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ABSTRACT: High-resolution air quality (AQ) maps based on street-by-street measurements have become possible through large-
scale mobile measurement campaigns. Such campaigns have produced data-only maps and have been used to produce empirical
models [i.e., land use regression (LUR) models]. Assuming that all road segments are measured, we developed a mixed model
framework that predicts concentrations by an LUR model, while allowing road segments to deviate from the LUR prediction based
on between-segment variation as a random effect. We used Google Street View cars, equipped with high-quality AQ instruments, and
measured the concentration of NO2 on every street in Amsterdam (n = 46.664) and Copenhagen (n = 28.499) on average seven
times over the course of 9 and 16 months, respectively. We compared the data-only mapping, LUR, and mixed model estimates with
measurements from passive samplers (n = 82) and predictions from dispersion models in the same time window as mobile
monitoring. In Amsterdam, mixed model estimates correlated rs (Spearman correlation) = 0.85 with external measurements, whereas
the data-only approach and LUR model estimates correlated rs = 0.74 and 0.75, respectively. Mixed model estimates also correlated
higher rs = 0.65 with the deterministic model predictions compared to the data-only (rs = 0.50) and LUR model (rs = 0.61). In
Copenhagen, mixed model estimates correlated rs = 0.51 with external model predictions compared to rs = 0.45 and rs = 0.50 for
data-only and LUR model, respectively. Correlation increased for 97 locations (rs = 0.65) with more detailed traffic information.
This means that the mixed model approach is able to combine the strength of data-only mapping (to show hyperlocal variation) and
LUR models by shrinking uncertain concentrations toward the model output.

KEYWORDS: Google Street View, NO2 measurements, LUR, mixed-effect model, hyperlocal variation

1. INTRODUCTION
Most air pollutants exhibit small-scale spatial variation that
cannot be captured by traditional routine monitoring networks.
Exposure assessment of air pollution has, therefore, been
revolutionized via mobile monitoring platforms during the past
decade.1−16 With advancements in air monitoring instrumen-
tation, such as higher time resolution and greater portability,
mobile monitoring platforms can directly measure spatial
gradients and peaks in urban air pollution. Li et al.17 showed
that quantifying spatial variation of NO2 within urban areas
with high fidelity (<4 μg/m3 NO2) is not likely attainable
unless the sampling network is dense, having more than one or

two sensors per km.2 Whereas mobile sampling is great in
measuring the local variation in concentration levels, a
fundamental limitation is that such measurements only consist
of a limited number of seconds per street segment.17 To
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reduce this problem, most mobile monitoring designs used
land-use regression (LUR) models to develop concentration
maps. Alternatively, when a significant number of repeated
measurements are available, these could be used to create
measurement-only concentration maps.3,16,18 Both approaches
have strengths and limitations.
Regarding data-only mapping, Robinson et al.18 considered

15 days as the minimum threshold of the daily visits required
to produce representative long-term air pollution concen-
trations. This value is based on the work conducted by Apte et
al.,16 who designed a mobile sampling campaign using Google
Street View (GSV) cars to measure air pollution levels on all
streets in Oakland, USA. In Apte’s study, each street segment
was measured around 50 times to develop a high-resolution
measurement-only air pollution map of the city.
However, measuring each street segment in a region of

interest requires a significant amount of time, which might not
be feasible for many locations, particularly in bigger cities (e.g.,
>100 km2). Therefore, many researchers have combined
mobile monitoring with empirical LUR models to produce
air pollution maps.3,4,15 To compare data-only maps with LUR
models, Messier et al.3 measured all streets in Oakland at least
50 times and assumed that driving 50 times on different days
generates “robust” long-term average concentrations. The
authors then reduced the number of measuring days and
compared data-only maps with the LUR models. They found
that data-only mapping performed poorly with a few repeated
drives, for example, one to two drives, but obtained R2 values
better than the LUR approach within four to eight repeated
drive days per road segment. A limitation of LUR models is
however the loss of the very high spatial resolution as LUR
models tend to “smooth” concentration levels over a wider
terrain.19

Therefore, in this paper, we propose a mixed modeling
framework that combines the strengths of both data-only
mapping and LUR models. This framework can deal with
limited mobile monitoring data per street segment and
“preserve” the high spatial resolution as much as possible.
This method uses all measurements on all street segments to
develop a LUR model but allows individual measurements to
influence the output based on the between and within-segment
variation. All measurements and models were averaged over
street segments as the goal is to create a spatial map with long-
term exposure predictions. We used mobile NO2 measure-
ments collected with GSV cars in Amsterdam and Copenhagen
to test and evaluate this framework. We compared data-only
NO2 concentrations, LUR, and mixed model estimates with
measurements from passive samplers and routine monitoring
networks. We additionally compared with deterministic model
predictions.

