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MIXED EXPLICIT-IMPLICIT ITERATIVE FINITE ELEMENT SCHEME
FOR DIFFUSION-TYPE PROBLEMS:

I. THEORY
by
' N I I et 2
S. P. Neuman'*~ and T. N. Narasimhan

Summar

A Galerkin finite elément formulation of diffusion processes based
on a diagonal capacity matrix is analyzed from the étandpoint'of local
stability and convergence. The theoretical analysis assumes that the
conductance matrix is locally diagonally dominant, an&Ait is shown that
one cah always construct a finite element network of‘linear triangles
'satisfying this condition. Time derivatives are replaced by finite dif-
ferences, leading to a mixed explicit-implicit system of algebraic equa~
tions which can be efficiently solved by a poiht iterative technique.

In this'ﬁork thé'accelerated point iterative method is adopted‘and is
shqwn to converge when the condugtance matrix is 1océlly diagonally dom-
inant. Several‘examples are included in Part II of this éaper to demon-

strate the efficiency of the new approach. -

1Lawrence Berkeley Laboratory, Berkeley, Ca11forn1a 94720.

2Department of Civil Engineering, Unlver31ty of California, Berkeley,
California 94720 :



Introduction

Finite element formulations of parabolic equations such as those
governing chemical diffusion, heat conduction, and fluid flow through por-

ous media often 1eéd to a system of first-order linear differential equa-

tions of the fbfml
[al &b (0} + [0] 1 ©} = @ (©) 1)

where [éJ is the conductance or stiffness matrix, [2} is ;he capacity matrix,
{h} is the depéndeﬁf variable vector (e.g., hydraulic'head in a grqundwater
system), and {g}'is a flux vector representing sources or sinks.

In general, the capacity matrix [EJ includes non—zero off-diagonal
terms (i.e., it is non-diagonal) and there is evidence
in the literature sﬁggesting that this may lead to conéeptual és well as
numerical difficulties. For example, a recent analysis by Narasimhan2 indi-
cates that a non-diagonal Lg] matrix may upset the maintenance of local mass
or energy,balance, although overall balance over the entire region may still
be preserved. This may perhaps explain why as our expérience indicates,
equation (i) sometimes yields physically unrealistic values of {h} when
there is a sudden ahd drastic change in {Q}, and why this can be remedied by

diagonalizing the [Eﬂ matrix as has been done by Wilson? Emery and Carson,4

’

and others. Narasimhan's theory may also explain why Neuman was forced to

diagonalize the [EJ matrix in dealing with the highly nonlinear problem of
saturated-unsaturated groundwater flow; otherwise, the finite element scheme
would not converge. Obviously, the use of a diagonal capacity matrix also

results in increased computational efficiency as compared to a non-diagonal
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matrix owing to lesser storage requirements and feﬁer aigébraic operations'in
calculating the matrix terms.

The purpése of this paper is to discuss an aitern;tiﬁe.form for equa-
tion (1) with‘a diagonal capaéity matrix which we beiieve has many advantages
over the:traditional.approach; The resulting differential eduatioﬁs are
discretized in time by finite differences which enaBles one to tréat them
either explici£1y,_or implicitly, or by an optimum éqmbination éf both
schemes. The implicit equations are solved by a poipt iterative technique
rather than b& a direct method such as Gauésian elimination. Part I of the
paper examines logal sfability and convergence Critérié for’the explicit-
implicit schemé as well as convergence of the proposed'point iterative tech-
jnique. Thg theoretical aﬁalysis assumes that the matrix [éJ is locally
diagonaily dominant; at the end of the text it is shown that one can alwayé
constfﬁct a finite eiement mesh éatisfying'this condition. Part IT describes
various aspects of the solution strategy includiné'quéstions related to a
choice of time'stép size, choice of relative weights of explicit and implicit
terms to be assigned during any given time éteﬁ, iﬁitiélrguess for iterétive
schemé,:treatment.of'noﬁlihearities, etc.; and provides examples to illus-

trate the capabilities of the new approach.

