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MIXED EXPLICIT-IMPLICIT ITERATIVE FINITE ELEMENT SCHEME 
FOR DIFFUSION-TYPE PROBLEMS: 

I. THEORY 

by 

S. P. Neuman1' 2 and T. N. Narasimhan2 

Summary 

A Galerkin finite element formulation of diffusion processes based 

on a diagonal capacity matrix is analyzed from the standpoint of local 

stability and convergence. The theoretical analysis assumes that the 

conductance matrix is locally diagonally dominant, and it is shown that 

one can always construct a finite element network of linear triangles 

satisfying this condition. Time derivatives are replaced by finite dif-

ferences, leading to a mixed explicit-implicit system of algebraic equa-

tions which can be efficiently solved by a point iterative technique. 

In this work the accelerated point iterative method is adopted and is 

shown to converge when the conductance matrix is locally diagonally dom-

inant. Several examples are included in Part II of this paper to demon-

strate the efficiency of the new approach. 

1 
Lawrence Berkeley Laboratory, Berkeley, California 94720. 

2 Department of Civil Engineering, University of California, Berkeley, 
California 94720. 
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Introduction 

Finite element formulations of parabolic equations such as those 

governing chemical diffusion, heat conduction, and fluid flow through par-

ous media often lead to a sy~tem of first-order linear differential equa

tions of the form1 

• 
[~] {h (t)} + [gJ {h (t)} = {g_ (t)} (1) 

where [A] is the conductance or stiffness matrix, [Q] is the capacity matrix, 

{h} is the dependent variable vector (e.g., hydraulic head in a groundwater 

system), and {.Q.} is a flux vector representing sources or sinks. 

In general, the capacity matrix [g] includes non-zero off-diagonal 

terms (i.e., it is non-diagonal) and there is evidence 

in the literature suggesting that this may lead to conceptual as well as 

numerical difficulties. For example, a recent analysis by Narasimhan
2 

indi-

cates that a non-diagonal [n] matrix may upset the maintenance of local mass 

or energy balance, although overall balance over the entire region may still 

be preserved. This may perhaps explain why as our experience indicates, 

equation (1) sometimes yields physically unrealistic values of {~} when 

there is a sudden and drastic change in {Q}, and why this can be remedied by 

diagonalizing the [g) matrix as has been done by Wilso~3 Enery and Carson, 4 

and others. 5 6 Narasimhan's theory may also explain why Neuman ' was forced to 

diagonalize the ~] matrix in dealing with the highly nonlinear problem of 

saturated-unsaturated groundwater flow; otherwise, the finite element scheme 

would not converge. Obviously, the use of a diagonal capacity matrix also 

results in increased computational efficiency as compared to a non-diagonal 
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matrix owing to lesser storage requirements and fewer algebraic operations in 

calculating the matrix terms. 

The purpose of this paper is to discuss an alternative form for equa-

tion (1) with a diagonal capacity matrix which we believe has many advantages 

over the traditional approach; The resulting differential equations are 

discretized in time ·by finite differences which enables one to treat them 

either explicitly, or implicitly, or by an optimum combination of both 

schemes. The implicit equations are solved by a point iterative technique 

rather than by a direct method such as Gaussian elimination. Part I of the 

paper examines local stability and convergence criteria for the explicit-

implicit scheme as well as convergence of the proposed point iterative tech-

nique. The theoretical analysis assumes that the matrix [~] is locally 

diagonally dominant; at the end of the text it is shown that one can always 

construct a. finite element mesh satisfying this condition. Part II describes 

various aspects of the solution strategy including questions related to 

choiee of time step size, choice of relative weights of explicit and implicit 

terms to be assigned during any given time step, initial guess for iterative 

scheme, treatment of norllinearities, etc.; and provides examples to illus-

trate the capabilities of the new approach. 

Explicit-Implicit Formulation 

Consider .the particular diffusion-type equation for fluid flow 

in an anisotropic porous medium 

'V • (! 'V h) = c oh 
. at (2) 

where h is hydraulic head, K is hydraulic conductivity tensor, and C 

is specific storage or fluid capacity (defined as volume.of fluid instan-

taneously released from storage per unit bulk volume of porous medium when 
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h is lowered by one unit). To discretize equation (2) in space we adopt a 

network of triangular elements for plane flow and of concentric rings of 

constant triangular cross-section for axisymmetric problems. In each 

individual element, the hydraulic head is described approximately in terms 

of linear shape functions and the values h of head at the corner (node) 
n 

points. The next step is to apply the Galerkin method
1

' 5 to equation (2). 