2. MATERIALS AND METHODS

2.1. Study Sites. Amsterdam (hereafter, AMS) is the
capital and the largest city of the Netherlands (see Figure 1a).
AMS is the most populous city and has one of the densest road
networks in the Netherlands. The city center has a mix of
residential and commercial mid- and high-rise buildings and is
bound by major interstate highways (Figure 1a). Amsterdam
airport is located south-west of the city. AMS is flat (with
surrounding flat land) and has an oceanic climate, significantly
affected by its proximity to the North Sea to the west, with
prevailing westerly winds.

The second study site consists of three municipalities,
Copenhagen, Frederiksberg, and Tar̊nby, in the Copenhagen
metropolitan area with a large commuter belt surrounding
Copenhagen (see Figure 1b). Copenhagen (hereafter, CPH) is
the largest and most populous city in Denmark and the Danish
capital located on the eastern shore of the island of Zealand
and Amager. The central part of CPH is relatively flat. The
urban area stretches up to pprox.. 292 km2. CPH is
interspersed with residential and commercial blocks containing
low-, mid-, and high-rise buildings including major highways.
The Copenhagen airport is in the south of the metropolitan
area (Figure 1b).

2.2. Data Collection. Three GSV cars were equipped with
1 Hz nitrogen dioxide (NO2) monitors (CAPS, Aerodyne
Research Inc, USA) and used to measure NO2 concentrations
on each street segment in AMS and CPH. The instrument
directly measures NO2 concentrations based on optical
scattering and absorption. The geographical location of the
car was recorded via a Global Positioning Unit (GPS; G-Star
IV, GlobalSat, Taiwan), which was linked to the NO2 monitor
in the GSV car using date and time. We used two GSV cars to
monitor concentrations in AMS from 25 May 2019 to 15
March 2020. The third car was used to monitor NO2
concentrations in CPH from 15 October 2018 to 15 March
2020. Both measurement campaigns were stopped on 15
March 2020 due to COVID-19 lockdown restrictions.
Measurements were collected between 08:00 and 22:00 on
weekdays, with most measurements between 10:00 and 16:00.
During data collection, the GSV cars measured in different
parts of AMS and CPH as much as possible to reduce the
spatial−temporal autocorrelation. NO2 concentrations higher
than 500 μg/m3 and lower than 0 μg/m3 were removed from
the data set as they are unrealistic and clear outliers. The final
data set consisted of 5.9 million and 5.1 million 1 Hz
measurements of NO2 in AMS and CPH, respectively. All
processing steps, including subsequent model developments
and analyses, are done in R software, version 4.0.4.

2.3. Data Processing and Aggregation. As street
segments were measured at different times of the day and
week, we applied a temporal correction to the measured data
using nearby reference stations (one per city), explained in
detail in the Supporting Information. In brief, the difference
between the overall average concentration and the average of
specific time windows at the reference station was used to
correct all mobile measurements in corresponding time
windows. The reference station measured concentrations for
the full time period (all days of the week and day and night) of

Figure 1. Study sites: (a) City of Amsterdam and (b) Copenhagen
metropolitan area containing three municipalities, Copenhagen,
Frederiksberg, and Tar̊nby. The bold black lines show the border of
the study sites. Background maps ESRI.
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the mobile monitoring campaign, so corrected measurements
can be used to reflect long-term concentrations.
All measurements were assigned to the nearest street. The

assigned values were then averaged over 50 m street segments
per individual driving day (hereafter, drive-pass). Subse-
quently, we computed a mean of all drive-passes to get a
single “mean of means” for all street segments. On average,
each street segment consisted of 8 [interquartile range (IQR):
3−10] seconds per drive-pass and seven unique drive-passes,
with some streets having multiple hours of data. There were
46,664 and 28,499 total street segments in the road network of
AMS and CPH, respectively. Data of all drive-passes were used
to develop the mixed-effects model for AMS and CPH. The
“mean of means” data were used for data-only mapping and as
inputs to develop LUR models for AMS and CPH. LUR
models were developed by a supervised linear forward stepwise
regression model. The criteria used in the development of the
LUR models and coefficients for each city can be found in the
Supporting Information.
2.4. Mixed Model Development. We developed a mixed