Explicit-Implicit Formulation
Consider the particular diffusion-type equation for fluid flow

in an anisdtrépic_porous medium

V°(§Vh)=c-g—:- , , (2)

where h is hydraulic head, K is hydraulic conducti§ity tensor,‘and C
is specific storage or fluid capacity (defined as volume of fluid instan-

taneously released from storage per unit bulk volume of pbrous'medium when



h is lowered by one unit). To discretize_equation (2) in space we adopt a
network of triangular elements for plane flow and of concentric rings of
constant triangﬁlar cross-section for axisymmetric problems. 1In each
individual elemeﬁt, the hydraulic head is described aﬁproximately in terms
of linear shape functions and the values hn of head at the corner (node)
points. The next.step is to apply the Galerkin methodl'5 to equation (2).
However, since»thg.Galerkin method is applicable only at a given instant
of time, the time_dérivative oh/9t must be determined in&epéndently of the
Galerkin orthogonalization process. Thus, instead of replacing h in the
time derivative by fhe approximating Galerkin sequence as is usually done
in the finite element approach, one is justified to define the nodal values
of dh/3t as averages over the exclusive domains associated with each noden
(every nodal point is associated with one third of each adjoining elementg
for further detaiis the reader ié referred to Narasimhap7). .This leads to

a system of first-order linear differential equations of the form

[a] b (0} + [D*] G ()} = @ () 3)

which is identical with (1) except for the capacity matrix, [gﬁ]; which

does not include any non-zero off-diagonal terms. The individual terms of

the matrices [A] and [D*] are given by 3,3
A =z—‘5~[1< b b +K_(b_c +b c)+K _ c_ c] (4)
nm e 4S “xx n m Xy ' n m m n yy n m
X %? C if n=m
e
* =
P (5)

0 if n#m



where S is areé of triangle, § = 1 for plane flowiand 8‘= 21 for axi-
symmetric flow (; being average radius of triangle); b and c are geoﬁetric
coefficienté defined in Appendix A, and the Summatioh'sign_applies to all
eléments adjaéent to nodal point n. It can be shown." that _Anm represents
thé rate of fluid transfer into the exclusive subdoméin of_node n (one third
of each adjacent triangle) due.tq unit difference in head between nodes m
and n. On the other hand, D:n is the fluid capgcify of the exclusive sub-
- domain associa;ed with node n. |

If we replace the timé derivatives in'equation (3) by finite differ-
ences and introduce a weighting factor, 0, we obtain'é system of simultaneous

linear algebraic equations of the form .

Wy -

[a] [o 8°*'3 + (-0) (0"} + [D*] e = {q} (6)

where 0 < 6 < 1, At is time increment, and k indicates number of time steps.

Defining a new term

' At o Ahm ’ ' T
A = — ' _ , (7)
nm p* _

nn

and recognizing from equation (47) in Appendix A that

A = - L A : : (8)
nn nm
m#n - :

we can rewrite (6) as

R (hk+1—hk+l>+(l-8) Y (hk—hk)+QAt/D*
n n . nm n m nm n m n nn
m¥n : m#n



where N is total number of nodes and the summation is :aken over all values
ofm=1, 2, ..., Nother than m = n. When 6 = O;Iall the values of hnk+l
can be calculated explicitly from the system of equations (9), which now
corresponds to.a fbrward difference scheme in time. When 6 = 1, the result
is a fully implicit backward difference scheme, whereaé 6‘= % corresponds to
a time-centered or Crank—NicholsonB scheme. It is important to note that
equation (9) does not include any diagonal terms of the matrix [é], a fact
which may save a ¢§hsiderab1e amount of storage and qomputer time, especially'

in dealing with nonlinear problems where the matrix must be recomputed at

each time step.'_

Local Stability Criteria
The local stability of (9) at any given node, n, can be conveniently

8,9,10 According to this

analyzed by using the von Neumann harmonic approach.

approach, the solution hnk can be viewed as the sum of -an exact solution of
*k k - s el . '

9, hn , and an error, € - The initial error is expressed as a complex

Fourier series

oo o0

e, = hZ . —2 Bpr exp (1pxn + 1ryn) ‘ (10)
p_..—w Y = =0

where p and r are integers, i is v-1, and Bpr are Fourier coefficients.

The error at any'later time is expressed as

_ (k) . . -
e = z z Bpr gpr exp (1pxn + 1r¥n) 1y

where the growth (or decay) factor, gpr, is raised to the k-th power. Since
k *k . . k . e ..
hn as well as hn satisfy (9), it follows that €, satisfies a similar

equation but one which does not include sinks or sources, Qn' If we sub-

stitute a typicai term from (11) into (9) without Qn ahd solve for Epr,



we obtain
- ’ - | - » . + 2 .
e - 1 f_(l 8) . i n Anm [1 - exp (ip bx _fr Aym)] .
pr - : : 12)
1-6 I Anm [1 - exp (p Axm + ir Aym)]
m#n :
where Ax_ = x_ - x_ and Ay =y . -y . Let us assume that the matrix Al
m m n m m n : _ =

is locally diagonally dominant, i.e., that A > X IX | for some n;
v : e

later we will show that one can always construct a fini;e element mesh whiéh
satisfies this requirement at any given nodé. As is shown in Appendix A,
this means that all the off-diagonal terms of Anﬁ are non—positive and
therefore Epr_can be rewritfen as
1- -9 I [A_|[1-exp (ipax +iray)]
£ = m#n . asy

pr | R .
1+6 L |a_| [1-exp (ip axy + ir Ay )]
m#n »