However, since the Galerkin method is applicable only at a given instant 

of time, the time derivative 3h/3t must be determined independently of the 

Galerkin orthogonalization process. Thus, instead of replacing h in the 

time derivative by the approximating Galerkin sequence as is usually done 

in the finite element approach, one is justified to define the nodal values 

of 3h/3t as averages over the exclusive domains associated with each node 
.3 

(every nodal point is associated with one third of each adjoining element; 
. 7 

for further details the reader is referred to Narasimhan). This leads to 

a system of first-order linear differential equations of the form 

[A] {!!_ (t)} + [Q*] {h (t)} = {g_ (t)} (3) 

•hich is identical with (1) except for the capacity matrix, [g*], which 

does not include any non-zero off-diagonal terms. The individual terms of 

the matrices [~ and [Q*] are given by 3 , 5 

A = E ~ [K b b + K (b c + b c ) + K c c ] 
nm e 4S xx n m xy n m m n YY n m 

(4) 

I 
E os c if n m 
e 3 

D* = nm 
0 if n I m 

(5) 
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where S is area of triangle, o = 1 for plane flow and o = 2nr for axi-

symmetric flow (r being average radius of triangle), band care geometric 

coefficients defined in Appendix A, and the summation sign applies to all 

elements adjacent to nodal point n. It can be shown3•7 that -A represents nm 

the rate of fluid transfer into the exclusive subdomain of node n (one third 

of each adjacent triangle) due to unit difference in head between nodes m 

and n. On the other hand, D* is .the fluid capacity of the exclusive subnn 

domain associated with node n. 

If we replace the time derivatives in equation (3) by finite differ-

ences and introduce a weighting factor, a, we obtain a system of simultaneous 

linear algebraic equations of the form 

{!!_k+l} - {!!_~} 

At = {Q} (6) 

where 0 ~ a ~ 1, At is time increment, and k indicates number of time steps. 

Defining a new term 

A = nm 

At • A 
run 

o* 
nn 

and recognizing from equation (47) in Appendix A that 

A 
nn 

= ~ 

m#n 
A 

nm 

we can rewrite (6) as 

h k+l 
n 

·k 
h 

n 
=a~ A (hk+l_hk+l)+(l-a) ~ 

run n m 
m#n m#n 

(7) 

(8) 

A (h k- h k) + Q At/D* nm n m n nn 

n = 1, 2, · · · · , N (9) 
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where N is total number of nodes and the summation is taken over all values 

of m = 1, 2, • . • , N other than m = n. When e = o, all the values of h k+l 
n 

can be calculated explicitly from the system of equations (9), which now 

corresponds to a forward difference scheme in time. When 8 = 1, the result 

is a fully implicit backward difference scheme, whereas e ~ corresponds to 

a time-centered or Crank-Nicholson8 scheme. It is important to note that 

equation (9) does not include any diagonal terms of the matrix [~], a fact 

which may save a considerable amount of storage and computer time, especially 

in dealing with nonlinear problems where the matrix must be recomputed at 

each time step. 

Local Stability Criteria 

The local stability of (9) at any given node, n, can be conveniently 

. 8 9 10 analyzed by using the von Neumann harmon~c approach. ' ' According to this 

k approach, the solution h can be viewed as the sum of an exact solution of 
n 

*k k (9), h , and an error, £ 
n n 

The initial error is expressed as a complex 

Fourier series 

£ 
n 

0 
= 

00 00 

E 
p = -oo r = -oo 

B exp (ipx + iry ) 
pr n n 

(10) 

where p and r are integers, i is 1=1, and B are Fourier coefficients. pr 

The error at any later time is expressed as 

£ k 
n 

= 

00 00 

p = -oo r = -oo 

B ~ (k) exp (ipx + iry ) 
pr pr n n 

(11) 

where the growth (or decay) factor, ~ , is raised to the k-th power. Since 
pr 

k ~ k h as well ash satisfy (9), it follows that£ satisfies a similar 
n n n 

equation but one which does not include sinks or sources, ~· If we sub-

stitute a typical term from (11) into (9) without Q and solve for ~ , 
n pr 
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we obtain 

1 + (1-8) L >.. [1 - exp (ip ~ + ir ~y )] 
~ min~ m m 
~pr = ----------~=-----------------------~-- (12) 