modeling framework, also known as a linear “mixed-effects”
model. The term comes from the coexistence of both fixed and
random effects. The fixed effects are obtained from the
standard coefficients of the LUR model. As all road segments
are measured, we can use the measurements on all street
segments as a random effect (cluster-specific effect). This
allows the inclusion of cluster-specific effects while borrowing
strength/stability from the fixed effects. This borrowing is
stronger when data are closer to the average effect or for
clusters that have less data. This way, the measured hyperlocal
variation is preserved while uncertain low or high concen-
trations are shrunken toward the LUR model output. The
mixed-effect model can be expressed as

β ε= + +Y X Z bi i i i i

where Y is the mixed model prediction. The second part starts
with the fixed effect where β is a (p, 1) vector of fixed effects
attached to a matrix (X) of (ni, p) covariates. Then, the
random effects are added where bi is a (q, 1) vector of random
effects attached to a matrix (Z) of (ni, p) covariates. The
regression parameters, β (the fixed effects parameters), are the
same for all individual drive-passes. If the vector of random
effects bi has mean zero, the mixed model estimates are fully
based on the fixed effects (LUR model). Mixed model results
were then averaged per street segment, similar to the average
of the data-only approach and the LUR model.
2.5. Comparison with External Monitoring and

Modeling. To evaluate the mixed model performance for
AMS and CPH, we compared data-only measurements, LUR,
and mixed model estimates with monitoring networks and

deterministic model predictions. Hereafter, the data-only,
LUR, and mixed model estimates, altogether, are referred to
as Amsterdam Air View (AAV) and Copenhagen Air View
(CAV) data. All comparison data sets are listed in Table 1, and
their details are provided below.
For AMS, the AAV data were compared with measurements

from a passive sampler network using Palmes tubes at facades
of buildings, which are maintained by the Municipal Health
Service (GGD).20 The Palmes tubes data consisted of repeated
4-weekly measurements throughout the whole year, covering
all AMS and its surroundings. A total of 82 sites were within 20
m of the AAV measurements and had measured data available
in the exact time window of the AAV campaign.
The AAV data were also compared with the model

predictions from the Dutch National Collaboration Pro-
gramme on Air Quality [In Dutch: “Nationaal Samenwerking-
sprogramma Luchtkwaliteit” (NSL)].21 Model predictions
from this framework are calculated for each major road at
100 m intervals on both sides, approximately 10 m from the
roadside. We compared AAV data with the nearest NSL
prediction within 20 m (n = 7004). In addition, we also
compared AAV NO2 concentrations, Palmes, and NSL, where
all three data sources were available (n = 47, overlapping sites).
To assess the “absolute levels” of NO2 concentrations across

the city, we compared mixed model estimates with annual
average NO2 concentrations collected by the Dutch National
Air Quality Monitoring Programme (LML).
For CPH, the CAV data were compared with three air

quality datasets. The first comparison dataset was based on
recently updated Air Quality at Your Street address-level NO2
concentrations, annual average, 2019 (hereafter, LPDV).23

LPDV is a high-resolution public map of air quality for each
address location in Denmark. The air pollution levels were
estimated using the Danish multiscale dispersion modeling
system (DEHM-UBM-AirGIS), a standard toolkit to calculate
pollution levels at any address location in Denmark. The
modeled concentrations are representative of close to the
building faca̧de. The details of the DEHM-UBM-AirGIS
system as well as its detailed inputs are provided in the
study by Khan et al., 2019. CAV data were compared to the
nearest LPDV point within 20 m (n = 58,234).
The second comparison dataset was based on high-quality

DEHM-UBM-AirGIS22 predictions of NO2 concentrations and
point locations along 97 busy streets in Copenhagen. Air
pollution (e.g., NO2) is usually calculated for these streets as
part of the Danish National Monitoring and Assessment
Programme for the Aquatic and Terrestrial Environment
(NOVANA). Again, the nearest neighbor analysis, as described
above, was performed to compare NO2 estimates. This
comparison dataset will be referred to as CPH-97. This