Decomposing Epr in (13) into its real and imaginary parts yields

Re"(gpr) = [i - (1-20) ) i n._|Am|‘[1 - cos (p:Axﬁ + 1 by )]

- 6 (1-6) 3m i n Al [1-cos (pox +r Aym)]$
. . | 2
- 8 (1-8) 3ﬁ : i |Anm| sin (p.Axm + ? Aym)f ]/den (14a)
Im (Epr) = 1/den v ' | (14b)

where

. a2
den = 31 +6 = -IAnml [1-cos (p bx +r Aym)]f
| n#n ,

: 2.
Yy :
+62) 5 A _|sin(pAx +rx Aym)z |

m#n




Since the denomiﬁator is always greatér than or equal to 1, it is obvious
from (14b) that |Im (Epr)l £ 1 under all circumstances. On the other hand,
Re (Epr) can nevé; exceed 1 and therefore the system will be locally stable
(i.e., the error a; node n will not grow) whenever Re (£pr) > =1. The most
negative value of Re (€pr) occurs when cos (p Axm + rvAym) = -1 and sin

(p Axm +r Aym) = 0, in which case the above requirement reduces to

1+2(-1) T |A
L (15)

B
+
v
|
Pt

Re (£ ) =
pr 1420 I |
m#n

Again, the most negative value occurs when the sum in equation (15) tends to

infinity, in which case

(16)

Equation (16) is satisfied whenever 6 > 0.5, indicating that our scheme is

unconditionally stable at node n for all values of 6 which are not less than

0.5.

If 6 < 0.5, stability is conditioned upon equation (15). Since [AJ is

diagonally dominant near n, (8) implies that

A= I A
nn

| E 17)

and therefore the local stability criterion given by equation (15) can be

expressed as

*
A < N or At < ——EEEL————— s 6 < 0.5 (18)
nn —1 - 26 t= (1-20) Ann > ' 8



For example, the explicit version of equation‘(Q) is stable at any node at
which the rafio between capacity.and conductaﬁce is lafge enough‘so that
At < ﬁ:n/Ann for any given At. Conversely, the explicit scheme cén be méde
stable atrall nodés by choosing a'sufficiently small At. - -
Thevstabi;ity criterion.At S'Dgh/Anh for thebexplicit scheme can also
be deriVed'by physical reasoning. According to equation (47) in Appendix A,
Ann is the sum of all fluxes entering into the exclusive subdomain of no&e n
when heads at all édjacent nodes, hm’ exceed hn'by unity. On the othérrhénd,
D:n is the capacity of the subdomain to absorb fluid when hn changes by one
unit. Thus, the above stability criterion merely states that the amount of
fluid entering into the subdomain of n must not'éxcéed the capacitybof the
subdomain to absb:b fluid. A value of At in excessvof what is prescribed
by'the stgbility criterion would imply that hn must change by more than
unity, which is contrary to pﬁysics (recall that in the explicit scheme, the ‘

values of hm remain fixed during a time step) and may therefore lead to uncon-

trolled local oScillations in the values of hn'

Local Convergence Criteria

We now turn our attention to an equally important question: Under what
conditions dées the approximéte solution obtained from the‘numericél scheme
converge to the exéct solution of the diffefential equation.as the mesh is
made finer and finer? Many’finite element formulations are known to con-
verge in the mean; however, they seldom guarantee convergence at a point. The
‘purpose of thié section is to demons;rate that the explicit-implicit scheme
iﬁ (9) converges to the exact solution of the partial differential equation
(2) af every node satisfying the following requirements: a) The node is not

‘a sink or a source; b) the node does not lie on a material boundary; c) the
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node lies in an isotropic domain; and d) all elements. in the immediate neighbor-
hood of the node form a mesh having at least two orthogonal axes of symmetry
with respect to the positions of the nodes (for example, a mesh consisting
locally of equilateral triangles such as in Figure la, or a rectangular

nodal pattern such as in Figure 1b). Later in the text we will show

how these criteria can be extended to anisotropic domains.