1 ..,. 8 E A 
mIn ~ 

[1 - exp (ip ~ + ir ~y )] 
m m 

where ~ = x - x and ~y = y y Let us assume that the matrix [_A] m m n m m - n· 

is locally diagonally dominant, i.e., that Ann~ L IA~I for some n; 
min 

later we will show that one can always construct a finite element mesh which 

satisfies this requirement at any given node. As is shown in Appendix A, 

this means that all the off-diagonal terms of >.. are non-positive and 
-~ 

therefore ~ can be rewritten as ~pr 

1 - (1-8) E . I>.. I [1 - exp (ip ~ + ir ~y )] 
min ~ m m 

F;pr = ------=-..:..._:=----------------'-----:-
1 + 8 E I\,,, [1 - exp (ip b.x + ir b.Y ) ] 

min ...... m m 

Decomposing F;pr in (13) into its real and imaginary parts yields 

where 

Re (f; ) = [1 - (1-28) E I>.. I [ 1 - cos (p -~ + r ~Y )] 
pr mIn ~ m m 

8 (1-8) 
n 

8 (1-8) l· E 
mIn 

I>.. 1 [1 -cos <P ~ + r b.y >JI 2 
nm m m 

den = 11 + 8 E I>.. I [ 1 - cos (p ~- + r b.y )] I 2 

~ m m mIn 

+ 8
2 l E I A I· sin (p ~ + r b.y ) I 2 

min ~ m m 

(13) 

(14a) 

(14b) 
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Since the denominator is always greater than or equal to 1, it is obvious 

from (14b) that lim(~ >I~ 1 under all circumstances. On the other hand, pr 

Re (~ ) can never exceed 1 and therefore the system will be locally stable pr 

(i.e., the error at node n will not grow) whenever Re (~ ) ~ -1. The most pr 

negative value of Re (~pr) occurs when cos (p ~xm + r ~ym) = -1 and sin 

(p ~m + r ~ym) = 0, in which case the above requirement reduces to 

Re (~ ) = pr 

1 + 2 (a-1) ~ IAnml 
m :1 n > - 1 (15) 

Again, the most negative value occurs when the sum in equation (15) tends to 

infinity, in which case 

lim Re (~ ) = 

r. I A rr-+ 00 

m:ln nm 

.;::.a--::--_;1=- > _ 1 a (16) 

Equation (16) is satisfied whenever a~ 0.5, indicating that our scheme is 

unconditionally stable at node n for all values of a which are not less than 

0.5. 

If a < 0.5, stability is conditioned upon equation (15). Since [~] is 

diagonally dominant near n, (8) implies that 

A 
nn 

= ~ 

m :1 n 
lA I nm 

(17) 

and therefore the local stability criterion given by equation (15) can be 

expressed as 

* 
A < -::--=-1--:::-::::-
nn - 1 2a or 

D 
~ t < -:---:-n"="n-=----

(l-2a) A 
nn 

8 < 0.5 (18) 
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For example, the explicit version of equation (9) is stable at any node at 

which the ratio between capacity and conductance is large enough so that 

·* I ~t < D ·A for any given ~t. - nn nn Conversely, the explicit scheme can be made 

stable at all nodes by choosing a sufficiently small ~t. 

The stability criterion ~t < D* /A for the explicit scheme can also - nn nn 

be derived by physical reasoning. According to equation (47) in Appendix A, 

A is the sum of all fluxes entering into the exclusive subdomain of node n nn 

when heads at all adjacent nodes, h , exceed h by unity. On the other hand, m n 

* D is the capacity of the subdomain to absorb fluid when h changes by one nn n 

unit. Thus, the above stability criterion merely states that the amount of 

fluid entering into the subdomain of n must not exceed the capacity of the 

subdomain to absorb fluid. A value of ~t in excess of what is prescribed 

by the stability criterion would imply that h must change by more than 
n 

unity, which is contrary to physics (recall that in the explicit scheme, the 

values of h remain fixed during a time step) and may therefore lead to uncon
m 

trolled local oscillations in the values of h • . n 

Local Convergence Criteria 

We now turn our attention to an equally important question: Under what 

conditions does the approximate solution obtained from the numerical scheme 

converge to the exact solution of the differential equation as the mesh is 

made finer and finer? Many finite element formulations are known to con-

verge in the mean; however, they seldom guarantee convergence at a point. The 

purpose of this section is to demonstrate that the explicit-implicit scheme 

in (9) converges to the exact solution of the partial differential equation 

(2) at every node satisfying the following requirements: a) The node is not 

a sink or a source; b) the node does not lie on a material boundary; c) the 
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node lies in an isotropic domain; and d) all elements in the immediate neighbor-

hood of the node form a mesh having at least two orthogonal axes of symmetry 

with respect to the positions of thenodes (for example, a mesh consisting 

locally of equilateral triangles such as in Figure la, or a rectangular 

nodal pattern such as in Figure lb). Later in the text we will show 

how these criteria can be extended to anisotropic domains. 