Table 1. Overview of GSV Data and Comparison Data Sets in Amsterdam and Copenhagen

city data number of sites year name

AMS Amsterdam Air View data (data-only, LUR, mixed model) 46,664 2019−2020 AAV
Palmes tubes measurements20 82 2019−2020a Palmes
model predictions by the National Institute for Public Health and the Environment21 7004 2019 NSL
Dutch National Air Quality Monitoring Programme 7 2019 LML

CPH Copenhagen Air View data (data-only, LUR, mixed model) 28,499 2018−2020 CAV
AirGIS model predictions (2019)22,23 58,234 2019 LPDV
AirGIS model predictions along streets 97 2019 CPH-97
Danish National Air Quality Monitoring Programme24 3 2018−2020a NOVANA

aMatches exact time window of GSV measurements. AMS: Amsterdam; CPH: Copenhagen.
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dataset is based on more detailed and validated traffic data
than LPDV as traffic data originate from the traffic monitoring
program of the Municipality of Copenhagen.
The third comparison dataset (NO2, 2019 annual averages)

was acquired from two traffic monitoring stations and two
background stations. The monitoring stations are part of the
Danish Air Quality Monitoring Network in four major cities of

Denmark; see Ellermann et al.24 for more details. These data
(hereafter, NOVANA) are used to assess the “absolute levels”
of NO2 concentrations across the city.

3. RESULTS
In the results section, we split the analyses by city and combine
interpretations in the Discussion section.

Figure 2. Maps of measurements, predictions, and variance in Amsterdam. (a) Data-only map, (b) standard error of the mean, (c) LUR model
(fixed effects), (d) mixed-effect model, (e) random components, and (f) distribution of NO2 measurements and predictions. Note: Boxes represent
the IQR; the horizontal line is the median; vertical lines extend to IQR times 1.5 (limited to data); dots are individual outliers; the black squared
dot is the mean. Full size maps in the Supporting Information (Figure A1).
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3.1. Amsterdam. The LUR model based on measurements
for AMS is shown in Supporting Information Table A2. The
model mainly includes variables that describe local traffic
intensity. Furthermore, the model includes a large-scale
population density variable and the area of ports within a
1000 and 5000 m buffer. The model was able to explain the
average concentrations per street segment moderately well (R2

value 0.49).
Figure 2 shows the data-only map (a), followed by the

variance map with the standard error of the mean (b). This
map indicates that multiple street segments have a large
absolute and/or relative uncertainty. Figure 2c shows the
predictions by the LUR model, which is much more smoothed
than the data-only map. The mixed model prediction map
(Figure 2d) is more smoothed than the data-only map but
incorporates the variance of the data-only map in the random
effect. This leads to more preservation of the local effects.
Figure 2e shows, via the random effects (i.e., the difference
between the mixed model and the LUR model), that the
overall variance is comparable to the variance of the data-only
map. In Figure 2f, we show the distribution of the
measurements and model predictions by the LUR model and
the mixed-effect model. High-resolution NO2 maps are
available in the Supporting Information (Figure A1) and the
mixed model estimates via Google’s Environmental Insights
Explorer (https://insights.sustainability.google/labs/
airquality). For all datasets, the concentrations are higher
along the highways/major roads and vary generally smoothly
along less busy roads. The same variation of pollution was also
observed in the city center of AMS. Figure 2f shows that the
variation in data-only NO2 is higher than the LUR and mixed
model estimates.
In Table 2, we present the summary statistics and Spearman

correlation coefficients of all datasets (including external
datasets) with matching locations. Measurements by the
GSV car (and subsequent mixed model output) are on average
higher than measurements and predictions by the Palmes tubes
and NSL. Concentration distributions for the external datasets
are given in Supporting Information Figure A2.