To prove tﬁis;’consider a homogeneous isotropic region with a super-
imposed finite element mesh consisting of equilateral triangles (see Figure
la), with a spacing al between the nodes, and a constant time increment At .
Suppose that one wishes to improve the calculation at é given time t by
repeating it with successively finer and finer meshes. AThe value of k = t/At
correspondiﬁg to the fixed time t will, of course, tend to infinity as
At ~ 0, and it is therefore obvious that the mesh must be refined in such a
manner as to constantly maintain stability. Therefore,:consider another mesh
with increments given by a = al/J, At = AtllJ2 (J = integer) and assume that

1 .

a1 and At~ have been chosen so that

1 1

JAY A Ann At Ann 1
Ann = D*l = D* 5’1 - 28 19y

nn nn

for all 6 < 0.5,'in'accordance with the stability criterion in (18) (for
6 > 0.5, the values of al and At1 can be chosen arbitrarily). Then, we can
prove the followiﬁg

Theorem: Let hnk denote the approximate value of h (x,y,t) obtained
at a fixed node n at time t = k At by solving the finite élement equations
(9). Then hnk converges to the exact solution of the partial differential

equation (2), h, as J » = ,
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Figure 1. Examples of nodal patterns with two orthog-
' onal axes of local symmetry.
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Proof: The éolution of (2) when K is a scalar can be expressed in

the form

o0 .
h = Z X Hpr exp [ipx + iry - (p2 + r2) at]; t>20 (20a)

where 0 = K/C and Hpr are Fourier coefficients which can be determined from
the known initial conditions (the initial conditiéns are expressed by the
Fourier series obtained from (20a) upon setting t = 0). Since node n is
not a sink or a éource, the solution of the algebraic équations (9) can be

written, in analogy to (11), as

h = r ou_g®

0 or & pr exp (1pxn_+ 1ryn)j | (20b)

where gpr is given by (12). Let Py and r, be arbitrary positive integers..

Then, according to (20a) and (20b), we can write for a given J,

k
Ih - h| = X z + I z H exp (ipx + iry )
o lplee, Ixlsx,  loloe, U lxl>r,) PF n n
t/At t/At
(gpr -0 ) ST @

where 21 and 22 stand for the first and second sum, respedtively, and n = exp
2
[- (" + rz) o At]. The second sum satisfies

|z <2 5 s Bl ' (22)
2 Ip|>p, U [x[>r,  PF

because |£prlﬁs 1 due to stability and |n| < 1 due to positivity of a and At;
therefore, IZzl can.be made arbitrarily small by choosing sufficiently large

values of Py and/or ros since the Fourier series in (11) is known to be

absolutely convergent.



To estimate |le we first note that

t/Ae _  t/At k k| _ B k-1, k-2 . k-1
bor . ° 1 ol O B (F,pr n)<5pr ,fr-Epr n teee tm )I
SEpr-nIk | S . (23)

Furchermofe, N can be expanded as
. : 2 2
n= 1-@r+r) bttt @A) @A) - - (24)

and, according to equation (57) in Appendix B,

£, = 1- (0% + %) o At + (411 + ze>(a a2 pr+Hr e @29
' nn ' '

Thus, remembering that Ann is constant, we find that

le__ - nl

PX

2 2
e+

is an'analyti¢ fﬁnction of (p2 + fz) At in some neighborhood of the origin,

and is therefore bounded for all non-negative (pz + r2)At; Let this béund

be M. Then
DRI, I p2e i anlut u |
lpl<p, |rl|sr, At Ppr
< S+ A T z H , ' 26
(p, _ro)tMtp=-«,r=_w|Pr|_- (26)

Having chosen p_ and/or r_ large to make |22| small, we can now choose a
suffigiently'small At to make Ile arbitrarily small. Thus, the error in
(21) can be made as small as one wishes by choosing J sufficiently large.

Q. E. D.
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A similar proof for the equivalent one~dimensional finite difference
equation has been given by Hildebrand11 and has also been outlined by

Richtmyer and Mbrton.8

It will be.ndted that the above proof rests on the fact that IEpr'— n
is of order (At)z.' Following the procedure outlined in Appendix B, one
can easily verify that this will also hold true for the fectangular mesh
shown in Figure 1b, as well as for other meshes having at least two orthog-
onal axes of local symmetry (reflecting symmetry of noda1 1ocations) passing
through node n. However, lgpr —.nl will be of order_At for all other meshes

‘that we can think‘bf, and therefore our proof will no longer apply.