To prove this; consider a homogeneous isotropic region with a super-

imposed finite element mesh consisting of equilateral triangles (see Figure 

la), with a spacing a1 between the nodes, and a constant time increment ~t1 • 

Suppose that one wishes to improve the calculation at a given time t by 

repeating it with successively finer and finer meshes. The value of k t/~t 

corresponding to the fixed time t will, of course, tend to infinity as 

~t ~ 0, and it is therefore obvious that the mesh must be refined in such a 

manner as to constantly maintain stability. Therefore, consider another mesh 

with increments given by a = a1/J, ~t = ~t1/J2 (J = integer) and assume that 

a
1 

and ~t1 have been chosen so that 

*1 
D 

nn 

= 
~t • A l 

nn < ...,.--.::::;_7::-* - 1 - ze 
D 

(19) 

nn 

for all e < 0.5, in accordance with the stability criterion in (18) (for 

8 ~ 0.5, the values of a1 and ~t1 can be chosen arbitrarily). Then, we can 

prove the following 

Theorem: k Let h denote the approximate value of h (x,y,t) obtained 
n 

at a fixed node n at time t = k ~t by solving the finite element equations 

(9). k 
Then h converges to the exact solution of the partial differential n . 

equation (2), h, as J ~ oo. 
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XB L 758-36 88 

Figure 1. Examples of nodal patterns with two orthog
onal axes of local symmetry. 
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Proof: The solution of (2) when K is a scalar can be expressed in 

the form 

co co 

h = L 
p = -co r = -co 

2 2 
H exp [ipx + iry - (p + r ) a t] pr 

t ~ 0 (20a) 

where a = ·K/C and H are Fourier coefficients which can be determined from 
pr 

the known initial conditions (the initial conditions are expressed by the 

Fourier series obtained from (20a) upon setting t = 0). Since node n is 

not a sink or a source, the solution of the algebraic equations (9) can be 

written, in analogy to (11), as 

co co 

h k = 
n 

L 
p = -co r = -co 

H ~(k) exp (ipx + iry ) 
pr pr n n 

(20b) 

where~ is given by (12). Let p and r be arbitrary positive integers .. 
pr o o 

Then, according to (20a) and (20b), we can write for a given·J, 

L + 
lr l.st-o 

L L ) H exp (ipx + iry ) 
I p I >p o U I r I >r o pr n n 

(~t/ f::.t - t/ t::.t\ < 
pr n } (21) 

where Ll and L2 stand for the first and second sum, respectively, and n exp 

2 2 
[- (p + r ) a !::.t]. The second sum satisfies 

L L 
IPI>Po U lrl>ro 

IR I pr 
(22) 

because I~ I"~ 1 due to stability and In I .S. 1 due to positivity of a and 6t; 
pr 

therefore, IL
2

1 can be made arbitrarily small by choosing sufficiently large 

values of p
0 

and/or r
0

, since the Fourier series in (11) is known to be 

absolutely convergent. 
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To estimate IE1 1 we first note that 

~t/ 1'\t . t/ 1'\t 
"'pr . - n - n ~ + ~ n +··· ~~ k-1 k-2 

pr · pr 

~ ~~pr - nl k 

Furthermore, n can be expanded as 

n = 2 2 1 2 22 2 
1 - (p + r ) a 1'\t + 2T (p + r ) (a 1'\t) 

and, according to equation (57) in Appendix B, 

Thus, remembering that A is constant, we find that nn 

2 2 2 
+ r ) (1'\t) 

- . . . 

(23) 

(24) 

is an analytic function of (p2 + r 2) 1'\t in some neighborhood of the origin; 

2 2 and is therefore bounded for all non-negative (p + r )1'\t. Let this bound 

be M. Then 

!Ell~ r r 2 2 2 2 M_L IHprl IPI.:sp
0 

lrl~ 
(p + r ) (1'\t) 1'\t 

0 

00 00 

5.. (po 
2 + r 2) 1'\t M t r r I apr I (26) 

0 = -00 r = _oo p 

Having chosen p and/or r large to make 1t21 small, we can now choose a 
0 0 

sufficiently small 1'\t to make IE1 1 arbitrarily small. Thus, the error in 

(21) can be made as small as one wishes by choosing J sufficiently large. 