Correlations between all data sets were moderately high,
with the highest correlation between the mixed model and
Palmes tubes (rs = 0.85). For data-only and LUR model
predictions, correlations were 0.74 and 0.75, respectively.
Furthermore, at Palmes sites with overlapping NSL predictions
(n = 47), the mixed model explained measured concentrations
at major roads modestly better than the national dispersion
model predictions. Since NSL only makes predictions on major
roads, the total variation in concentrations drops, resulting in
overall lower correlation scores compared to the full set of
monitoring locations. It also shows that a LUR model has
more difficulties predicting concentration levels within that
higher category, whereas the data-only approach is able to
achieve a similar performance compared to the complete
validation set. For the entire NSL dataset, we also found
slightly higher correlations for the mixed model output than
data-only and LUR model outputs. Supporting Information
Figure A4 shows the scatterplots and Bland Altman plots for all
comparisons.
Of note, AAV data and mixed model predictions were on

average 6.3 and 6.1 3 μg/m3 higher than the measurements
from the Palmes tubes (Table 2). The main reason for this
difference is the fact that AAV data are measured and predicted
on the road, while Palmes measurements were performed on
the faca̧de of buildings and expected to be lower due to
dilution from road to building faca̧de. Comparing the absolute
concentration levels from the mixed model with mean
concentrations from the seven routine measurement stations
(LML) in AMS over 2019, we found a difference of 3 μg/m3,
which is about 10%. In Supporting Information Figure A3, we
show a bar chart for all seven LML sites. We found no
apparent differences for sites close to traffic and sites in an
urban background environment. Both data sets do not exactly
overlap as the GSV was conducted from May 2019 till
February 2020, and the routine measurements are the annual
averages of 2019.

3.2. Copenhagen. The developed LUR model based on
measurements in CPH is shown in Supporting Information
Table B2, and like the AMS LUR model, it mainly includes

Table 2. Summary Statistics, Correlation, and Bias Scores for all Comparisons in AMSa

summary statistics correlation and bias

min Q1 med Q3 max rs RMSE mean bias mean relative bias (%)

Comparison to NSL Predictions, n = 7004
NSL 12 23 26 28 41
data-only 7 23 29 37 116 0.50 11.35 5.2 20
LUR model 16 27 31 34 84 0.61 6.76 5.1 20
mixed model 15 27 30 35 69 0.65 7.47 5.5 21

Comparison to Palmes Measurements, n = 82
Palmes 17 23 28 32 44
data-only 13 23 34 42 58 0.74 10.23 6.3 23
LUR model 20 28 32 35 52 0.75 6.49 4.5 16
mixed model 17 28 34 38 57 0.85 7.67 6.1 22

Comparison to Palmes Measurements with Overlapping NSL Sites, n = 47 (Major Roads Only)
Palmes 19 26 31 33 41
NSL 23 29 33 35 40 0.54 4.84 2.1 7
data-only 16 32 36 43 54 0.74 9.95 6.5 22
LUR model 24 32 35 37 50 0.45 6.93 4.7 16
mixed model 23 33 35 41 51 0.72 8.04 6.4 21

aSummary statistics, RMSE, and mean bias in μg/m3. Min = minimum, Q1 = the 25th percentile, med = median or the 50th percentile, Q3 = the
75th percentile, max = maximum, rs = Spearman’s rank correlation, RMSE = root-mean square error, mean bias calculated as mean [(ref − test),
mean relative bias calculated as mean bias/ref] where: ref = NSL, Palmes, and test = AAV data.
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variables that describe the local traffic intensity. However, the
CPH LUR model also includes traffic intensity variables with
bigger buffers and the average building height within 100 m. As
noted in Section 2.5, the estimated/average building height
was only available for CPH. The R2 value of the model was
slightly higher than that of the AMS LUR model, that is, R2 =
0.54.
Figure 3 shows the data-only map of Copenhagen (a),

followed by the variance map with the standard error of the

mean (b). Like AMS, there are differences in absolute and/or
relative uncertainties between street segments. Figure 3c shows
the predictions by the LUR model, which is much more
smoothed than the data-only map. The mixed model
prediction map (Figure 3d) is more smoothed than the data-
only map but incorporates the variance of the data-only map in
the random effect. This leads to increased hyperlocal variability
of concentrations. The random effects are shown in Figure 3e,
showing that the overall variance is comparable to the variance