Point Iterative Scheme

The iterative scheme adopted in this work is kpowh'as the point accel~
eration method and.has been developed originally by Evans et al}O in 1954.
As will be seen below, it differs from the more familiar point successive
over—relaxatioﬁ technique; the latter can be viewed as an extension of the
Gauss-Seidel method, whereas the former is more closely related to the point
Jacobi method. The aqceleration method is readily amenable to an analysis of
pointwise convergence and is therefore ideally suited for the mixed explicit-
implicit scheme proposed in this work.

The system of equations (9) can be rewritten as

k k *
h = - -
A N z Anm [(hn h ) + 8 (Ahn Ahm)] +Q At/Dnn
m* n —————— ————— o ——— -
Explicit Implicit
part part
n = 1, 2, - « . » N ' (27)
k+1 k s . A .
where Ahn = hn - hn and it is seen that the implicit part vanishes

when 6 = 0. The acceleration method consists of introducing the following



00504404729

‘substitutions into 27):
Ah  (left side) - Ap it
n . n

Ahn (right side) -~ (1 + g) Ath+1 -g Ath

4 3
Ahm (right side) f Ahm
where j is nqmbér of iterations and g is acceleration factor. Solving for

Ahnj+1, the acceleration algorithm takes the form

. ’ 3 *-
F or ¥-n® - er A (gtnd +ondy +qae/m
j+l n # n nm n m m # n nm n m n nn
" 1-6@Q+g) I A ,
o m# n

" The reader mayveésily.recogniie the fact that when g is'sétrequal to zero,

- equation (28) feduces to the point‘Jécobi algorithm.  As a‘matter of contrast,
~ when the relaxﬁtion factor in tﬁe point Successivé ovgr—relaxation élgérithm |
is set eﬁual to unity, it reduces’fo the Gauss-Seidel algofithm.

“As will be shown below, the acceleration method éonverges at any node
at ﬁhich.[é} is loéally diagonally dbmin#nt (we mentioned earliervthat it is
.always possiblé to construct a mesh which satisfies»this requifement),pro4
;ided that g 2LO. For optimum results, g should not exceed 1 and should usu-
ally be less thah.O.S. Experiencé indicates that near-zero values of.g may

cause difficulties and the optimum value tends to be in the vicinity of 0.2.
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Convergence of Iterative Scheme

. + .
Let us define the iteration error at a node as AEnJ+1 = Ath 1. Ath
and introduce it into equation (28) by utilizing (8), with the
result
-8 I A _ted 4o g A
‘41  mfnp ™M ® nn n
Ae 3 = (29)
n 1+6 (L+g) A
nn

Using again von Neumann's harmonic analysis in a manner similar to Evans

et.al.,l0 we replace AenJ by B Epr(J) exp (ipxn + ir Ayn) where the growth

pPr
factor is raised to the j-th power and thus obtain from equation (29)

-6 I Anm exp (ip 8x + ir Aym) + Q g Xﬁn

_ m#n
Epi’ 7 1+ (1 + g) Ann _ : (30)

The growth factor can be decomposed into its real and imaginary parts,

-9 ) i n Anm cos (p Axm +r Aym) + 0 g Ann ,

Re(E ) = — T+0 (1L+g A (31)
-6 I Xnm sin. (p Axm +r Aym) +0g Ann |

- mfn , (32)

m ) T+6 08

Assuming that [éj is locally diagonally dominant, all the terms Anm (m # n)
are negative according to Appendix A. This implies thét the most extreme
values of Re(ggr) are obtained when the cosines in (31) are replaced by

#+ 1, in which case (see (8))

8 Knn 1 +g)

(33)
1 +6)\nn 1 +g)

Re(Epr) =

For convergence we require that |Re(£pr)|< lor, according to (33), that



0 Ann *1+g)

-1cx< - <
' 1+6 Ann 1+ g)

1 | | | @8
A similar result is obtained by considefing Im(&p?).’ Since.Qvand Ann aré
non-negative, equation (34) is satisfied for all g > 0. 1If the positive
sign is chosen in the numerator, the‘smallést absolute value dflgpf (i.é.,
the fastest rate of convergence) is achieved with g = 0. If the negative
sign is chosen, the smallest absoluté value of Efr is achievéd'with g=1.
Thus, optimum rate of convergence is obtained when 0 < g g_i}

The above criterion was ob:aihed considering the most extreme situa-

-tions that may arise. In general, however, the sine and cosine terms in (31)
and (32) will attain the values * 0.5 twice as ofteﬁ as + 1. if we'repléce
1 by.i.OQS in equation (34) and remember that g must not be negative, wé

find that the optimum rate of convergence is achieved when 0 < g < 0.5.