Q. E. D. 
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A similar proof for the equivalent one-dimensional finite difference 

equation has been given by Hildebrand11 and has also been outlined by 

Richtmyer and Morton. 8 

It will be noted that the above proof rests on the fact that I~ - nl pr 

is of order (6t) 2 . Following the procedure outlined in Appendix B, one 

can easily verify that this will also hold true for the rectangular mesh 

shown in Figure lb, as well as for other meshes having at least two orthog-

onal axes of local symmetry (reflecting symmetry of nodal locations) passing 

through node n. However, ~~pr -_nl will be of order 6t for all other meshes 

that we can think of, and therefore our proof will no longer apply. 

Point Iterative Scheme 

The iterative scheme adopted in this work is known as the point accel

eration method and has been developed originally by Evans et al:o in 1954. 

As will be seen below, it differs from the more familiar point successive 

over-relaxation technique; the latter can be viewed as an extension of the 

Gauss-Seidel method, whereas the former is more closely related to the point 

Jacobi method. The acceleration method is readily amenable to an analysis of 

pointwise convergence and is therefore ideally suited for the mixed explicit-

implicit .scheme proposed in this work. 

The system of equations (9) can be rewritten as 

= ~ A. * 6h 
n m :/: n_ nm 

[(h k- h k> + e (6h 
n m n 

- 6h )] + Q MID 
m n nn 

Explicit 
part 

Implicit 
part 

n = 1, 2, · · · ' N 

h Ah h k+ 1 h k d • • h h • 1 • • h w ere u = - an 1t 1s seen t at t e 1mp 1c1t part vanis es n n n 

(27) 

when e = 0. The acceleration method consists of introducing the following 
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substitutions into (27): 

lib (left side) -+ lib j+l 
n n 

lib (right side) -+ (1 +g) llh j+l g llh j 
n n n 

llh (right side) -+ llh j 
m m 

where j is number of iterations and g is acceleration factor. Solving for 

llhnj+l, the acceleration algorithm takes the form 

E A er A llh j * (h k - h k) + llh j) (g + Q llt/D 
. lib j+l m :/: n nm n m mf:n nm n m n nn 

= n 
1 - e (1 + g) E A 

m :/: n 
nm 

The reader may easily recognize the fact that when g is set equal to zero, 

equation (28) reduces to the point Jacobi algorithm. As a matter of contrast, 

when the relaxation factor in the point successive over-relaxation algorithm 

is set equal to unity, it reduces to the Gauss-Seidel algorithm. 

As will be shown below, the acceleration method converges at any node 

at which [~ is locally diagonally dominant (we mentioned earlier that it is 

always possible to construct a mesh which satisfies this requirement), pro-

vided that g £0. For optimum results, g should not exceed 1 and should usu-

ally be less than 0.5. Experience indicates that near-zero values of g may 

cause difficulties and the optimum value tends to be in the vicinity of 0.2. 

(28) 
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Convergence of Iterative Scheme 

Let us define the iteration error at a node as ~£ j+l = 
n 

~h j+l 
n 

and introduce it into equation (28) by utilizing (8), with the 

result 

~£ j+l 
n 

- e 
= 

A ~£ j + e 
n.m m 

A ~£ j 
g nn n 

1 + e (1 + g) A 
nn 

Using again von Neumann's harmonic analysis in a manner similar to Evans 

(29) 

et al.;0 we replace~£ j by B ~ (j) exp (ipx + ir ~y) where the growth 
n pr pr n n 

factor is raised to the j-th power and thus obtain from equation (29) 

~pt = 

- e E 
m :/: n 

A exp (ip ~x + ir ~y ) + 8 g A 
n.m m m nn 

1 + e (1 + g) A nn 
(30) 

The growth factor can be decomposed into its real and imaginary parts, 

- e E A cos (p l::.x + r !::.y ) + e g A 
:/: n 

nm m m nn 
Re(~ ) m 

pr 1 + e (1 + g) A 
nn 

(31) 

- e E A sin (p ~x + r !::.y ) + e g A 
m :/: n 

nm m m nn 
Im (~ ) = 

pr 1 + e (1 + g) A 
nn 

(32) 