Figure 3. Maps of measurements, predictions, and variance in Copenhagen. (a) Data-only map, (b) standard error of the mean, (c) LUR model
(fixed effects), (d) mixed-effect model, (e) random components, and (f) distribution of NO2 measurements and predictions. Note: Boxes represent
the IQR; the horizontal line is the median; vertical lines extend to IQR times 1.5 (limited to data); dots are individual outliers; the black squared
dot is the mean. Full size maps in the Supporting Information (Figure B1).
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of the data-only map. In Figure 3f, we show the distribution of
the measurements and model predictions by the LUR model
and mixed-effect model. High-resolution maps are available in
the Supporting Information (Figure B1) and the mixed model
estimates also via Google’s Environmental Insights Explorer
(https://insights.sustainability.google/labs/airquality). Like
Amsterdam, the concentrations are higher along the high-
ways/major roads and vary generally smoothly along less busy
roads, with variation in data-only NO2 being slightly higher
than the other datasets.
In Table 3, we present the distribution of measurements and

models and Spearman’s correlation coefficients for CPH.
Correlations with CAV data were moderately high for the
CPH-97 data set but decreased when CAV data were
compared with the LPDV data. CPH-97 has higher
concentrations than LPDV data because CPH-97 only includes
near-traffic locations. Mixed model estimates agreed better
with the dispersion model approaches (i.e., LPDV, CPH-97)
than the data-only and LUR models. Table 3 also shows that
the mixed model is able to lean to a LUR model when this
generates better predictions (for LPDV) and uses more data-
only measurements when they are more robust (for CPH-97).
Supporting Information Figure B4 shows the scatterplots and
Bland Altman plots for all comparisons.
In CPH, we did not find significant higher measurements

and predictions by the CAV car compared to the LPDV data
(Table 3), though we found similar differences between CAV
mixed model estimates and four stationary sites (Figure B3).
Differences were between 10 and 20% in terms of absolute
values, except for H.C. Andersen’s Boulevard, where
concentrations differ by about 30%.

4. DISCUSSION

In one of the largest mobile monitoring campaigns to date, we
have shown that mobile monitoring can be used to develop
accurate air pollution maps. The applied mixed model
approach uses the advantages of a data-only and an empirical
(LUR) model approach, outperforming the two individual
approaches when compared to external measurements and
different national dispersion models. Since all road segments
are measured, the mixed models use the hyperlocal variation
that can be picked up by a data-only approach while borrowing
the stability from the LUR model estimates. This way, the
measured hyperlocal variation is preserved, while uncertain low

or high concentrations are shrunken toward the LUR model
output.

4.1. Mobile Monitoring. Studies based on mobile
monitoring usually face one out of two problems: the high
variance (noise) in mobile measurements for specific locations
(road segments) or loss of hyperlocal spatial variation by the
creation of a LUR model. Figures 2b and 3b show that the
variance (standard error of the mean) differs significantly
between streets and neighborhoods. For example, 15% of the
street segments in both cities have a standard error of the mean
bigger than 5 μg/m3. While for some streets, four to eight
repeats will be enough to characterize long-term concentration,
some streets remain uncertain. Interpretation of hyperlocal
effects is therefore very difficult.
Only a few mobile monitoring campaigns have been able to

measure such a significant amount of repeated measurements
on street segments in a specific area, and there was no need to
build a LUR model in order to create an air pollution
concentration map.3,7,16 While Messier et al.3 found that 4−8
repeats were sufficient to create a data-only map for black
carbon and nitrogen oxide (NO) better, or at par with a LUR
model, Miller et al.7 sampled each street segment (n = approx.
10,500) in Harris County, Texas 15−44 times and Apte et al.16

needed 1 year to sample each street segment (n = approx.
21,000) in different parts of Oakland at least 30 times. It takes
a lot of time and effort to create such rich data (>15 drives).
For AMS and CPH with 46,664 and 28,499 street segments,
respectively, it would take much more time or cars to achieve,
let alone scaling up to bigger and more areas.
Nevertheless, data-only mapping in AMS correlated highly

with external measurements (rs = 0.74; Table 2). On the other
hand, data-only mapping in CPH correlated poorly with the
national model predictions (rs = 0.45; Table 3).