Ensuring _Loca]- DiachJnal Dominance.

The purpose of this section is to show that one can always construct
a finite element network of triangles so as to guarantee that [A] will be
diagonally dominant. To do so for isotropic domains, we will follow an

12 However, we will show that

approach suggested earlier by Gambolati.
' Gambolati's analysis for anisotropic domains is in error.
Consider a triangular element in a plane described by the coordinate

system X,y as shown in Figure 2. Then it is easy to show that

bl é. - a; sin Y ¢, = a; cos Y
bé = a, sin (v - 33) c, = -—a,cos (y~-By) ':(35)
b3' = a, sin (v + B,) cy = =agcos (Y f B,)

where b and c are geometric coefficients defined in Appendix A and all
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Figure 2. Triangular element in a
fixed coordinate system x, y.



other terms are defined in Figufe 2. va'[éé] is the'contribution of this
triangle to the global matrix [A] then equations (4) and (35) imply that,

in an isotropic dnmain,

[ 2 - 5. a . B - a, cos B |
i R 81 8y c08F3 T 4 2
er . K |_ ~ L2
Qé ] = 75 a, a, cos 63 . a, | - a, a, cos Bl (36)
- a, a. cos B - a, a, cos B, " a 2
"1 %3 2 2 33 08 By ) |

where S is area of triangle and K is the scalar equivalent of.[gj . From

Appendix A we know that

A ® = - 5 a® : ’ _ (37)

indicating that L_ ] is diagonally dominant if and only if all the off-
diagonal terms . in (36) are negative. This means that none of the angles B
may exceed 90°, and therefore a sufficient (though not always necessary)
eondition forithe global matrix LéJ to be diagonaliy dominant at any node
is that the adjacent network cbnsists entirely of right and/or acute angled
triangies._ Tne same, of course, holds for [A] .

Next, consider an anisotropic domain with principal hydreulié conduc--

tivities Kl and K, oriented parallel to the x and y coordinates, respectively.

2
Then,‘according to equation (4),

e 1 : . |
Anm © 4S8 (Kl bn bm +'K2 ¢n cm) : - (38)
»We can now define a new set of coordinates x' = x/ (K /KZ) and y' y, so

that in the transformed domain of x' and y', equation (2) will take the

form
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: L _
(k. x )lﬁ vh = c ﬁ 3h ' (39)
Kl 2 K2 ot ' _ _ )

In other words, fhe original anisotropic domain invthe x,§ plane has been -
transformed into an equivalent isotropic domain with conductivity (Kle)li
in the x', y' plane merely by expanding or contracting one of the coordinate
axes. If b' agd c'_are the equivalents of b and ¢ in the transformedrdomgin,
then it is easy to verify that equation (38) can also be written‘é;
(KK, |

e _ ' ' 1 1y - :
Anm 45! (bn bm + ¢ ©n ) ) . (40)

Let a, B, Y in Figure 2 transform into a', B', Y' in the x', y' plane. Then

it is immediately obvious from (35), (36), and (40) that

[— 1y 2 _ ' | ' ' - ' ' v—

(al ) | a,' a,' cos 63 a,' a;' cos 82

. ‘
(R K,)? | -
ey o 12" - ' ' ' 1y 2 _ ' ' '
[_A_ ] a5 |~ 3, ay' cos By' (a,") ” T2y ay' cos Bl (41)
; 2

- al' a3' cos 82' - az' a3' cos Bl' (a3') ]

Thus, following the samé line of reasoning as before, it is evident that fhe
global matrix [éj is locally diagonally dominant wheneﬁer the local ﬁetwork
in the transformed domain consists entirely of right aﬁd/or»aéute angled
triangles. Again, so is [)A] . | | |

It is easy to show ;hat the séﬁe holds true when the principal condhc—
tivities Kl and K2 are not parallel to the x and y goqrdinates. For this
purpose, it is sufficient to recognize that the solutions of equéfions (2) .
and (9) at any given point in space are‘independent of the choice éf coordin-
ates. Thus, [A] must remain invariant under a rotation of coordinates and

therefore, if it is diagonally dominant in a set of coordinates which is



parallel to K1 and Kz,-it must also remaiq»diagonaliy dominant in_another
set of coordinates oriented at an angle to the first ohe.. One can therefore
t;ransform any anisotropic domain into an equivélent isot_:ropic domain merely
by expanding or contracting it éarallel to Kl by the amount (Kl/KZ)%’ ‘If
all the triangléé in the transformed domain are construéted without obéuse
angleé,-[éj will_be diagonally doﬁinant. | |

