families than for others (see Figure B-2). Mostly, these
differences in variance are relatively small, with the possible exception that the
residuals for European languages seem to exhibit less variance.

Appendix C: Power simulations for random slopes

We assessed the power to detect an effect of the distance to the origin in a
model with random by-family slopes for the distance effect. Four separate sim-
ulations were conducted on subsets of the data that contained only language
families with at least 4, 6, 7, or 10 languages. The subsets were chosen based
on the results presented in Table 2. For each subset of data, we fitted a linear
mixed model with log-transformed population size, distance from the origin
and their interaction as predictors, and random by-family intercepts and as well
as random by-family slopes for distance. This model was used to estimate the
parameters for the simulation (the residual variance, the variances and covari-
ances of the random by-group effects, and the coefficients for the predictors).
The results reported below are qualitatively identical if all but the variance and
covariance for the random by-family effects are assessed from the model with-
out random by-family slopes. Based on these parameters, 10,000 simulated
data sets were created for each subset of data, using that data set’s grouping
structure (i.e., the 10,000 data sets had the same number of language families
as in the actual data and each language family had the same number of lan-
guages as in the actual data). These simulations found that the mixed model
with random by-family slopes was able to detect the distance effect only in 1
to 4.5 % of all cases.
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Figure B-2. Standardized residuals by combination of continent and language family.

Only families with at least 4 languages are included. There are signs of heteroscedas-

ticity (the residuals are not identically distributed between groups). A small number of

outliers are also observed (black dots).

This suggests that the current data set does not contain enough language
families with a sufficiently large number of languages to assess whether the
distance effect holds beyond the estimates between-family variance in the slope
of the distance effect. Figure C-1 summarizes the coefficients and t-values for
the distances effects found in the 10,000 simulation runs.

Brought to you by | MIT Libraries

Authenticated

Download Date | 5/9/16 8:04 PM



Mixed effect models for genetic and areal dependencies 317

Figure C-1. Heatmap of the 10,000 simulation runs for each of the simulated subsets

of the data. The number at the top of each panel indicates the minimum number of

languages per language family in the subset. Simplifying somewhat, a t-value of less

than −1.96 would indicate significance (ignoring anti-conservativity of the t-test for

the current purpose since conducting 20,000 MCMC simulations on each of the 10,000

runs for the four data sets was not feasible).

Appendix D: Correlations between genetic and geographic effects

Since genetically related languages often also are located in close geographi-
cal proximity to each other, it has been difficult to tease genealogical and ge-
ographic effects apart (e.g., Cysouw (in press), Stoneking 2006). Indeed, the
correlation matrix in Figure D-1 confirms that genealogical groupings (lan-
guage family, subfamily, and genus) are moderately to highly correlated with
geographic effects. The mixed effects analyses reported in the main text do,
however, confirm independent effects of genealogical and geographical effects
on normalized phonological diversity.
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Figure D-1. Correlation matrix of genealogical and geographic effects on normalized

phoneme diversity. For all 504 languages in the sample, the average by-family, by-

subfamily, by-genus, by-continent, by-country, and the best by-area normalized phono-

logical diversity was calculated. The upper right part of the matrix shows the Pearson

R2 for each pair of variables. The lower left shows the corresponding scatterplot be-

tween the two variables along with a local smoother (blue line).
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