Assuming that [~] is locally diagonally dominant, all the terms A (m :/: n) 
nm 

are negative according to Appendix A. This implies that the most extreme 

values of Re(~ ) are obtained when the cosines in (31) are replaced by pr 

± 1, in which case (see (8)) 

Re(~ ) = pr 

e A (± 1 + g) 
nn 

1 + e A (1 + g) nn 

For convergence we require that IRe(~ >I< lor, according to (33), that pr 

(33) 
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(34) 

A similar result is obtained by considering lm(~ ). Since a and A are pr · nn 

non-negative, equation (34) is satisfied for all g ~ 0. If the positive 

sign is cqosen in the numerator, ,the smallest absolute value of ~ (i.e., pr 

the fastest rate of convergence) is achieved with g = 0. If the negative 

sign is chosen, the smallest absolute value of ~ is achieved with g = 1. pr 

Thus, optimum rate of convergence is obtained when 0 ~ g ~ 1. 

The above criterion was obtained considering the most extreme situa-

tiona that may arise. In general, however, the sine and cosine terms in (31) 

and (32) will attain the values ± 0.5 twice as often as ± 1. If we replace 

± 1 by± 0.5 in equation (34) and remember that g must not be negative, we 

find that the optimum rate of convergence is achieved when 0 ~ g ~ 0.5. 

Ensuring Local Diagonal Dominance 

The purpose of this section is to show that one can always construct 

a finite element network of triangles so as to guararttee that [~] will be 

diagonally dominant. To do so for isotropic domains, we will follow an 

approach suggested earlier by Gambolati. 12 However, we will show that 

Gambolati's analysis for anisotropic domains is in error. 

Consider a triangular element in a plane descr~bed by the coordinate 

system x,y as shown in Figure 2. Then it is easy to show that 

bl = - a sin y cl = a1 cos y 1 

b2 a2 sin (y - 133) c2 = a2 cos (y - 133) (35) 

b3 = a3 sin (y + 82) c3 = - a3 cos (y + Sz> 

where b and c are geometric coefficients defined in Appendix A and all 
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1 

X 

XBL 758-3689 

Figure 2. Triangular element in a 
fixed coordinate system x, y. 



u ''i 7 ~,.;-7 

II) 

19 

other terms are defined in Figure 2. If [Ae] is the contribution of this 

triangle to the global matrix [A] then equations (4) and (35) imply that, 

in an isotropic domain, 

K = 4S 

where S is area of triangle and K is the scalar equivalent of [~] . From 

Appendix A we know that 

A e 
nn 

= 1: 
m ;. n 

A e 
nm 

indicating that [!_e] is diagonally dominant if and only if all the off

diagonal terms in (36) are negative. This means that none of the angles S 

may exceed 90°, and therefore a sufficient (though not always necessary) 

(36) 

(37) 

condition for. the global matrix [A] to be diagonally dominant at any node 

is that the adjacent network consists entirely of right and/or acute angled 

triangles. The same, of course, holds for [~ • 

Next, consider an anisotropic domain with principal hydraulic conduc-

tivities 11 and K2 oriented parallel to the x and y coordinates, respectively. 

Then, according to equation (4), 

A e 
nm 

1 
= 4S 

~ We can now define a new set of coordinates x' = x/(K
1

/K2) andy' = y, so 

that in the transformed domain of x' andy', equation (2) will take the 

form 

(38) 
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In other words, the original anisotropic domain in the x,y plane has been 
L 

transformed into an equivalent isotropic domain with conductivity (K
1

K2)'2 

(39) 

in the x', y' plane merely by expanding or contracting one of the coordinate 

axes. If b' and c' are the equivalents of b and c in the transformed domain, 

then it is easy to verify that equation (38) can also 'be written as 

A e 
nm = (b ' b ' + c ' ' c ' ) n .m n m 

(40) 

Let a, a, yin Figure 2 transform into a', a', y' in the x', y' plane. Then 

it is immediately obvious from (35), (36), and (40) that 

- a ' a ' cos a ' 1 2 3 

- a ' a ' cos B ' 1 3 2 

- a ' a ' cos a ' 1 2 3 

(a ')2 
2 

- a ' a ' cos B ' 2 3 1 

- a ' a ' cos B ' 1 3 2 

a ' a ' 2 3 

Thus, following the same line of reasoning as before, it is evident that the 

global matrix [~] is locally diagonally dominant whenever the local network 

in the transformed domain consists entirely of right and/or acute angled 

triangles. Again, so is [~ • 

It is easy to show that the same holds true when the principal conduc-

tivities K1 and K2 are not parallel to the x and y coordinates. For this 

purpose, it is sufficient to recognize that the solutions of equations (2) 

and (9) at any given point in space are independent of the choice of coordin-

ates. Thus, [A] must remain invariant under a rotation of coordinates and 

therefore, if it is diagonally dominant in a set of coordinates which is 

(41) 