In a compoéite material consisting of several segments witﬁ different
degrees and.orieﬁtations of anisotropy, each segment must be transformed
separately parallel to its own principal direction of conductivity.b Here,
in addition té’enSuring that all the triangles in the transformed démain
are free of obtuse angles, one must also make suré_tha; corresponding nodal
points at both sides of a material interfacé will coincidé with each other
when the meshés are transformed back into the ofiginél plane. This is usu-
ally not a very difficult task, as will be demonstrated by an example in
‘Part. II of this ﬁaper.

Gambolati;zlclaimed (see his Figure 3 and p. 589) that LéJ cannot. be
made diagonally dominant when the ratio (K2 - Kl)/Ki for K, < K2 exceeds 2.
Our analysis énd the examples in Part II of this paper do not support this
viewpoint, indicating that Gambolati's analysis must be in error.

We mentibned earlier that in order to achieve pointwise convergence
of_the explicit-implicit finite element scheme, it is sufficient that the
mesh in any isotroﬁic domain conform to one of the two patterns shown in
Figure 1 or to certain symmetry requirements. It is now clear that‘one can
approach this ideél very closely in most cases, even if the material is
anisotrqpic, merely by constructing thé mesh in the transformed isotropic

plane according to this requirement.



Conclusions .

The theoretical analysis in Part I of the paper leads to the following
conclusions:

1. The explicit-implicit finite element formulation is amenable
to an analysis of local stability. If the n-th row or column of the con-
ductance matrix is diagonally dominant (i.e., the ma;rix is locally diagon-
ally dominant near node n) then the solution at node‘n is unconditiénally
stable when 0 2_0;5 (i.e., the implicit part has a weight equal to or
greater than the explicit part). If 8 < 0.5, the solution at node n may
be stable or not, depending on the local stability criterion in (18).

2. Since stability conditions vary from one node to another in a
given finite element mesh, it may be possible to solvé for hn explicitly at
some nodes and implicitly at other nodes. We will refer to this as a mixed
explicit-implicit solution strategy. The advantages of this solution strategy
will bg discussed in Part II of the paper.

3. The explicit-implicit finite element formulation is amenable to
an analysis of local convergence at any node n which does not lie on a
material boundary and does not act as a sink or a source. If the mesh in
the immediate neighborhood of n possesses at least two orthogonal axes of
symmetry with reépect to the positions of the nodes in the traﬁsformed iso-
tropic domain, then the numerical solution at n converges to the exact solu-
tion of the partial differential equation provided that the stability cri-
teria are not violated.

4. The fact that the explicit-implicit scheme may be shown to con-
verge locally under certain conditions, whereas the more traditional scheme
in which the capacity matrix is non-diagonal converges only in the mean,

may be significant from the standpoint of mass or energy balance.



We'suépect thét.the ability of the éxplicit-implicit‘séheﬁé to converge
locally is closely related to its property of ﬁaintaining a local balance
of mass or energy. |

5. Tﬁe‘explicit-implicit equétions can be éolQed by'a ﬁqint itera~
tive method (we use the accelerated methéd of Evans et al.lo) which caﬁ be
shown to converge at any néde_at which the conductancevmatrix.is 1ocally
diégonally d&minant. Iterative techniques have cértainvadﬁantages over
direct methods such as Gaussian elimination: Compu;er étorage require-
‘ments are less (one need nof worry about band widths and proper numbering
of nodgs) and, if the matrix is properlylconstructed so as to insure rapid
convergehce,'significant savings in computer time may'be achieved. 1In
addition,'itérative techniques are ideally Sﬁited fof the treétment of
quasilinear problems in which the conductance and capacify matrices vary
with the debendent variable.