4.2. LUR Model Development. In previous work,4 we
showed that LUR models based on only two to three visits per
street segment could predict external long-term measurements
with moderately high accuracy. In Messier et al.,3 the authors
found that even with 2 drive days per road segment, the R2

value, that is 0.52, was within 15% of models developed on 45+
drive-passes. Hatzopoulou et al.15 decreased the number of
road segments from 611 to 100 in steps of 50, and R2 values
remained stable up until 200 road segments. Even LUR models
based on 100 segments predicted on average 73% of the
variation (opposed to 74% for the entire dataset), albeit with a
wider confidence interval (55−85% opposed to 70−78% for

Table 3. Summary Statistics, Correlation, and Bias Scores for all Comparisons in CPHa

summary statistics correlation and bias

min Q1 med Q3 max rs RMSE mean bias mean relative bias

Comparison to LPDV Model Predictions (N = 58,234)
LPDV 11 14 15 18 47
data-only 5 10 13 17 128 0.45 7.18 −1.87 −11
LUR model 8 12 15 18 50 0.50 4.06 −1.08 −6
mixed model 8 12 15 18 53 0.51 4.15 −1.14 −7

Comparison to CPH-97 Model Predictions (N = 97)
CPH-97 17 22 25 28 39
data-only 12 19 25 31 53 0.67 7.75 0.81 3
LUR model 16 24 27 30 50 0.55 5.16 1.78 7
mixed model 16 23 27 30 52 0.65 5.94 2.04 8

aSummary statistics, RMSE and mean bias in μg/m3. min = minimum, Q1 = the 25th percentile, med = median or the 50th percentile, Q3 = the
75th percentile, max = maximum, rs = Spearman’s rank correlation, RMSE = root-mean square error, mean bias calculated as mean [(ref − test),
mean relative bias calculated as mean bias/ref] where: ref = LPDV, CPH-97, and test = CAV data.
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the entire dataset). Two other studies in Canada also found
that increasing the visits (or total measurement time) quickly
stabilizes LUR model predictions based on mobile measure-
ments.25,26

In this study, R2 values for the LUR models in AMS and
CPH were also moderately high (0.49 and 0.54; see Tables A1
and B1). Of note, R2 values depend not only on the number of
drive-passes or total time spent on a road segment but also on
the urban topography of a city and the type of input data
available. European cities tend to be more spatially diverse than
North American cities, making it harder for LUR models to
explain the variability of air pollution.27

Nonetheless, predictions made with LUR models correlated
high with external measurements (rs = 0.75) and moderately,
that is, rs = 0.50−0.61, with model predictions (Tables 2 and
3). This is similar to correlations with data-only mapping.
Because of the smoothing of LUR models, RMSE and mean
bias values are lower than data-only mapping and the mixed
model approach, especially in Amsterdam. This mainly
happens at the higher end of the concentration scale; see
Figures A4 and B4. This relates to LUR models typically less
able to capture small-scale variation compared to data-only
mapping. This is mainly due to the fact our LUR models
incorporated traffic intensity but not features like the
composition of traffic and speed. Other local features like
street configuration and small industrial sources are also
missing. The balance between data-only and LUR-model maps
depends on how extensive and detailed predictor variables are
available. More and better predictors likely increase the
performance of LUR models, especially predictor data that
can explain the very local variation of air pollution.
4.3. Mixed Model Development. By using a mixed

modeling framework, we were able to take advantage of both
measured concentrations per road segment and LUR modeling
at the same time. LUR models are generally more stable but
not so well at detecting local features. In Table 2, we show that
the mixed modeling estimates correlated higher with external
measurements (rs = 0.85) compared to the data-only (rs =
0.74) and LUR model output (rs = 0.75). Mixed model
estimates also correlated higher with external model
predictions compared to the data-only and LUR model output
(Tables 2 and 3). Spearman correlations were 0.65, 0.51, and
0.65, on average 0.1 higher than data-only mapping and LUR
model estimates.
A mixed model approach in air pollution research is not new.

Several studies used this method to assess spatial and temporal
variations of air pollution at the same time.28−31 For these
studies, the main goal was to create a model that can predict
concentrations at other locations or at other time points. In
our mixed model framework, we only used spatial land use
information to create a long-term average map and do not
need to predict concentrations at other locations or time
points. The mixed-effect model was specifically used to bring in
the hyperlocal variation in concentrations that is missed by a
typical LUR model. Figures 2e and 3e show the difference
between the LUR model and the mixed model. In other words,
it shows the influence of the data-only mapping (random
components). On about 10% of the street segments in CPH
and 20% in AMS, there is difference of at least 3 μg/m3

between the LUR model and the mixed-effect model. The
variance that is lost by the LUR model, compared to data-only
map, is brought back by the random components of the mixed
model.