0 p () 
'"" ~ 4 0 . £;,~ l 3 2 

21 

parallel to ~ and K2, it must also remain diagonally dominant in another 

set .of coordinates oriented at an angle to the first one. One can therefore 

transform any anisotropic domain into an equivalent isotropic domain merely 

~ by expanding or contracting it parallel to K1 by the amount (~/K2 ) • If 

all the triangles in the transformed domain are constructed without obtuse 

angles, [~ will be diagonally do~inant. 

In a composite material consisting of several segments with different 

degrees and orientations of anisotropy, each segment must be transformed 

separately parallel to its own principal direction of conductivity. Here, 

in addition to ensuring that all the triangles in the transformed domain 

are free of obtuse angles, one must also make sure that corresponding nodal 

points at both sides of a material interface will coincide with each other 

when the meshes are transformed back into the original plane. This is usu-

ally not a very difficult task, as will be demonstrated by an example in 

Part II of this paper. 

Gambolati
12 

claimed (see his Figure 3 and p. 589) that [A] cannot be 

made diagonally dominant when the ratio (K
2 

- K1)/K
1 

for K1 < K2 exceeds 2. 

Our analysis and the examples in Part II of this paper do not support this 

viewpoint, indicating that Gambolati's analysis must be in error. 

We mentioned earlier that in order to achieve pointwise convergence 

of the explicit-implicit finite element scheme, it is sufficient that the 

mesh in any isotropic domain conform to one of the two patterns shown in 

Figure 1 or to certain synunetry requirements. It is now clear that one can 

approach this ideal very closely in most cases, even if the material is 

anisotropic, merely by constructing the mesh in the transformed isotropic 

plane according to this requirement. 
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Conclusions 

The theoretical analysis in Part I of the paper leads to the following 

conclusions: 

1. The explicit-implicit finite element formulation is amenable 

to an analysis of local stability. If the n-th row or column of the con-

ductance matrix is diagonally dominant (i.e., the matrix is locally diagon-

ally dominant near node n) then the solution at node n is unconditionally 

stable when e ~ 0.5 (i.e., the implicit part has a weight equal to or 

greater than the explicit part). If e < 0.5, the solution at node n may 

be stable or not, depending on the local stability criterion in (18). 

2. Since stability conditions vary from one node to another in a 

given finite element mesh, it may be possible to solve for h explicitly at . n 

some nodes and implicitly at other nodes. We will refer to this as a mixed 

explicit-implicit solution strategy. The advantages of this solution strategy 

will be discussed in Part II of the paper. 

3. The explicit-implicit finite element formulation is amenable to 

an analysis of local convergence at any node n which does not lie on a 

material boundary and does not act as a sink or a source. If the mesh in 

the immediate neighborhood of n possesses at least two orthogonal axes of 

symmetry with respect to the positions of the nodes in the transformed iso-

tropic domain, then the numerical solution at n converges to the exact solu-

tion of the partial differential equation provided that the stability cri-

teria are not violated. 

4. The fact that the explicit-implicit scheme may be shown to con-

verge iocally under certain conditions, whereas the more traditional scheme 

in which the capacity matrix is non-diagonal converges only in the mean, 

may be significant from the standpoint of mass or energy balance. 
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We suspect that the ability of the explicit-implicit scheme to converge 

locally is closely related to its property of maintaining a local balance 

of mass or energy. 

s.· The explicit-implicit equations can be solved by a point itera

tive method (we use the accelerated method of Evans et al. 10) which can be 

shown to converge at any node at which the conductance matrix is locally 

diagonally dominant. Iterative techniques have certain advantages over 

direct methods such as Gaussian elimination: Computer storage require-

ments are less (one need not worry about band widths and proper numbering 

of nodes) and, if the matrix is properly constructed so as to insure rapid 

convergence, significant savings in computer time may be achieved. In 

addition, iterative techniques are ideally suited for the treatment of 

quasilinear problems in which the conductance and capacity matrices vary 

with the dependent variable. 