6. .One,can‘always construct a mesh of'triangular eleﬁents whi¢h
will lead to a diagonally dominant conductance ﬁatrik; Anvearlier statement
by Gambolati12 that the conductance matrix cannot be made diagonally dominant
when'thg degree of anisotropy exceeds a certéin limit was shown to be
incorrect. |

7. Our recognition that the finite element equations (9) can be

written without the diagonal terms of the conductance matrix leads to a’

saving in computer time and storage.
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Appendix A
Consider thé matrix [AJ as defined in equatibn,(4) for pléne flow
(i.e., § = 1). A typical term contributed by a singié tfiangle such as that

shown in Figure 2 has the form

e _ L
AL = 73 [k, b, b + Koy (b ey +b )+ Koy n c ] (42)
where
by = Y79, cp T X3 X
_ c. = X, - X, .. N (43)
b2 = y3 -V 2 1 3 o o
_ _ c, = X, - X
b3 = ¥ -9, 3 2 1
If Kl and K2 are the two principal conductivities, and © is the angle between
Kl and the x coordinate, then it can be shown with the aid of Darcy'é law -~
that
K = K ~coszc + K sin20
XX 1 2
, _ L2 ' 2 e
Kyy'-_ K1 sin 0 + K2 cos O | . (44)

ny (K1 - K2) sin 0 cos ©

Substituting equation (44) 1into equation (42) and rearranging, we obtain

e 1 . .
Anm = %5 [Kl (bn cos 0 + c, sin o) (bm cos O +7;m sin 0)

+ K (bn sin 0 - ¢ cog o) (b sin 0 - c_ cos 0)] (45)

14

indicating that Ahne.3 0, i.e., the diagonal terms of [éé] and [A] are always
non-negative.
Furthermore,.recognlzlng that b1 + b2 + b3 = 0 and ¢y + c2'+ c3 = 0,

we find that equation (45) can also be written for n = m = 1 as



vo

W “d od oo
| _ : ‘Ej &%\ /? 3 éi
- 25 ’
e _ K1 . | ) e | »
Ay = -4 (by cos 0 +c, sin ) [, + by) cos 0+ (c, +‘c3) sin o]
K, . ‘ Y
- 75 (b sino- c) cos o) [, + by) cos 0 - (e, + cj5) sin o]
e e . ) N )
= A Ty . I 6

Thus, in general we have

A = - ¥ A and A = - I A _ (47)
nn . - .

where the summation is taken over all nodes other than n.
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Appendix B
Consider a homogeneous isotropic domain with a shperimposed mesh of
equilateral triangular elements as shown in Figure la. Due to equation (8)

and the symmetry of the mesh, we have

)\nl = >\n2 = o o o = An6 = - g )\nn (48)

Furthermore, if we orient the coordinates so that the origin is at node n

‘and the x axis points toward node 1, then

Axl = - Ax4 = a
= -— . = -— = = i
bxy = bxq bxg bxg 2
= = (49)
Ayl Ay2 0
. a
by, = Ay3 = -bdy, = -ty = /3 5
where Axm =X -7xn, Aym = Yp = Yo and a is defined in Figure la. Thus, we

can expand the term vpr defined below in the form

vpr = X Anm [1 - exp (ip Axm + ir Aym)]
m#n
Ann '
= - wa X [1 - cos (r Axm +r Aym)]
m#n
.
n

- __mn 1 2_1 .. b, ...
= 3 . i . [2: (p Axm +r Aym) ™ (p Axm +r Aym) + 1 o)

According to equations (4), (5), (7), (43), and (49), we have

oAt 2 2, _ 2
o - 7 2 (b " +c ) = 4oit/a (51)

85" e

A

2 .
because S 3a4/16. Recognizing also that equation (49) implies
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r (p Axm +r Aym)2 = 3a2 (p? + r2) _ ' - _ o (52)
m#n - : ‘ o :
4 ' 2 , -
| 4 _ 9" 2 2%
Loo(phe +rly) = 5= 0@ +1) : = (53)

m#n
we can rewrite the term vpr in equation (50) as

2 _ . . .
- - 2 .2y, 2 2iH2 0.,
vpr = o At (p" + ") + 16 ¢ A; (r~ + r.)- : | (54):

Now Epr in equation (12) can be expressed as

1+ (@-0)v
Er = —F
pr 1 -6V

. | L 65s)

and when this ié expanded in a Taylor series about vpr = 0, the result is

gpr = 14+ Vor + 26 Vor +.. .. R (56)
Substituting.(54).into (56), we finally obtain

' 2 v . 2
1-a it (p2 + r2)'+ (%g'+_26_a At) a At'(p2 + r2)' + .

Epr

1-0bt 2 +12) + G+ 20) (@ a)2 pE+ 2 4. .. (5T
. nn ' ' . ’

Since in the text we showed that Ann is invariant under a change of coordin-
ates, it is obvious that the above result is not restricted by our particular

choice of the x and y axes in Figure 1.
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