4.4. Bias. For most comparisons, we found higher NO2
values for the data-only mapping, LUR, and mixed model
method compared to all other external measurements and
predictions, except the LPDV data. Several studies already
reported that mobile monitoring studies create higher output
values because these measurements are done in the middle of
the road, while all external measurements and predictions are
sampled on the side of the road or faca̧de of buildings.
In previous studies to UFP (ultrafine particles) and BC

(black carbon), we showed that predictions made by models
based on mobile monitoring are about 20−30% higher than
external home-outdoor stationary measurements.4,32 For NO2,
the number seems to be slightly less, probably because NO2 is
slightly less heterogeneously dispersed compared to UFP and
BC due to photochemical reactions between NO and ozone-
forming NO2, where NO emissions from the road are
dispersed to the building faca̧de. Experiments in real-world
data also found steeper gradients for UFP and BC compared to
NO2.

33−35 In Tables 2 and 3, we show that NO2 predictions
made by the mixed model output are about 15−20% higher
than the external measurements and predictions. This is also
shown in the Bland−Altman plots in the Supporting
Information, where a larger bias is observed with higher
concentration levels in all comparisons. Also, compared to
official monitoring stations in AMS and CPH, the difference is
about 15−30% (Figures A3 and B3). The same on-road/off-
road ratio was found in a study by Richmond-Bryant et al.36 in
Las Vegas. They found that NO2 concentrations declined from
on-road to 10 m from the road by a median of 16% (and 21%
for a 20 m distance).
This gradient of NO2 concentrations in the vicinity of roads

(on-road/off-road ratio) depends on the wind direction and
urban topography, making the exact ratio for each road
segment individually hard to predict. The most practical
solution would be to reduce mobile monitoring output by 20%
for all road segments to approach residential exposure.
Alternatively, the mixed model predictions could be combined
with a dispersion model. Either by using mixed model
predictions as line source in a dispersion model or by
integrating both models in data fusion steps.

4.5. Strengths and Limitations. One of the strengths in
this study is the fact that we were able to use external long-
term measurements in the same time period as the mobile
monitoring to validate our model predictions.37 Next, we were
able to compare our model predictions with model predictions
used by official national environmental agencies. Predictions in
these models are made with dispersion models, meaning they
are constructed very different than our empirical models.
Differences between models can therefore not be interpreted
as one being better than the other but rather that both models
offer different features contributing to exposure estimates.
The biggest limitation of the measurement setup used in this

work is the amount of time, energy, and significant initial
investment it takes to collect such enormous amounts of data.
In the study by Apte et al.,16 they estimated that it would take
around 400 mobile monitoring vehicles to create a data-only
map (>20 drives) for all streets in the largest 25 US cities,
though the number of vehicles could be reduced if data are
combined with LUR models. Within a mixed modeling
framework this could easily be implemented, though it would
need a huge effort in order to sample street segments in a large
area (bigger than one or a few cities). A few drives are needed
to develop a LUR model, while adding more and more drives
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increases the accuracy of data-only mapping. Hence, when
more and more data are collected, actual measurements could
explain more and more local variations. This makes the mixed
model approach a very scalable solution to other cities as well.
As the mixed model balances the input that is most accurate
(data-only or LUR model estimates), there is no minimum
number of drive-days to create a stable concentration map.
This also means that the mixed model is able to predict
concentration levels on street segments without measurements
as they could be based on the LUR model output (with the
limitations associated with LUR models in regard to smoothing
of concentrations).
To keep the hyperlocal variation in air pollution maps,

measurements on every street in question will always be
needed. This could, for example, be achieved by putting
measurement devices on municipal utility vehicles. Hasenfratz
et al.,10 for example, collected over 50 million measurements of
UFP over a 2 year period using mobile sensor nodes installed
on top of public transport vehicles in the city of Zurich,
Switzerland. While this effort did not cover the entire city, it
contained enough data to develop a LUR model in a short
amount of time. Coverage could be further increased when
sensors or monitors are installed on utility vehicles that cover
large parts of the city (e.g., municipality vehicles and delivery
trucks). A mixed model approach will therefore always be at
least as good as a LUR model as it takes the LUR model as the
baseline and adds additional information based on the
measurements.
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NSL Nationaal Samenwerkingsprogramma Luchtkwali-
teit (Dutch National Collaboration Programme on
Air Quality)

NOVANA the National Monitoring and Assessment Pro-
gramme for the Aquatic and Terrestrial Environ-
ment
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