6. One can.always construct a mesh of triangular elements which 

will lead to a diagonally dominant conductance matrix. An earlier statement 

12 by Gambolati that the conductance matrix cannot be made diagonally dominant 

when the degree of anisotropy exceeds a certain limit was shown to be 

incorrect. 

7. Our recognition that the finite element equations (9) can be 

written without the diagonal terms of the conductance matrix leads to a 

saving in computer time and storage. 
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Appendix A 

Consider the matrix [!] as defined in equation (4) for plane flow 

(i.e., o = 1). A typical term contributed by a single triangle such as that 

shown in Figure 2 has the form 

where 

A nm 

bl 

b2 

b3 

e 

= 

= 

= 

1 
= 4S (K b b + K (b c + b c ) + K xx n m xy n m m n yy 

y2 - y cl = x3 - x2 3 

c2 = xl - x3 y3 - yl 

c3 = xz - xl 
yl - y2 

c c ] n m 
(42) 

(43) 

If K1 and K2 are the two principal conductivities, and a is the angle between 

K1 and the x coordinate, then it can be shown with the aid of Darcy's law 

that 

2 + K2 
2 K = Kl cos a sin a 

' XX 

K Kl sin
2
a + K2 

2 
(44) = cos a 

YY 
K = (~ - K2) sin a cos a xy 

Substituting equation (44) into equation (42) and rearranging, we obtain 

A 
nm 

e 
= 

+ K~ (b sin a- c cos a) (b sin a - em cos a)] 
L n n m (45) 

indicating that Anne~ 0, i.e., the diagonal terms of [!e] and [~]are always 

non-negative. 

Furthermore, recognizing that b
1 

+ b
2 

+ b
3 

= 0 and c
1 

+ c
2 

+ c
3 

we find that equation (45) can also be written for n = m = 1 as 

0, 
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Thus, in general we have 

A e 
nn and 
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A 
nn 

I -~ ...,.· .tJ. 

= - L A 
m;'n run 

where the summation is taken over all nodes other than n. 

(46) 

(4 7) 
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Appendix B 

Consider a homogeneous isotropic domain with a superimposed mesh of 

equilateral triangular elements as shown in Figure la. Due to equation (8) 

and the symmetry of the mesh, we have 

= = = = 
1 --A 
6 nn 

Furthermore, if we orient the coordinates so that 

and the x axis points toward node 1, then 

~xl = ~4 = a 

~2 ~3 -~ ~x6 
a 

= = = -
5 2 

~yl = ~y2 = 0 

~y2 ~y3 - ~y ~y6 /3 a 
= = = = 

5 2 

(48) 

the origin is at node n 

(49) 

where ~m = xm - xn, ~ym = ym - yn, and a is defined in Figure la. Thus, we 

can expand the term V defined below in the form pr 

v = l: A [1 - exp (ip ~X + ir ~y )] 
pr 

m :1 n nm m m 

>.. 

= nn l: [i - cos {p ~ + r ~Y ) ] ---6 m:ln m m 

According to equations (4), (5), (7), (43), and (49), we have 

.A = a. ~t l: (b 2 + c 2) = 4 a. ~t/a2 
nn 882 e n n 

(51) 

2 4 
because S = 3a /16. Recognizing also that equation (49) implies 

,, 
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r (p t:.x +r !::. )2 = 3a
2 (p2 + r2) 

m:/n m ym 

!::. )4 9a4 
(p2 

2 
r (p t:.xm + r = + r2) 

m :/ n 
ym 4 

we can rewrite the term v in equation (50) as pr 

v pr ·= 
2 2 2 2 2 

A ( ) . a A (p + r ) 2 - a ut p + r + 16 a ut ·- • • • 

Now ~ in equation (12) can be expressed as pr 

~pr = 
1 + (1- 6) v . pr 

1 - 6 v pr 

··, .. ",:; 

and when this is expanded in a Taylor series about v = 0, the result is pr 

~ = 1 + v + 26 v pr pr pr 
2 + . . . 

Substituting (54) into (56), we finally obtain 

(52) 

(53) 

(54) 

(55) 

(56) 

= 
2 2 1 2 2 22 

1- a t:.t (p + r) + (~ + 26)(a b.t) (p + r) + • • • (57) 
nn · 

Since in the text we showed that A is invariant under a change of coordin
nn 

ates, it is obvious that the above result is not restricted by our particular 

choice of the x and y axes in Figure 1. 
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